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Abstract-Signature file is one of the efficient access methods for retrieval of text database. In a large database 
server, parallel device is utilized to achieve concurrent access. Efficient allocation of signature file on parallel 
device minimizes the query response time and is important in the design of large databases. In this paper, we 
investigate the design of parallel signatutz file. We propose a new dynamic allocation technique to distribute the 
signature file on parallel device. It is an improvement of previous approach of Fragmented Signatum File. While 
Fragmented Signature File uses Quick Filter to distribute the partitioned frame signature file, the proposed Parallel 
Signature File uses a declustering technique. The proposed Parallel Signature File has some advantages. First, the 
qualified frame signature. blocks ate distributed mom uniformly than Fragmented Signature Files. Second, the 
proposed scheme can also be used in dynamic environment. Performance analysis shows that performance of the 
proposed approach outperforms that of Fragmented Signature File and is not far from theoretical optimal response 
time. 0 1998 Published by Elsevier !kience Ltd. 
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1. INTRODUCTION 

Signature file is one of the efficient access methods for text retrieval 14, 61. It acts as a search filter to 
reduce the search space. For text retrieval, although signature file is slower than inverted file, it takes less 
storage overhead. Besides, signature file is also used in partial match retrieval of traditional formatted 
databases [ 191, clause indexing of Prolog databases [ 181, subpicture query of image databases [ 16, 211, 
text retrieval of large Chinese text databases [ 11. 

However, in large database servers, secondary storage access becomes the bottleneck. Parallel 
secondary storage devices in which data can be accessed concurrently are utilized. The distribution of the 
signature file on parallel device may improve performance significantly. The query response time of 
content-based retrieval of large databases systems can be reduced by efficient distribution of the 
signatures on parallel device. 

One of the important design goals of distribution of signature files is to maximize the throughput. Two 
criteria to achieve the goal are intra-query parallelism and inter-query parallelism. Intra-query parallelism 
must try to distribute the signatures pertinent to the query as uniformly as possible. Inter-query 
parallelism must try to activate as few disks as possible for small query and to process as many queries 
concurrently as possible. 

Few researches have studied the design of signature file on the parallel machine architecture. Stanfill 
et al. proposed a parallel signature file developed in Thinking Machines Corporation for high-speed 
interactive querying of text databases on a SIMD computer, the Connection Machine [24]. However, it 
was based on the assumption that main memory was sufficient to hold all the text signatures. To deal with 
this problem, Panagopoulos et al. proposed a parallel bit-sliced signature file method on a SIMD machine 
[15]. A partial fetch slice-swapping algorithm is used when the size of the signature file exceeds the 
available memory. The partitioned signature file approach proposed by Lee et al. can also be implemented 
in a parallel environment by assigning each partition to a separate processor [ 111. Only some partitions 
are searched concurrently for a query. The non-activated processors are available for inter-query 
parallelism. The concurrent frame signature file, CAT [14], is an extension of frame sliced signature file 
for current access. It is suitable for processing queries with few query terms. Hamming Filter, proposed 
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by Zezula et al., is a dynamic signature file for multiple disks [26]. It is an integration of the dynamic 
partitioning scheme Quick Filter and the static declustering strategy based on the linear error correcting 
codes. Each signature is allocated using the error correcting code. Then the allocated signatures in the 
same disk are clustered by Quick Filter. With suitable choice of code parameters, it is guaranteed that 
Hamming Filter achieves optimal performance. However, in dynamic environment where the size of 
signature file grows, the declustering effect of Hamming Filter declines. Hamming+ Filter is a 
generalization of Hamming Filter suitable to manage highly dynamic files. It uses a dynamic deelustering, 
obtained through a sequence of codes, and organizes a smooth migration of signatures between disks [2]. 
But, Hamming+ Filter can not deal with the case when the number of disks is not a power of two. The 
Fragmented Signature File (FSF), proposed by Grandi et al. [lo], is a frame-sliced partitioned parallel 
signature file approach on Shared-Nothing architecture of multiprocessor database computers. FSF is 
based on two signature file structures, the frame-slice approach and the dynamic partitioning scheme 
Quick Filter. It achieves both the intra-query and inter-query parallelism. 

In this paper, we investigate the dynamic allocation of signature files on parallel device. We propose a 
new allocation scheme Parallel Signature File (PSF). It is an integration of striping, dynamic partitioning 
and dynamic declustering technique for efficient dynamic organization of signature file. While Hamming 
Filter uses a static declustering strategy, the proposed PSF uses a dynamic declustering technique with 
little sacrifice of performance. Although Hamming+ Filter uses the dynamic declustering technique, the 
proposed PSF is superior to deal with the case when the number of disks is not a power of two. 
Furthermore, though both PSF and FSF use the dynamic declustering strategy, the declustering effect and 
the performance of the proposed PSF is superior to that of FSF. 

The remainder of this paper is organized as follows. Section 2 reviews the signature file approaches 
including the Fragmented Signature File. Section 3 describes the proposed dynamic allocation technique. 
The performance evaluation is described in Section 4. The conclusions and future works are described in 
Section 5. 

2. SIGNATURE FILES 

The Signature file access method is widely used in text retrieval. It acts as a search filter to prune most 
of the unqualified text. In general, the signature file access method can be considered for partial match 
retrieval whenever the object is characterized by a set of terms. The object may be a document, an image. 
Partial match retrieval retrieves the objects which contain all the queried terms. 

In signature tile access method, each object is associated with an object signature. An object signature 
is produced from the transformation of associated terms of an object. A collection of the object signatures 
is called a signature file. Query described by a set of specified terms is also transformed to query 
signature by the same method of object signature generation. After evaluating the query signature against 
the object signatures in a signature file, most of the impossibly qualified objects are pruned out and the 
objects corresponding to the qualified signatures are evaluated further. The object whose signature seems 
to be qualified but actually unqualified is called false drop [5]. The process of further evaluation of 
objects with qualified signatures is called false drop resolution. Two main design issues of signature file 
access method are the signature extraction method and the signature storage structure. Signature 
extraction method deals with the reduction of false drop probability while signature storage structure 
deals with the reduction of the number of physical pages that need to be accessed for evaluating the query 
signature. 

Book0 Book1 Book2 
Keywords Term Sig. Keywords Term Sig. Keywords Term Sig. 

Indexing 100 001 Indexing 100 001 Database 001001 
Database 001001 File 100 010 Query 010 001 

Model 010 010 Query 010 001 Security 001100 
Object 111011 110011 011 101 

Signature 

Fig. I : Illustmtion of Superimposed Coding 
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The basic types of signature extraction methods include Word Signature, Superimposed Coding, Bit- 
block Compression and Run Length Compression [7]. Above all, Superimposed Coding is the most 
pOpUlar and is the focus of this paper. In Superimposed Coding, each term is hashed into a binary coded 
word of size F in which m bits have value “1” while others have value “0”. These binary coded words are 
OR-ed together to form the object signature. The number of bits set to “1” in the binary coded word is 
called the signature weight. If an object signature contains 1s in the same bit positions as the query 
signature does, then the object signature qualifies for the query signature. Figure 1 illustrates an example 
of Superimposed Coding applied in the searching of books in the library. In the library, each book is 
associated with a set of keywords. Users wish to search the book which contains the keywords specified 
by users. In this example, the signature size F is six bits, term signature weight m is two bits. If the user 
wishes to retrieve the book which contains keywords “Indexing” and “Query”, then the query signature is 
generated by clOOOOl> OR <OlOOOl> which is cllOOOl>. Evaluating the query signature against the 
three object signatures, we get the qualified signatures, object signatures of Book0 and Book1 . After false 
drop resolution, only Book1 is actually qualified while Book0 is a false drop. 

Approaches for the storage structure of signature file includes sequential, Bit-sliced, Frame-sliced, S- 
Tree, Quick Filter, etc. To describe the storage structure of signature tile, a signature tile of sn-number of 
F-bits object signature can be regarded as an sn*F bit matrix. The storage structure of signatures can be 
classified into the following [9]. 

(1) Sequential Signature File stores the signature matrix sequentially row by row. 
(2) Vertical fragmentation stores the signature matrix column-wise and improves the response time. 

There are Bit-sliced approach and Frame-sliced approach. 
(3) Horizontal fragmentation groups similar signatures together and provides an index on the signature 

matrix. There are three approaches, 24evel signature file, S-Tree and partitioned approaches. Partitioned 
approaches include static partitioning [ 121 and dynamic partitioning, Quick Filter [25]. 

Above all, Quick Filter is economical in space and is very efficient in dealing with large files of 
dynamic data and high weight query signature [17, 251. Quick Filter uses linear hashing to group the 
signatures into pages. Signatures with the same suffix will be grouped together. Only the pages of 
signatures with qualified common suffix are retrieved. Therefore, the search space can be reduced. The 
length of the suffix is determined by current level of hashing. By the property of linear hashing, Quick 
Filter can dynamically organize the signatures in dynamic environment. The common suffix of each 
signature page may be regarded as the key of the signatures in each page. In the following, when the term 
“signature key” is mentioned, it denotes the common suffix of the signatures stored in a partitioned 
signature page. 

Figure 2 shows the result after partitioning six signatures by Quick Filter. In this example, the 
capacity of a page is assumed to be two signatures. All signatures in a page have the same suffix, in this 
case the size of two bits. Given the query signature <OlOOOl>, only pages with the common suffix <Ol> 
and ~1 l> are retrieved. This is done by evaluating the 2-bit suffix of query signature against that of 
signature pages. The pages with suffix 40>, < IO> can not possibly contain the qualified signatures. 

Frame-sliced signature file is an approach for extracting and organizing signatures [13]. In this 
approach, the signature file is divided into J% frames of consecutive bits. Unlike the Superimposed 
Coding, the bit positions to be set by each term are restricted. Each term of the object is hashed into one 
of the frames. Another hashing function sets some bits of the specified frame to 1. This produces the 
penalty of higher false drop probability than that of Superimposed Coding. Therefore, the false drop 
probability is expected to grow with increasing number of frames. The signatures are stored frame-wise, 
usingfi frame files. For a query with a single term, only one frame tile needs to be searched. And with 
TQ number of query terms, at most TQ frame files are searched. Given fixed TQ, the disk access time of 
signatures increases with increasing number of frames. Therefore, there is a tradeoff for selecting design 
parameter fi. Figure 3 gives the Frame-sliced file approach of the example in Figure 1. The number of 
framesfn is 2 and the frame size is 3 bits. If the queried keywords are “Indexing” and “Query”, then the 
query signature is generated by ~101 OOO> OR < 110 OOO> which is < 111 OOO>. Because keywords 
“Indexing” and “Query” are hashed into the first frame, only the first frame signature file RO needs to be 
accessed for query signature evaluation. 

Note that there is another type of frame-sliced approach, in which the bit positions to be set are not 
restricted. It is a generalization of Bit-sliced approach while each slice contains more number of bits. 
Grandi et. al. called the frames of the Frame-sliced file approach clustered frames while that of the 
generalization of Bit-sliced approach unclustered frames [ 101. 
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111100 010001 011110 000011 
000101 110110 

00 01 10 11 

Fig. 2: Clustering of 6 Sig~tures by Quick Filter 

Book0 Book1 Book2 
Keyword Term Sig. Keyword Term Sig. Keyword Term Sig. 
Indexing 101 000 Indexing 101 000 Database 000 101 
Database 000 101 File 000 110 Query 110 000 

Model 011 000 Query 110 ooo Security 000 011 
Object 111 101 111 110 110 111 

Signature 

Fig. 3: Illustration of Frame-Sited Signature File 

Fragmented Signature File (FSF) is a mixed fragmentation scheme produced by double horizontal 
fragmentation of vertical partitioned fragments [lo]. Fragmented Signature File is based on the Shared- 
Nothing parallel architecture of multiprocessor database computers. It can also be implemented on other 
parallel database computer architecture. Fragemented Signature File is generated as follows: 

(Step 1) Vertical fragmentation: all the object signatures in a signature file is fragmented vertically intofi 
frame signature files. Ri (i = 0, 1, 2, . . ., fn-1) is the i-th frame file and is served by a cluster of pni 
processing units. 

(Step 2) First horizontal fragmentation: each frame file Ri is fragmented horizontally into pnl partitions 
by Quick Filter. PiJ (0 I j I pni -1) is the j-th partitions of the i-th frame Ri . Each partition is served by a 
specific processing unit. Therefore, from now on, the terms ‘partition’ and ‘processing unit’ are used 

interchangeably. Without loss of generality, we assume that pni = 2”. With Quick Filter, frame signatures 

with the same h-bits prefix are grouped in partition PiJ and allocated in the same processing unit. 

(Step 3) Second horizontal fragmentation: each partition PU is fragmented horizontally further into bnij 

blocks Bij,& by Quick Filter ( 0 5 k I bni,/ - l), where 2 ‘rr < bnid 5 2*i, for some integer hi. The value of hi 

is the level of Quick Filter. Buk is the k-th block of partition PU . Each block is allocated a disk page and 
is also the access unit of FSF. So the terms “block” and “page” are used interchangeably. With Quick 

Filter, the frame signatures of frame file Ri in the same partition P/J with the same (hi-l) or hi-bits suffix 

are grouped into block Buk. 

Figure 4 demonstrates an example of Fragmented Signature File. In this example, the signature file is 
fragmented vertically into 3 frame signature files Ro, RI, Rz ( fi = 3 ). Each frame signature file RI is 

fragmented horizontally to 2 partitions Pco, PIJ (pnr = 2, lr = Lop pnr = 1 ). Each partition PIJ is 

fragmented horizontally to 4 blocks BUO, BIJ,~, Bu2, BiJ,3 ( bnij = 4, hi = Log2 bniJ = 2 ). The binary code 

word shown in each box represents the h-bits common prefix and hi-bits common suffix of signatures 
stored in the block. For example, O_ 10 represents the common prefix CO> and common suKx <lo> 

Of the signatures shown in blocks B0~0.2, B1.0.2, B2.0.2. Given a signature <loll 0101 lOlO>, frame 

signatures <lOl l>, <OlOl>, <lOlO> are allocated in Bo.1.3 of Po,J, BJ.@J of PLO, B2.1.2 of P2,1, 

respectively. 
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O-00 
O-01 El o-10 

o-11 

1 -00 
1 -01 

~ 

1 -10 
1 -11 

o-10 

o-11 

-II 
l-Of_ i,j,O 

1 01 u i.j, I 

1 -10 id.2 

l-1 1 ij.3 

PO.0 PO,1 PI.0 PIJ P2.0 P2.1 

Ro RI R2 

Fig. 4: An Allocation Example of FSF 

In general, the advantages in FSF are stated as follows: 
(1) Given the same number of processing units for each frame file and the same frame size, the load is 

balanced among clusters of processing units. 
(2) In query processing, the first horizontal fragmentation discards the unqualified partitions and 

achieves inter-query parallelism. For the example in Figure 4, given query signature < 1011 0101 lOlO>, 

only partitions Po,I, PLO, PLI, PZJ need to be activated, i.e. there are no qualified frame signatures in other 
partitions. These non-activated partitions are available to serve other queries and the inter-query 
parallelism can be achieved. Furthermore, if the signatures are generated as frame-sliced signatures, the 
degree of inter-query parallelism can be promoted. In this case, only the processing unit allocating hit 
frames are activated. 

(3) The second horizontal fragmentation discards the unqualified blocks in each activated partition 

and reduces the search space. For the same example in the above paragraph, in Po,r, only block Bo.1.3 needs 

to be accessed for query evaluation. In PLO, blocks BI.OJ and B1.0.3, in PIJ, blocks BIJJ and B1.1.3, in P2.1, 

blocks B2.1.2 and Bz,~.s are accessed. 

3. DYNAMIC ALLOCATION SCEME 

3.1. Proposed Parallel Signature File 

Disk striping and declustering are two popular techniques for distribution of data in parallel device. 
Disk striping is a general purpose facility for achieving parallel data I/O and for achieving fault tolerance 
[20]. Disk striping tries to store each accessed object as a one-dimensional stream among the disks. 
Declustering technique tries to distribute the qualified objects among the disks. 

The Fragmented Signature File is an integration of striping and partitioning technique. However, the 
performance of FSF can be improved further by increasing the degree of intra-query parallelism. Figure 5 

shows an allocation example of a frame signature file Ro after vertical fragmentation in FSF. In this 

example, the frame signature file Ro is partitioned horizontally into 4 partitions. Frame signature with the 
same 2-bit prefix are allocated in the same processing unit. Each partition is partitioned horizontally into 
4 blocks. Frame signatures in a processing unit with the same suffix are allocated in the same disk block. 
Given the frame signature of query signature with prefix <Ol> and suffix -K lo>, then only partitions 

POJ, Po.3 are activated. In each of these two partitions, there are two blocks activated. The activated blocks 

are blocks Bo.1.2 and Bo,1,3 in partition Po.1, blocks Bo.3.2 and Bo,s3 in partition Po.3. These accessed blocks 
are shadowed in Figure 5. The response time of the query frame signature is 2 units of disk block access 
time. 

If the allocation example of Figure 5 is replaced by that shown in Figure 6, it is obvious that the query 
response time is one unit of disk block access time and is less than that of Fragmented Signature File. The 

qualified blocks are Bo.0.1 in Po,o, Bo.1.3 in Po,I, Bo,t3 in Po.2, B0.3.1 in Po,s. They are distributed evenly in 
the processing units allocated for this frame file. 

Before describing the proposed Parallel Signature File (PSF), the definitions of symbols used in PSF 
and FSF are listed in Table 1 for convenience. 
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Fig. 5: An Allocntion Ex;unple of Fmme Signature File R0 of FSF 
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fi 
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F? 
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SQi 
bnu 

li, hl 

Si 

2 

dni 

ri 

G(Sr, pm, ri) 

H(Si, pm, n) 

I.41 

Method(s) 
Both 

Definition 

Both 

Both 

Both 
Both 

Both 
Both 
Both 
Both 
Both 

Both 

FSF 

FSF 

PSF 

PSF 

PSF 

PSF 

PSF 

PSF 

PSF 

The i-th frame signature file 

The j-th partition (processing unit) of frame Ri 

The k-th block of partition (or processing unit) Pu 
Number of frames 
Number of partitions (processing units) in the i-th frame 

Index of frame 
Index of partition (processing unit) 
Index of block 
query signature 
The i-th frame of query signature Q 

Common suffix of Rqi 

Number of blocks allocated in partition (processing unit) Pu 
Number of bits of common prefix, suffix of signature block of frame Ri 

A block of frame Ri, represented by a *-bits vector [sri . . . si] 

Index of bit position of [sri sri-t...st...si] 
Total number of blocks in the i-th frame 

Number of bits of common suffix of signature block of frame RI 
Disk allocation function 

Block location function 

Logplu 
pointer of frame Ri, which designate the block to be split Spi PSF 

Table 1: Definitions of the Symbols 

0.0.0 

O.O,l 

0.0.2 

O&3 

1.0 0.2.0 0,3,0 

1,1 0.2.1 0.3.1 

1.2 0,2*2 0.3.2 

I,3 0.233 0,3.3 

PO,1 PO,2 PO,3 

Fig. 6: An Improvement Example of FSF 

The proposed Parallel Signature File (PSF), similar to Fragmented Signature File, is based on the 
Shared-Nothing parallel architecture of multiprocessor database computers. It can also be implemented on 
other parallel database computer architecture or multiple disk system such as disk array. PSF is generated 
as follows: 
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(Step 1) Verticalfragmentation: all the object signatures in a signature file is fragmented vertically into 

fi frame files, Ri (i = 0, 1,2,...fn-l).fit, the number of frames, is a design parameter. Each frame is served 
by a cluster of pni processing units. 

(Step 2) Horizontalfragmentation: each frame file Ri is partitioned horizontally into dni blocks by Quick 

Filter (2’i” < dni I 29. The value of ri depends on the level of linear hashing function of Quick Filter. 

Each block is allocated in a disk page and is the access unit of PSF. Frame signatures with the same (ri - 

1)-bits or n-bits suffix are grouped together. Furthermore, we define the common key of each partitioned 

block as the *-bit common suffix of frame signatures in the same block. Each block is represented by Si= 

<Sri Sri-i.... Sl> , wheresz=Oor 1, 1 I zIn. 

(Step 3) Declustering: these dni blocks are distributed uniformly in a cluster of pni processing units 

allocated to frame Ri by a declustering technique. For a given partitioned block <sri sli-I.. .a>, the index j 

of allocated processing unit P/j is determined by the following disk allocation function, 

Figure 7 shows an example of allocation of frame signature file Ro. The binary code word shown in 

each box represents the ro-bits common suffix of signatures stored in the block. For example, -1011 

represents the 4 bits common suffix < loll> of block B0~1.2. In this example 10 = 4, pno = 4, log2pno = 2, 

WI = 1, wz = 2, w3 = 1, w4 = 2. Note that the proposed Parallel Signature File groups frame signature Ri by 

*-bit common suffix, instead of L-bit prefix and hi-bit suffix. In fact, given the same design parameters, 

the *-bit common suffix of blocks in Parallel Signature File may be regarded as the concatenation of the 

li-bit prefix and hi-bit suffix in Fragment Signature File. In FSF, the distribution of blocks considers only 

the hi-bit suffix by the nature of Quick Filter. While in PSF, all the (L + hi) bits are considered. 

0.w 

0111 0.0.1 q 1010 OJX 
1101 0.0.3 

PO,0 

-@)o’ O.I.0 

_Oloo 0.1.1 Al -1011 0.1.2 

-1110 0.1.3 

PO,1 

Fig. 7: An Allocation Example of Frame Signuture File Ro of PSF 

When pni is not a power of two, log 2 pni in Equation (1) is replaced by L log 2 pni 1 or r log 2 pni 1. 

If L log 2 pni J nears log2 Pni, then L10g2 Pn*] I is chosen. Otherwise, r log 2 pni 1 is chosen to replace 

log 2 Pni . 

The disk allocation function is borrowed from the declustering technique for binary Cartesian product 

file with a little modification [3]. This function can be understood as follows. Let ui be 
(Ii-1 “8 MOD Ui 

ual to log pm. 

Then WI = 2’, w2 = 2l, . . ..wui = 2+-’ , wui+l = 2’, wu,+2 = 2’, w 15’3 = 22, . . . . wri =2 . It is a cyclic 

sequence with cycle length ui. The disk allocation function 

I/l ‘i 
G(Si,pniqc)=( 3sZwz)MODpni=( zd,)MOD pni, (2) 

z=l x=1 

where +,+,l...d2 di> is the base-2#’ representation of Si. For example, given pm=B, rt=5, then ui=3, 

wi=l, w*2, w3=4, w4=1, w5=2. The base-8 representation of <l lOlO> is <32>. The frame signature 
block <l lOlO> is allocated in processing unit (3+2) MOD 8 = 5 of the i-th frame. 
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Theorem 1 Let Cm be the set, /zl(z-I) MOD ui = n, z=1,2, . . . . r11, where 0 Sn 5ui-I. For each query 

frame signature in which exactly ui bits of suftZx are set to 0, one from each Cn , all the qualified blocks 

are uniformly distributed among pm processing units. 

Proof Without loss of generality, we can assume that these ui bits are bit 1,2, . . . . ui, then the blocks need 

to be accessed are the set { <ll..ls~~...sl> Isz=O or 1, for z = 1, 2, . . . . ui). Let t be equal to 

c’i z=ui+Il*wz ’ which is a constant for each accessed blocks. Each of these blocks is allocated to 

processing unit PU where 

j= (x” ;=u,+ll*~z +c!$lSz *wz)MODpni=(t+C~$Sz *Wz)MODpni . 
1 

Because WI = 2’, wz = 2’, . . ..wui = 2Ui’ is a cyclic sequence with cycle length ui, the set of 

I(z>;ls, *w,)ls, = Oar 1, for z = lvZ*.*Ui } gives the set of pni numbers {0, 1, 2,..., pm-1 }. These pm 

blocks are allocated to processing units (t+O) MOD pm, (t +l) MOD pm, . . . . (t + pm -1) MOD pm 

respectively. Therefore, they are uniformly distributed among the pm processing units. 0 

To evaluate a query signature, the query signature Q is fragmented into fi frame signatures RQi (i = 0, 

1, 2, . . . . fn-1). Let SQi be the ri-bits common suffix of RQi . Then, for each frame signature RQi, the 

frame signature blocks of frame RI activated are the set ( SiLlSi A SQI = SQi ) . 
Besides the query evaluation, the insertion and deletion of signatures all involve the access of frame 

signature blocks. The location of the accessed frame signature block Si can be derived as follows. Si is 

located in block Bid& of processing unit P~J of frame Ri where j= G(Si., pm, ri). The index value k of BiJ,& 
can be derived from 

(3) 

For example, given pm = 4, ri = 4, SI = -z 1 lOl> is allocated to block Bi,e,J of processing unit Pi.0 of frame 

Rr. The derivation of this formula comes from the dynamic feature of PSF , which is stated in the 
following subsection. 

3.2. Dynamic Features of Parallel Signature File 

In dynamic environment, signatures may be inserted or deleted frequently. Storage design of 
signature file must be suitable for dynamic environment. The proposed Parallel Signature File has the 
dynamic feature that the blocks can be expanded or contracted with frequent insertion or deletion of 
signatures, without reorganization of the blocks. 

In the construction of PSF, the number of framesfn, is a design parameter that must be predetermined. 
The vertical partitioning step does not influence the dynamic organization of PSF. The horizontal 
fragmentation and declustering steps concern the dynamic feature of PSF. In the horizontal fragmentation 
step, Quick Filter partitions frame signatures by linear hashing. Linear hashing is a dynamic hashing 
mechanism that the range values of hashing function can change dynamically. Hashing function of linear 
hashing maps the key into one of the n primary pages where 2’-i< n 5 2’. The value of r is the level of 
hashing. If the primary page to be stored overflows, the inserted key is stored in an overflow page linked 
to the inserted primary page. Besides, occurrence of this overflow triggers a page splitting. Note that the 
splitting page needs not be the page which overflows. Instead, pages are split in sequential order. A 
pointer sp is used to designate the primary page to be split next. Pointer sp is incremented by one after 

page splitting. When sp is equal to 2fi’3 -1, sp is reset to zero and the value of r is incremented. This 
completes a run of full expansion. 

The mechanism of PSF for dynamic environment consists of a pair of (spr, rf) for each frame signature 
file RI. spr is the splitting pointer while rr is the level of hashing. spi is an integer value which designates 



Dynamic Allocation of Signature Files on Parallel Devices 497 

the splitting frame signature block. The block, whose integer value of the common (n-1) bits equals rpi, is 

split next. We can easily determine the splitting block Bidk where j = G(rpi, pni, ri - 1) , k = H(spi, pm, ri - 
1). Frame signatures stored in the designated block and its overflow page are distributed between the 

block and the newly added block. Frame signatures with suffix <sy-1 . ..sI> are stored in the designated 

block while frame signatures with suffix -zsr,-1 . ..sI> are stored in the newly added block. 

111 E 1010 

1101 

PO.0 

SPW 

H 

1010 

1101 

PO.0 

PO.0 

-Oool 
_OlOo El -1011 

PO. I 

0001 

0100 H 1011 

1110 

PO,1 

0001 

0100 q 1011 

1110 

PO.1 

spo=2 

PO.2 PO,3 

PO.2 PO.3 

(b) 

PO.2 PO,3 

(c) 

Fig. 8: Example of Dynamic Expansion of Frame. Signature RO of PSF 

Figure 8 demonstrates an example of the expansion process of frame signature file Ro with 4 

processing units. In Figure 8(a), (spa. m) = (6.4). G(sp0, pno, ~0 - 1) = G(<l lo>, 4, 3) = 3, H(spo, pno, ro -1) 

= 1, block BOAI (41 lo>) is expanded and split into Bo.3.1 (~01 lo>) and B0,1,3 (<ll lo>). After splitting, 

(spa, ro) = (7, 4) which is shown in Figure 8(b). Another occurrence of overflow triggers the next 

expansion. G(< 1 1 l>, 4, 3) = 0, H(spo, pno, ru -1) = 1, block BOAI (c 111~) is expanded and split into Bo.r.1 

(<Olll>) and Bo.1.3(< 111 l>). Because now spa is equal to 24-1 -1, spa is reset to zero and the value of m is 

incremented, i.e. (spa, rn) = (0,5) as shown in Figure 8(c). 

Lemnta 1 Zr is not necessary to relocate the original designated b&k after block splitting. 

Proofi The reason lies in that G(~Osr~~...st>, pni, ri) = (O*wq + ~$~/stwz) MOD pm, which is equal 

to G(<s~;I...sI>, pm, WI) = (c& ‘Sz*wz) MOD pm. Therefore, it is not necessary to reorganize the 

storage structure of PSF in dynamic environment. q 

Lemma 2 Let the split block be allocated to Pi.?, (the t-th processing unit offrame signature file Ri). The 

newly added block is allocated to the ((t+ wri ) MOD pni)-th processing unit offrame signature file Ri. 
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Proot The split block <sr,-~...a> is allocated to Pi,t. Therefore, t = G(<l~r~l...s~>, pm, rd) = 

(Xc’i -1 z = 1 Sz W z ) MOD pm. The newly added block is allocated to processing unit Pu, where j = G(< lsl, 

I...sI>, pm, ri). Since G(<lSriI...Sl>, pi, n) = (l*wq + z2zfS,Wz) MOD pni = (Wri +t) 

MOD pni, the newly added block is allocated to ( (wri + t ) MOD pni )-th processing unit of frame 

signature file Ri. cl 

Next, we explain the formula of block location function H(Si I Pi I q ) . 

Deftition 1 Let Sr = -zs~,s~~I...sI> be the common suffix of frame signature in a block. Let ui be equal to 

logpni. The Zone code of Si is defined as <s~,s~~I...su,+~>. 

For the example in Figure 8(c), pni = 4, ni = 2, the zone code of <Oil l> is x01>. 

Theorem 2 For each processing unit PiJ of PSF (i = 0, I, ..,, f&l, j = 0, I, . . . . pni-I), the zone codes of 
frame signature blocks constitute a binary code order when a run offill expansion completes. 

Proof. We prove it by induction on the level of hashing ri. 

The case of ri = 1, 2, . . . . ui is trivial. In each processung unit, the zone code of this block is null < >. 

The binary code values of common suffix of these blocks range from 0 to pm- 1. 

Assume that when ri = n, the zone codes <snsn-I...sI++I> of frame signature blocks <snsn-r...sr> in each 

processing unit Pij constitute a binary code order. There are 2n/pni = 2n-ui blocks in each processing unit. 

Consider ri= n+l. The newly added blocks <lsnsn-i...sr> in processing unit Pij are all split from the 2”-“’ 

blocks in processing unit PLY-w,+~ ) MODPI, (according to Lemma 2). Because 

(1) the zone codes of these split 2n-ui blocks constitute a binary code order. 
(2) the splitting pointer spr advances from 0 to 2”-1. Block with smaller value of zone code is split before 

that with larger value of zone code. These split 2”-#’ blocks are split in sequential. 
We can conclude that the split 2*Ui blocks and the newly added 2n-ui blocks constitute a binary code 

order. cl 

With Lemma 2, it is easy to derive the block location function H(Si, pni, ri ) which extracts the 

zone code as the block location of each processing unit. 

4. PERFORMANCE ANALYSIS 

There exist some criteria for the performance evaluation of PSF, such as query response time and 
throughput. For the unclustered case of PSF, all the frame signature files need to be accessed. Besides, the 
number of accessed blocks in each frame signature file is the same and the accessed blocks in each frame 
are uniformly distributed. This reduces the query response time and, in turn, increases the throughput. 
Therefore, the query response time to measure the uniformity of workload is a feasible measure. For the 
clustered case of PSF, only some of the frame signature tiles need to be accessed. Those inactive 
processing units allocated for other frames may be served for other requests. Therefore, it is suitable to 
measure the performance of clustered PSF not only by query response time, but also by throughput. 
However, the performance of clustered frame signature file depends not only on the storage design, but 
also on the signature extraction design [ 141. Investigation of parallel design of clustered frame signature 
file concerns the design of signature extraction. The focus of this paper concerns only the storage 
allocation of Parallel Signature File. The investigation of performance comparison between clustered and 
unclustered approaches for Parallel Signature File is left as the future work. Therefore, in this paper, we 
measure the performance by query response time. A lower bound for parallel signature allocation problem 
is described as follows. 
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Definition 2 The response time R(Q), given query signature Q, is defined as Max(NPiJ(Q)l i=O,1,2,...,fn- 

1, j =O, 1,2,..., pni- 1 ), where NPij(Q) is the number of accessed blocks of processing unit Pij. 

Definition 3 An allocation method is strictly optimal for a query signature Q, if the response time R(Q) 
is equal to [N(Q) / Ml , where N(Q) is the total number of blocks accessed and M is the number of 
disks. 

Definition 4 A parallel signature allocation method is strictly optimal, if for every query signature Q, it is 
strictly optimal. 

This definition states that an allocation method is strictly optimal if for each query signature, the 
accessed pages are distributed evenly among the disks. 

Svmbol Definition Value 
F 
sn 
BS 
M 
Fn 
M 

TQ 
w(Q) 

w(SQl) 

Signature size 
Number of signatures 

Block size 
Number of processing units 

Number of frames 
Weight of term signature 
Number of query terms 

Weight of query signature Q 

Weight of suffix of query frame signature RQi 

2048 bits 
1024 to 524288 

16384 bits (2K bytes) 
8 to 128 
1 to32 
10 to 35 
5 to 40 

Table 2: List of Symbols and Parameters of tbe Sample Signature Pile 

Several variables may affect the query response time. The total number of signatures, the signature 
size and the block size determines the total number of blocks. This affects the response time. The 
signature size and the block size is fixed before the design of signature file. The number of processing 
units, of course, also affects the response time. The number of frames is another factor. Given a fixed 
number of processing units, the number of processing units allocated to each frame signature file is 
dependent on the number of frames. The number of frames affects the number of blocks in each frame 
signature file. The number of blocks in turn affects the number of bits considered for disk allocation. 
Besides, it is apparent that the weight of query signature affect the query response time. By the nature of 
Quick Filter, which is the horizontal partitioning mechanism of PSF, the weight of query signature 
determines the search space and thus affects the response time. The search space is invariant under 
different parallel storage structure. However, from Theorem 1, the query signature weight also affects the 
declustering effect. The query signature weight depends on the term signature weight, the number of 
query terms and the signature size. Therefore, the term signature weight, the number of query terms affect 
the query response time. All these parameters are listed in Table 2. 

We measure the performance by mathematical analysis. Then we run an experimental simulation to 
verify the mathematical analysis of average response time. For mathematical analysis, consider a sample 
signature file with parameters listed in Table 2. We assume that each frame signature file is allocated 
with the same number of processing units. Besides, the space overhead taken by the OID of each frame 
signature is neglected. 

We compare the average response time among the proposed Parallel Signature File (PSF), 
Fragmented Signature File (FSF) and the optimal case. The average response time is measured by 

Z~b(Q)*R(Q)= Z mWQ)* Ma IR(FQi)), 
VQ VQ OSilfi-1 (4) 

where Prob(Q) is the probability of occurrence of a query signature Q, R(Q) is the response time of query 
signature Q. R(FQJ is the response time of query frame signature FQi . 

In general, the probability of occurrence of each query signature is assumed to be the same. The 
weight of signature is also assumed to be uniformly distributed among the frame signatures. The 
derivation of average response time of equation (4) can be simplified as 
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C~WFQW)*R,,(FQwh 
VW 

(5) 

where FQw is the query frame signature with suffix weight w, Prob(FQW) is the probability of occurrence 

of FQ”, RzN(FQ~) is the average response time of FQ”. 

We first derive the probability Prob(FQw). Given signature size of F bits, term signature weight of m 
bits and the number of query terms TQ specified in a query, then the expected weight of query signature 
w(Q) can be estimated as [7]: 

w(Q)= F* ~-(l-M,F)TQ]. (6) 
We first consider the case of unclustered frames. The weight of query signature is expected to be 

uniformly distributed among the frames. Given the number of frame fn, the expected weight of frame 
signature 

w(FQ) = w(Q)/! . (7) 
The size of frame signature is F/fn bits. Given the number of frames fn, the number of bits of 

common suffix r-i, the probability Probr,,fi(FQw), can be estimated as 

c; *c 
Fljit-r;: 

~ob,,fi(FQw) = w(FQ)-w 
$lfi ’ 

w(FQ) 

(8) 

Cf is the combinatorial function. Equation (8) can be explained as follows. Totally, there are Cc(&) 

combinations of frame signatures with weight w(FQ). And there are Cz *C~~j$~?w combinations of 

frame signatures in which rr-bits suffix has w bits set to 1. 
For the case of clustered frames, the estimation of expected weight of frame signature is different 

from that of unclustered frames. The expected number of frames that qualify for a query composed of Z’Q 
terms can be computed as an application of Cardenas’s formula in the. following way [lo]: 

(9) 

Hun(Q) estimates the number of frames selected by TQ terms with replacement assuming that the 
probability of each frame being selected is the same. With the assumption that TQ query terms are 

uniformly distributed among the selected H@(Q) frames, the expected frame weight can be estimated as 

w(FQ) )Te/ Htfi(Q) I* (10) 
Combining equation (10) and equation (8), we can derive the probability of weight of common suffix of 
clustered query frame signature. 

Finally, Rav(FQ”), the average response time of query frame signature FQw, is estimated by physically 
collect the result from the query evaluation of the sample frame signature file. The sample frame 

signature file contains frame signature block. Each frame signature block is represented by ri-bits 

common suffix. The value ri depends on the number of signatures, block size and the signature frame size 
(which in turn depends on the number of frames). The block access time of overflowing pages is ignored. 

For each possible query frame signature FQw with suffix weight w, we get the response time R(FQw) for 

PSF and FSF respectively. Rw(FQw) is derived by dividing the summation of R(FQ”) by the total number 

of FQw. 
Figure 9 through Figure 12 show the performance comparison of the unclustered signature files 

among the proposed Parallel Signature File, Fragment Signature File and optimal response time. From the 
analysis, it can be seen that PSF always outperforms FSF. Besides, performance of PSF is near optimal 
response time. In Figure 9, we can also observe that the average response time of PSF improves with 
decreasing number of frames. When the number of frames is one, the response time is minimum. This is 
because when the number of frames is one, more bits are considered for disk allocation. Therefore, the 
best design parameter for the number of frames is one. 
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fig. 9: Average response time versus number of frames, unclustemd, signature size = 2048, term signature weight = IS, query 
terms = IO, number of signatures = 65536, number of processing units=64 
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Rg. IO: Average response time versus number of query terms, unclustered, signature size = 2048, tetm signature weight = 10, 
number of frm = I, number of signatures = 65536, number of processing units = 64 
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Fig. 1 I : Average response time versus term signature weight, unclusted. signuture size = 2048. number of query terms = 10, 
number of fkumes = 1, number of signatures = 65536, number of processing units = 64 

Figure 10 compares the query response time as the function of the number of query terms. Increasing 
number of query terms produces increasing query signature weight and, in turn, decreasing number of 
accessed blocks. From Figure 10, it is obvious that PSF performs well with increasing number of query 
terms. 

Figure 11 depicts the response time as a function of weight of term signature. It is well know that 
giving the value of signature length F and the number of terms per object D, the optimal value of term 
signature weight m, that minimizes the false drop probability is derived from the following formula [7]: 

F*ln2=m*D. (11) 
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The values of weight in Figure 11 ranges from 10 to 35 which implies that the number of terms ranges 
from 40 to 140. A typical value of the number of terms is about 40 in traditional text document [5, 251. 
From Figure 11, we can observe that the response time decreases with increasing weight and decreases 
with decreasing number of terms per object for a given value of signature length and minimum false drop 
probability. 
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fig 12: Average execution overhead versus number of signatures for different number of processing units, unclusterrd, signature 
size = 2048, number of query terms = 10. number of frame = 1. term signature weight = 10 

Figure 12 shows the average execution overhead of query response time as the function of the number 
of signatures for different number of processing units. The execution overhead of average response time 
is defined as (R~s&,,~)/%pt, where RPsF is the average response time of PSF, kPt is the average optimal 
response time. Note that in this figure, the value of y-axis denotes the logarithm of average execution 
overhead. Moreover, there exist the cases in which R ps~ equals kpt (sn = 1028,2048 for M = 128). Hence 
the average execution overhead is zero. Because it is meaningless for logarithm of zero, there are no 
values plot in the figure corresponding to these cases. From Figure 12, it is observed that the declustering 
effect improves with increasing number of signatures. This is the advantage of PSF comparing to 
Hamming Filter. As we have indicated earlier, although Hamming Filter obtains better declustering 
effect, the performance depends on suitable choice of parameters of error correcting codes. When the 
number of signatures grows, the performance of Hamming Filter declines. Moreover, one interesting 
phenomenon in Figure 12 is the curve of average execution overhead for h4 processing units. It is a cyclic 
sequence with cycle length log(Mlfn) while@, the number of frames is chosen to be one. In each cycle, 
the average execution overheads are almost the same. For example, in Figure 12, the curve for 16 
processing units is a cyclic sequence with cycle length four. This reason lies in that, in Equation 1 (the 
disk allocation function), wz , 1 I z, I rr, is a cyclic sequence with cycle length log(pni) for the i-th frame, 

where pni is the number of processing units in the i-th frame. 
Figure 13 through Figure 16 show the performance comparison for clustered signature files. Again, 

PSF outperforms FSF and is not far from optimal response time. Figure 13 demonstrates the effect of the 
number of frames on query response time. In Figure 13, in contrast to the unclustered signature file, it is 
observed that larger number of frames is desirable. This is because increasing number of frames produces 
increasing suffix weight of frame signature. Increasing suffix weight allows greater selectivity of the 
quick filter mechanism in the horizontal partitioning in both methods. In unclustered case, the number of 
frames has little effect on the suffix weight of frame signature owing to the uniform distribution of weight 
among frames. 

However, the false drop probability of clustered frame signature file increases with increasing number 
of frames. The optimal number of frames must be resolved by physical analysis. Therefore, we take 
arbitrary number of frames, 8. Figure 14 and 15 measure the effect of the number of query terms and term 
signature weight. The performance of PSF also performs well with increasing number of query terms and 



Dynumic Allocation of Signature files on Parallel Devices 503 

increasing term signature weight. Figure 16 measures the performance as a function of file size and 
number of processing units. We can see that even in the clustered case, the performance of PSF is not far 
from optimal despite of the file size or the number of processing units. 

--t Fragment 
+ Parallel 

32 16 
Numb% of Frkes 

2 1 

Fig. 13: Average response time, versus number of f’mmes, clustemd, signature size. = 2048, term signature weight = 15, number of 
query terms = 10, number of signatures = 65536, number of processing units = 64 
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Fig. 14: Average response time versus number of query terms, clustered, signature size = 2048, term signature weight = 15, number 
of frames = 8, number of signatures = 65536, number of processing units = 64 
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Fig. 15: Average response time versus term signature weight, clusteted, signatuture size = 2048, number of query terms = 10, number 
of frames = 8, number of signatures = 65536, number of processing units = 64 

Figure 16 shows the logarithm of average execution overhead of query response time as the function 
of the number of signature for different number of processing units. In this figure, there are no curves for 
8 and 16 processing units, because the average execution overheads are all zero. From Figure 16, it is also 
observed that the declustering effect improves with increasing number of signatures. Similar to the 
unclustered case, the curve of average execution overhead for M processing units is a cyclic sequence 
with cycle length log(M/fi) whilefi, the number of frames is chosen to be eight. For example, in Figure 
16, the curve for 32 processing units is a cyclic sequence with cycle length two. 
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Wg. 16: Average execution overhead versus number of signatures for different number of processing units, clustemd. signature size 
= 2048, number of query terms = 10, number of frames = 8, term signature weight = 10 

In order to verify the mathematical analysis of average response time, we have implemented a 
simplified experimental system. In the experiment, sn signatures of size 2048 bits are generated by 
sampling 40 terms from a vocabulary of 10000 terms (key words). There are it4 disks and the disk page 
size is 2K bytes. The average response time is measured over a sample of 5000 queries. Each query 
signature is generated by uniformly choosing 7’Q terms from the vocabulary. For the unclustered case, in 
order to minimize the false drop probability, the term signature weight is chosen to be 35. For the 
clustered case, the weight of term frame signature is 10. The execution overhead of average response time 
is observed. Remember that the execution overhead is defined as (RrstR&/%pt, where Rrsr is the 
average response time of PSF, R,,pt is the average optimal response time. 
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Fig. 17: Average execution overhead versus number of query terms for different number of signatures, unclustemd, signature size. 
= 2048, number of processing units = 64, term signature weight = 35 

Figure 17 shows the logarithm of execution overhead of query response time as the function of the 
number of query terms for different number of signatures. It is observed that the execution overhead 
increases with increasing number of query terms. With a typical value of 5 terms query, the execution 
overhead is about lo-‘. In Figure 18, the effect of file size for the number of processing units is 
demonstrated. It is observed that the overhead decreases with increasing file size. This is one of the 
advantage of the proposed PSF. Besides, the cyclic phenomenon of the mathematical analysis shown in 
Figure 12 also occurs in Figure 18. The only difference lies in the scale of overhead. The reason comes 
from that the term signature weight of the experiment is chosen to be higher than that of mathematical 
analysis. Figure 18 also presents the effect of different number of processing units. The phenomenon is 
similar to that in Figure 12. 



Dynamic Allocation of Signature Ales on Parallel Devices 505 

1024 2048 

Number of Signatures 

4096 8192 16384 32768 65536 131072 

-4 -- 
-e M=8 -W-M=16 
+ M=32 -n- M=64 
+K- M=128 

-5 
I I 

Fig. 18: Average execution overhead versus number of signatures for different number of processing units, unclusted. signature 
size = 2048, number of query terms = 10, term signature weight = 35 

As we have presented, the advantage of proposed approach, superior to Hamming+ Filter, is the ability 
to deal with cases when the number of processing units is not a power of two. Therefore, the result of 
observation for these cases is plotted in Figure 19. In Figure 19, it is observed that the peaks of the curves 

occur when the number of processing units is 11. This can be explained as follows. log 2 1 1 equals to 

3.4597 while log2 l2 equals to 3.5853. Therefore, I_ log 2 1 1 1 is chosen to replace log 2 1 1 in the former 

while r log 2 1 2 1 is chosen to replace log 2 l2 in the latter. Besides, although the overhead is higher when 

the number of processing units is not a power of two, the response time is also near optimal. 
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Fig. 19: Average execution overhead versus number of processing units for different number of signatures, unclustered, signature 
size = 2048, number of query te.rms = 10, term signature weight = 35 

Figure 20, 21 and 22 show the execution overhead of query response time for the clustered case. 
Figure 20 illustrates the execution overhead as the function of the number of query terms for different 
number of signatures. The execution overhead increases with increasing number of query terms. Besides, 
in Figure 20, the curves for 4096.8192 and 16384 signatures form one group while the other curves form 
the other group. This phenomenon could be explained by Figure 21. In Figure 21, the curve for 64 
processing units is a cyclic curve with cycle length 3. For example, the overhead for 4096, 8192 and 
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16384 signatures are nearly the same. The reason why the cycle length is has been explained previously. 
In fact, the same phenomenon also occurs in the unclustered case except that the grouping effect is not so 
obvious. 

Number of Query Terms 
5 10 15 20 25 30 35 40 

Fig. 20: Average execution overbead versus number of query terms for different number of signatures, clustered, signature size 
= 2048, number of processing units = 64, number of frames = 8, term signature weight = 10 

Figure 21 presents the effect of number of number of signatures for different number of processing 
units. Similar to the result of mathematical analysis, the curve of average execution overhead for M 
processing units is a cyclic sequence with cycle length log(M/j%). Besides, given a specific number of 
signatures, the overhead increases with increasing number of processing units. Figure 22 observes the 

overhead when pni, the number of processing units allocated to each frame i, is not a power of two. 

Similar to the unclustered case shown in Figure 19, the peaks occur when pni equals 11 (88 processing 
units/ 8 frames). 
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Rg. 21: Average execution overbead versus number of signatures for different number of processing units, clustered, signature size 
= 2048, number of query terms = 10, number of frames = 8, term signature weight = 10 
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Fig. 22: Average execution overhead versus number of pmcessing units for different number of signatures, clustemd, signature size 
= 2048, number of query terms = 10, number of frames = 8, term signature weight = 10 

5. CONCLUSIONS 

Signature file access method is efficient for content-based retrieval of unformatted data, such as text, 
image. In large servers, parallel device can be used to meet the bandwidth requirements. Using parallel 
device with concurrent access, the response time of accessing signature file can be reduced and therefore 
the query processing time is reduced also. 

Efficient placement of partitioned signature pages in parallel device will speed up query response 
time. We propose the dynamic storage management method, Parallel Signature File, using declustering 
technique. It is an improvement of previous approach of Fragmented Signature File. We have presented 
the disk allocation function and the block location function. The dynamic mechanism for controlling 
splitting sequence is also described. 

The proposed allocation scheme has some advantages. The accessed blocks are distributed more 
uniformly than those of Fragmented Signature File. Parallel Signature File can also be used in dynamic 
environment. Besides, when the number of processing units is not a power of two, the proposed approach 
also performs well. Furthermore, the blocks in each processing unit can be clustered to minimize the disk 
random access time. For each processing unit, we may cluster the blocks based on the technique of Gray 
code [22]. 

The performance analysis shows that the proposed Parallel Signature File outperforms the Fragmented 
Signature File. Especially the improvement increases with increasing number of query terms. The 
performance analysis shows that in the unclustered case, the optimal number of frames is suggested to be 
one. That is, it is not preferable to divide the signatures into frame signatures. In the clustered case, the 
optimal number of frames must also consider the growing false drop probability. Analysis is required to 
resolve the optimal value. 
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