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Abstract

We describe a method which, in certain circumstances, may be used to prove that the well-
known necessary conditions for partitioning the edge set of the complete graph on an odd number
of vertices (or the complete graph on an even number of vertices with a 1-factor removed) into
cycles of lengths m1; m2; : : : ; mt are su�cient in the case |{m1; m2; : : : ; mt}|=2. The method is
used to settle the case where the cycle lengths are 4 and 5. c© 1998 Elsevier Science B.V. All
rights reserved.

1. Introduction and notation

The obvious necessary conditions for the existence of a decomposition of the com-
plete graph Kv into cycles C1; C2; : : : ; Ct , of lengths m1; m2; : : : ; mt , whose edges partition
the edge set of Kv are
• 36mi6v for i=1; 2; : : : ; t;
• v is odd; and
• m1 + m2 + · · ·+ mt = v(v− 1)=2.
When v is even, one may, instead, consider partitioning the edge set of the complete

graph with a 1-factor removed Kv\F into cycles. In this case, the necessary conditions
are
• 36mi6v for i=1; 2; : : : ; t;
• v is even; and
• m1 + m2 + · · ·+ mt = v(v− 2)=2.
The question of whether these necessary conditions are su�cient was asked by

Alspach (1981). Although the question remains unsolved in general, the conditions
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have been proven to be su�cient in many cases and there are no known cases where
they are not su�cient. Rosa (to appear) has shown that they are su�cient when v610.
A decomposition of Kv into cycles all of the same length m which partition the edge

set of Kv is usually called an m-cycle system of Kv. The problem of �nding all values
of v for which there is an m-cycle system of Kv is unsolved for general m, though the
necessary conditions have been shown to be su�cient for many values of m. Several
results on m-cycle systems of Kv\F also exist. See Lindner and Rodger (1992) for a
survey of m-cycle systems.
There exist several results for decompositions of Kv into cycles of more than one

length, see Heinrich et al. (1989) for example. One of the results in
Heinrich et al. (1989) is that if mi ∈{3; 4; 6} for i=1; 2; : : : ; t then the above nec-
essary conditions are su�cient. Recently, Adams et al. (1998) solved the problem for
mi ∈{3; 5}; i=1; 2; : : : ; t.
Here, we present a method of proving (when certain conditions are satis�ed) that

the above necessary conditions are su�cient when mi ∈{m; n} for i=1; 2; : : : ; t; that is,
two di�erent cycle lengths only. We use the method to settle the smallest open case,
mi ∈{4; 5} for i=1; 2; : : : ; t.
We need the following notation.

• If G2 is a subgraph of G1 we denote by G1\G2 the graph with vertex set V (G1\G2)=
V (G1) and edge set E(G1\G2)=E(G1)\E(G2).

• When a graph G is the union of edge disjoint graphs G1; G2; : : : ; Gt we will write
G=G1 +G2 + · · ·+Gt . The use of the + symbol is restricted to the case in which
the graphs G1; G2; : : : ; Gt are edge disjoint.

• An m-cycle on {a1; a2; a3; : : : ; am} with edges a1a2; a2a3; : : : ; am−1am; ama1 will be
denoted by (a1; a2; a3; : : : ; am).

• An (mr; ns)-cycle system of a graph G is a set consisting of r m-cycles and s n-cycles
whose edges partition E(G).

• For any non-negative integer v, de�ne Sm;n(v)= {(r; s): mr + ns= v and r; s¿0}
and for a given graph G, de�ne Typem;n(G)= {(r; s): there exists an (mr; ns)-cycle
system of G}. Where it is clear what m and n are, we will omit the subscripts and
just write S(v) and Type(G).

• For E⊆Z×Z and (r; s)∈Z×Z, de�ne (r; s) + E= {(r + x; s+ y): (x; y)∈E}.
• For non-negative integers u and v with v¿u, de�ne Gvu=Kv\Ku if u and v are odd,
and Gvu=(Kv\F1)\(Ku\F2) if u and v are even, where F1 is a 1-factor of Kv and F2
is a 1-factor of Ku with F2⊆F1. If u=0 or 1 then we use Gv.

2. Main results

The proof of Lemma 2.1 is straightforward.

Lemma 2.1. If G=G1 + G2 + · · · + Gt and for 16i6t; (ri; si)∈Type(Gi), then
(
∑t

i=1 ri;
∑t

i=1 si)∈Type(G).
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Theorem 2.2. Let u, v and w be non-negative integers with v¿u and v¿w. If
(1) there exists an m-cycle system of Gvu;
(2) there exists an n-cycle system of Gvw;
(3) Type(Gu)= S(|E(Gu)|) and Type(Gw)= S(|E(Gw)|); and
(4) (|E(Gw)|+ |E(Gu)|)− |E(Gv)|¿0;

then Type(Gv)= S(|E(Gv)|):

Proof. Since Type(Gv)⊆ S(|E(Gv)|) from the de�nitions of Type(Gv) and S(|E(Gv)|),
it is su�cient to prove that S(|E(Gv)|)⊆Type(Gv). Let (r; s) be any element in
S(|E(Gv)|) and let x and y be non-negative integers such that |E(Gvu)|= xm and
|E(Gvw)|=yn. Then |E(Gv)|= rm + sn; |E(Gu)|= |E(Gv)| − |E(Gvu)|=(r − x)m + sn
and |E(Gw)|= |E(Gv)| − |E(Gvw)|= rm+ (s− y)n.
(A) In the case r¿x, it follows from the above equation and Eq. (3) in

Theorem 2.2 that (r − x; s)∈ S(|E(Gu)|) and (r − x; s)∈Type(Gu). Since (x; 0)∈
Type(Gvu) and G

v=Gu + Gvu, it follows from Lemma 2.1 that (r; s)∈Type(Gv).
(B) In the case s¿y, it follows from Eq. (3) in Theorem 2.2 that (r; s − y)∈

Type(Gw). Since (0; y)∈Type(Gvw) and Gv=Gw + Gvw, we have (r; s)∈Type(Gv).
(C) In the case r¡x and s¡y, it follows that |E(Gu)|=(r − x)m + sn¡sn and

|E(Gw)|= rm + (s − y)n¡rm. Hence, it follows from Eq. (4) that |E(Gv)|6
|E(Gu)| + |E(Gw)|¡rm + sn. Since |E(Gv)|= rm + sn, this is a contradiction. Hence,
r¿x or s¿y.
It follows from (A)–(C) that S(|E(Gv)|)⊆Type(Gv). This completes the proof.

We are now ready to prove that for all positive integers v, Type4;5(G
v)=

S4;5(|E(Gv)|). From here on we will omit the subscript 4; 5 on Type and S. Note
that in the notation (r; s), the �rst coordinate represents the number of 4-cycles and the
second coordinate represents the number of 5-cycles. We make use of the following
results.

Theorem 2.3 (See Bryant et al., 1997). Let u and v be odd with u¡v. Then there
exists a 4-cycle system of Gvu if and only if v≡ u (mod 8).

Theorem 2.4 (See Sotteau, 1981). The complete bipartite graph Kx;y can be decom-
posed into edge disjoint 4-cycles if and only if x and y are even.

Theorem 2.5 (See Bryant et al., 1996). Let u and v be odd. Then there exists a
5-cycle system of Gvu if and only if:
(a) v¿3u=2 + 1, and
(b) u≡ v≡ 3 (mod 10), or u; v≡ 1 or 5 (mod 10), or u; v≡ 7 or 9 (mod 10).

Theorem 2.6 (See Bryant and Khodkar, to appear). Let u and v be even. Then there
exists a 5-cycle system of Gvu if and only if:
(a) v¿3u=2 + 2, and
(b) u; v≡ 0 or 2 (mod 10), or u; v≡ 4 or 8 (mod 10); or u≡ v≡ 6 (mod 10).
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Corollary 2.7. For t¿4 we have (0; 2) + (2t − 4; 0) + Type(G2t−3)⊆Type(G2t+1).

Proof. Since G2t+1 =G5 + K2t−4;4 + G2t−3 the result follows by Theorem 2.4 and
Lemma 2.1.

Theorem 2.8. Let v be odd. Then Type(Gv)= S(|E(Gv)|) for v¿5.

Proof. In the case v625; v=31 and v=33, it follows from Rosa [10] and the ap-
pendix that Theorem 2.8 holds. Hence, it is su�cient to prove that Theorem 2.8 holds
in the case v¿27; v 6=31 and v 6=33.
In the case v¿27, let (r; s) be any element in S(|E(Gv)|) and let u(v) denote the

largest odd integer u such that there exists a 5-cycle system of Gvu for a given odd
integer v. Since |E(Gv)|= v(v− 1)=2, it follows from Theorem 2.5 that 4r+5s= v(v−
1)=2; u(23)= 13; u(25)= 15; u(27)= 17; u(29)= 17; u(31)= 15; u(33)= 13; u(35)=
21; u(37)= 19; u(39)= 19; u(41)= 25; u(43)= 23; u(45)= 25; u(47)= 29; u(49)=
29 and u(51)= 31. By Theorem 2.5, there exists a positive integer y such that
|E(Gvu(v))|=5y, where y=(v(v− 1)− u(v)(u(v)− 1))=10. Since |E(Gv)|=4r +5s and
|E(Gvv−8)|= |E(Gv)| − |E(Gv−8)|= v(v− 1)=2− (v− 8)(v− 9)=2=4(2v− 9), it follows
that |E(Gv−8)|=4(r − (2v− 9)) + 5s.
(A) In the case r6u(v)(u(v)− 1)=8, it follows that |E(Gu(v))|= |E(Gv)| − |E(Gvu(v))|

=4r + 5(s − y). Since 4r + 5s= v(v − 1)=2, it follows that s¿y if and only if
r6u(v)(u(v)−1)=8. Hence (r; s−y)∈ S(|E(Gu(v))|) and (r; s−y)∈Type(Gu(v)) by in-
duction on v. Since Gv=Gu(v)+Gvu(v), it follows from Lemma 2.1 that (r; s)∈Type(Gv).
(B) In the case r¿2v − 9, it follows that (r − 2v + 9; s)∈ S(|E(Gv−8)|). Since

(r − 2v+ 9; s)∈Type(Gv−8) by induction on v, we have (r; s)∈Type(Gv).
(C) In the case v6r¡2v − 9, it follows from Corollary 2.7 that (r; s)∈Type(Gv).

Since v6u(v)(u(v)− 1)=8 in the case v¿27; v 6=31 and v 6=33, it follows from (A)–
(C), Rosa (to appear) and the appendix that S(|E(Gv)|)⊆Type(Gv) for any odd integer
v¿5. Since Type(Gv)⊆ S(|E(Gv)|) for any odd integer v¿5, this completes the proof.

It is worth noting that when v¿47; 2(|E(Gv−8)|+ |E(Gu(v))|−|E(Gv)|)= u(v)(u(v)−
1) − 8(2v − 9)¿0. Hence, once Theorem 2.8 is proved for the case v¡47, the case
v¿47 follows immediately by induction from Theorems 2.2, 2.3 and 2.5.

Theorem 2.9. Let v¿4 be even. Then Type(Gv)= S(|E(Gv)|).

Proof. For v610 see Rosa (to appear). For v¿12 apply Theorem 2.2 with w= v− 2
and an integer u which satis�es Theorem 2.2 parts (1) and (4). Since v¿12 one can
see that such an integer u always exists.
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Appendix

In this appendix, we prove that Type4;5(G
v)= S4;5(|E(Gv)|) for v=11; 13; 15; 17; 19;

21; 23; 25; 31 and 33. We will omit the subscript 4,5 on Type and S. Note that in the
notation (r; s), the �rst coordinate represents the number of 4-cycles and the second
coordinate represents the number of 5-cycles.
Type(K11)= S(|E(K11)|): S(|E(K11)|)= {(0; 11); (5; 7); (10; 3)}. Corollary 2.7 takes

care of (10; 3). By Theorem 2.5 we have (0; 11)∈Type(K11). To see (5; 7)∈Type(K11)
let the vertex set of K11 be {1; : : : ; 11}. Let the 5-cycles be (2; 3; 4; 5; 6); (2; 4; 6; 3; 5);
(7; 8; 9; 10; 11); (7; 9; 11; 8; 10); (1; 2; 9; 4; 7); (1; 4; 11; 6; 9) and (1; 6; 8; 3; 11), and let
the 4-cycles be (1; 3; 9; 5); (1; 8; 4; 10); (2; 7; 3; 10); (2; 8; 5; 11) and (5; 7; 6; 10).
Type(K13)= S(|E(K13)|): S(|E(K13)|)= {(2; 14); (7; 10); (12; 6); (17; 2)}. Sine K13 =

K4;2 + K9\K7 + K11, by Theorems 2.4 and 2.5 and Lemma 2.1, (2; 14); (7; 10); (12; 6)
are in Type(K13). Since K13 =K13\K5 +K5, by Theorem 2.3 and Lemma 2.1, (17; 2)∈
Type(K13).
Type(K15)= S(|E(K15)|): S(|E(K15)|)= {(0; 21); (5; 17); : : : ; (25; 1)}. Since K15 =

K6;2+K9\K7+K13, by Theorems 2.4 and 2.5 and Lemma 2.1, (5; 17); (10; 13); (15; 9);
(20; 5) are in Type(K15). By Theorem 2.5 we have (0; 21)∈Type(K15). Since K15 =
K15\K7 + K7, by Theorem 2.3 and Lemma 2.1, (25; 1)∈Type(K15).
Type(K17)= S(|E(K17)|): S(|E(K17)|)= {(4; 24); (9; 20); : : : ; (34; 0)}. Since K17 =

K17\K9 + K9, by Theorem 2.5 and Lemma 2.1, (4; 24); (9; 20)∈Type(K17). Finally,
Corollary 2.7 and Theorem 2.3 take care of other types.
Type(K19)= S(|E(K19)|): S(|E(K19)|)= {(4; 31); (9; 27); : : : ; (39; 3)}. Since K19 =

K19\K9 + K9, by Theorem 2.5 and Lemma 2.1, (4; 31); (9; 27)∈Type(K19). Finally,
Corollary 2.7 takes care of the remaining types.
Type(K21)= S(|E(K21)|): S(|E(K21)|)= {(0; 42); (5; 38); : : : ; (50; 2)}. Since K21 =

K21\K11 + K11, by Theorem 2.5 and Lemma 2.1, (0; 42); (5; 38); (10; 34)∈Type(K21).
Since K21 =K8;4 +K17\K9 +K13, by Theorems 2.4 and 2.5 and Lemma 2.1, (15; 30)∈
Type(K21). Finally, Corollary 2.7 takes care of the remaining types.
Type(K23)= S(|E(K23)|): S(|E(K23)|)= {(2; 49); (7; 45); : : : ; (62; 1)}. Since K23 =

K23\K13 + K13, by Theorem 2.5 and Lemma 2.1, (2; 49); (7; 45); (12; 41); (17; 37)∈
Type(K23). From Corollary 2.7 it follows that (22; 33); (27; 29); : : : ; (57; 5)∈Type(K23)
and since K23 =K23\K15 + K15, by Lemma 2.1 and Theorem 2.3 we have
(62; 1)∈Type(K23).
Type(K25)= S(|E(K25)|): S(|E(K25)|)= {(0; 60); (5; 56); : : : ; (75; 0)}. Since K25 =

K25\K15+K15, by Theorem 2.5 and Lemma 2.1, (0; 60); (5; 56); : : : ; (25; 40)∈Type(K25).
From Corollary 2.7 it follows that (20; 44); (25; 40); : : : ; (70; 4)∈Type(K25) and by
Theorem 2.3 (with u=1 and v=25), we have (75; 0)∈Type(K25).
Type(K31)= S(|E(K31)|): S(|E(K31)|)= {(0; 93); (5; 89); : : : ; (115; 1)}. Since K31 =

K31\K15+K15, by Theorem 2.5 and Lemma 2.1, (0; 93); (5; 89); : : : ; (25; 73)∈Type(K31).
From Corollary 2.7 it follows that (30; 69); (35; 65); : : : ; (110; 5)∈Type(K31)
and since K31 =K31\K23 + K23, by Lemma 2.1 and Theorem 2.3 we have (115; 1)∈
Type(K31).
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Type(K33)= S(|E(K33)|): S(|E(K33)|)= {(2; 104); (7; 100); : : : ; (132; 0)}. Since K33 =
K33\K13+K13, by Theorem 2.5 and Lemma 2.1, (0; 90)+Type(K13)⊆Type(K33). Since
K33 =K33\K25+K25, by Theorem 2.3 and Lemma 2.1, (57; 0)+Type(K25)⊆Type(K33).
Finally, for the remaining types, we apply Theorems 2.4 and 2.5 and Lemma 2.1 with
K33 =K12;4 + K29\K17 + K21.
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