
Pergamon
Information Systems Vol. 23, No. 7, pp. 489-508, 1998

0 1998 Published by Elscvier Scicacc Ltd. All rights meti
Printed in Great Britain

PII: 80306-4379(98~ 03064379/98 Sl9.00 + 0.00

DYNAMIC ALLOCATION OF SIGNATURE FILES ON PARALLEL
DEVICES’t

MAN-KWAN SHAN and SUH-YLN LEE

blstitute of computer Science and b’Iformation Engineering National Chiao Tung University, HsinChu, Taiwan, ROfJ

(Received 7 November 19%; in,finul revised fmm 16 July 1998)

Abstract-Signature file is one of the efficient access methods for retrieval of text database. In a large database
server, parallel device is utilized to achieve concurrent access. Efficient allocation of signature file on parallel
device minimizes the query response time and is important in the design of large databases. In this paper, we
investigate the design of parallel signatutz file. We propose a new dynamic allocation technique to distribute the
signature file on parallel device. It is an improvement of previous approach of Fragmented Signatum File. While
Fragmented Signature File uses Quick Filter to distribute the partitioned frame signature file, the proposed Parallel
Signature File uses a declustering technique. The proposed Parallel Signature File has some advantages. First, the
qualified frame signature. blocks ate distributed mom uniformly than Fragmented Signature Files. Second, the
proposed scheme can also be used in dynamic environment. Performance analysis shows that performance of the
proposed approach outperforms that of Fragmented Signature File and is not far from theoretical optimal response
time. 0 1998 Published by Elsevier !kience Ltd.

Key words: Signature Files, Text Databases, Information Retrieval, Disk Allocation, Access Methods

1. INTRODUCTION

Signature file is one of the efficient access methods for text retrieval 14, 61. It acts as a search filter to
reduce the search space. For text retrieval, although signature file is slower than inverted file, it takes less
storage overhead. Besides, signature file is also used in partial match retrieval of traditional formatted
databases [191, clause indexing of Prolog databases [181, subpicture query of image databases [16, 211,
text retrieval of large Chinese text databases [11.

However, in large database servers, secondary storage access becomes the bottleneck. Parallel
secondary storage devices in which data can be accessed concurrently are utilized. The distribution of the
signature file on parallel device may improve performance significantly. The query response time of
content-based retrieval of large databases systems can be reduced by efficient distribution of the
signatures on parallel device.

One of the important design goals of distribution of signature files is to maximize the throughput. Two
criteria to achieve the goal are intra-query parallelism and inter-query parallelism. Intra-query parallelism
must try to distribute the signatures pertinent to the query as uniformly as possible. Inter-query
parallelism must try to activate as few disks as possible for small query and to process as many queries
concurrently as possible.

Few researches have studied the design of signature file on the parallel machine architecture. Stanfill
et al. proposed a parallel signature file developed in Thinking Machines Corporation for high-speed
interactive querying of text databases on a SIMD computer, the Connection Machine [24]. However, it
was based on the assumption that main memory was sufficient to hold all the text signatures. To deal with
this problem, Panagopoulos et al. proposed a parallel bit-sliced signature file method on a SIMD machine
[15]. A partial fetch slice-swapping algorithm is used when the size of the signature file exceeds the
available memory. The partitioned signature file approach proposed by Lee et al. can also be implemented
in a parallel environment by assigning each partition to a separate processor [111. Only some partitions
are searched concurrently for a query. The non-activated processors are available for inter-query
parallelism. The concurrent frame signature file, CAT [14], is an extension of frame sliced signature file
for current access. It is suitable for processing queries with few query terms. Hamming Filter, proposed

tRecommended by Stavros Christodoulakis

489

490 MAN-KWAN SHAN and SUH-YIN LEE

by Zezula et al., is a dynamic signature file for multiple disks [26]. It is an integration of the dynamic
partitioning scheme Quick Filter and the static declustering strategy based on the linear error correcting
codes. Each signature is allocated using the error correcting code. Then the allocated signatures in the
same disk are clustered by Quick Filter. With suitable choice of code parameters, it is guaranteed that
Hamming Filter achieves optimal performance. However, in dynamic environment where the size of
signature file grows, the declustering effect of Hamming Filter declines. Hamming+ Filter is a
generalization of Hamming Filter suitable to manage highly dynamic files. It uses a dynamic deelustering,
obtained through a sequence of codes, and organizes a smooth migration of signatures between disks [2].
But, Hamming+ Filter can not deal with the case when the number of disks is not a power of two. The
Fragmented Signature File (FSF), proposed by Grandi et al. [lo], is a frame-sliced partitioned parallel
signature file approach on Shared-Nothing architecture of multiprocessor database computers. FSF is
based on two signature file structures, the frame-slice approach and the dynamic partitioning scheme
Quick Filter. It achieves both the intra-query and inter-query parallelism.

In this paper, we investigate the dynamic allocation of signature files on parallel device. We propose a
new allocation scheme Parallel Signature File (PSF). It is an integration of striping, dynamic partitioning
and dynamic declustering technique for efficient dynamic organization of signature file. While Hamming
Filter uses a static declustering strategy, the proposed PSF uses a dynamic declustering technique with
little sacrifice of performance. Although Hamming+ Filter uses the dynamic declustering technique, the
proposed PSF is superior to deal with the case when the number of disks is not a power of two.
Furthermore, though both PSF and FSF use the dynamic declustering strategy, the declustering effect and
the performance of the proposed PSF is superior to that of FSF.

The remainder of this paper is organized as follows. Section 2 reviews the signature file approaches
including the Fragmented Signature File. Section 3 describes the proposed dynamic allocation technique.
The performance evaluation is described in Section 4. The conclusions and future works are described in
Section 5.

2. SIGNATURE FILES

The Signature file access method is widely used in text retrieval. It acts as a search filter to prune most
of the unqualified text. In general, the signature file access method can be considered for partial match
retrieval whenever the object is characterized by a set of terms. The object may be a document, an image.
Partial match retrieval retrieves the objects which contain all the queried terms.

In signature tile access method, each object is associated with an object signature. An object signature
is produced from the transformation of associated terms of an object. A collection of the object signatures
is called a signature file. Query described by a set of specified terms is also transformed to query
signature by the same method of object signature generation. After evaluating the query signature against
the object signatures in a signature file, most of the impossibly qualified objects are pruned out and the
objects corresponding to the qualified signatures are evaluated further. The object whose signature seems
to be qualified but actually unqualified is called false drop [5]. The process of further evaluation of
objects with qualified signatures is called false drop resolution. Two main design issues of signature file
access method are the signature extraction method and the signature storage structure. Signature
extraction method deals with the reduction of false drop probability while signature storage structure
deals with the reduction of the number of physical pages that need to be accessed for evaluating the query
signature.

Book0 Book1 Book2
Keywords Term Sig. Keywords Term Sig. Keywords Term Sig.

Indexing 100 001 Indexing 100 001 Database 001001
Database 001001 File 100 010 Query 010 001

Model 010 010 Query 010 001 Security 001100
Object 111011 110011 011 101

Signature

Fig. I : Illustmtion of Superimposed Coding

Dynamic Allocation of Signature Files on Parallel Devices 491

The basic types of signature extraction methods include Word Signature, Superimposed Coding, Bit-
block Compression and Run Length Compression [7]. Above all, Superimposed Coding is the most
pOpUlar and is the focus of this paper. In Superimposed Coding, each term is hashed into a binary coded
word of size F in which m bits have value “1” while others have value “0”. These binary coded words are
OR-ed together to form the object signature. The number of bits set to “1” in the binary coded word is
called the signature weight. If an object signature contains 1s in the same bit positions as the query
signature does, then the object signature qualifies for the query signature. Figure 1 illustrates an example
of Superimposed Coding applied in the searching of books in the library. In the library, each book is
associated with a set of keywords. Users wish to search the book which contains the keywords specified
by users. In this example, the signature size F is six bits, term signature weight m is two bits. If the user
wishes to retrieve the book which contains keywords “Indexing” and “Query”, then the query signature is
generated by clOOOOl> OR <OlOOOl> which is cllOOOl>. Evaluating the query signature against the
three object signatures, we get the qualified signatures, object signatures of Book0 and Book1 . After false
drop resolution, only Book1 is actually qualified while Book0 is a false drop.

Approaches for the storage structure of signature file includes sequential, Bit-sliced, Frame-sliced, S-
Tree, Quick Filter, etc. To describe the storage structure of signature tile, a signature tile of sn-number of
F-bits object signature can be regarded as an sn*F bit matrix. The storage structure of signatures can be
classified into the following [9].

(1) Sequential Signature File stores the signature matrix sequentially row by row.
(2) Vertical fragmentation stores the signature matrix column-wise and improves the response time.

There are Bit-sliced approach and Frame-sliced approach.
(3) Horizontal fragmentation groups similar signatures together and provides an index on the signature

matrix. There are three approaches, 24evel signature file, S-Tree and partitioned approaches. Partitioned
approaches include static partitioning [121 and dynamic partitioning, Quick Filter [25].

Above all, Quick Filter is economical in space and is very efficient in dealing with large files of
dynamic data and high weight query signature [17, 251. Quick Filter uses linear hashing to group the
signatures into pages. Signatures with the same suffix will be grouped together. Only the pages of
signatures with qualified common suffix are retrieved. Therefore, the search space can be reduced. The
length of the suffix is determined by current level of hashing. By the property of linear hashing, Quick
Filter can dynamically organize the signatures in dynamic environment. The common suffix of each
signature page may be regarded as the key of the signatures in each page. In the following, when the term
“signature key” is mentioned, it denotes the common suffix of the signatures stored in a partitioned
signature page.

Figure 2 shows the result after partitioning six signatures by Quick Filter. In this example, the
capacity of a page is assumed to be two signatures. All signatures in a page have the same suffix, in this
case the size of two bits. Given the query signature <OlOOOl>, only pages with the common suffix
and ~1 l> are retrieved. This is done by evaluating the 2-bit suffix of query signature against that of
signature pages. The pages with suffix 40>, < IO> can not possibly contain the qualified signatures.

Frame-sliced signature file is an approach for extracting and organizing signatures [13]. In this
approach, the signature file is divided into J% frames of consecutive bits. Unlike the Superimposed
Coding, the bit positions to be set by each term are restricted. Each term of the object is hashed into one
of the frames. Another hashing function sets some bits of the specified frame to 1. This produces the
penalty of higher false drop probability than that of Superimposed Coding. Therefore, the false drop
probability is expected to grow with increasing number of frames. The signatures are stored frame-wise,
usingfi frame files. For a query with a single term, only one frame tile needs to be searched. And with
TQ number of query terms, at most TQ frame files are searched. Given fixed TQ, the disk access time of
signatures increases with increasing number of frames. Therefore, there is a tradeoff for selecting design
parameter fi. Figure 3 gives the Frame-sliced file approach of the example in Figure 1. The number of
framesfn is 2 and the frame size is 3 bits. If the queried keywords are “Indexing” and “Query”, then the
query signature is generated by ~101 OOO> OR < 110 OOO> which is < 111 OOO>. Because keywords
“Indexing” and “Query” are hashed into the first frame, only the first frame signature file RO needs to be
accessed for query signature evaluation.

Note that there is another type of frame-sliced approach, in which the bit positions to be set are not
restricted. It is a generalization of Bit-sliced approach while each slice contains more number of bits.
Grandi et. al. called the frames of the Frame-sliced file approach clustered frames while that of the
generalization of Bit-sliced approach unclustered frames [101.

492 MAN-KWAN SHAN and SUH-YIN LEE

111100 010001 011110 000011
000101 110110

00 01 10 11

Fig. 2: Clustering of 6 Sig~tures by Quick Filter

Book0 Book1 Book2
Keyword Term Sig. Keyword Term Sig. Keyword Term Sig.
Indexing 101 000 Indexing 101 000 Database 000 101
Database 000 101 File 000 110 Query 110 000

Model 011 000 Query 110 ooo Security 000 011
Object 111 101 111 110 110 111

Signature

Fig. 3: Illustration of Frame-Sited Signature File

Fragmented Signature File (FSF) is a mixed fragmentation scheme produced by double horizontal
fragmentation of vertical partitioned fragments [lo]. Fragmented Signature File is based on the Shared-
Nothing parallel architecture of multiprocessor database computers. It can also be implemented on other
parallel database computer architecture. Fragemented Signature File is generated as follows:

(Step 1) Vertical fragmentation: all the object signatures in a signature file is fragmented vertically intofi
frame signature files. Ri (i = 0, 1, 2, . . ., fn-1) is the i-th frame file and is served by a cluster of pni
processing units.

(Step 2) First horizontal fragmentation: each frame file Ri is fragmented horizontally into pnl partitions
by Quick Filter. PiJ (0 I j I pni -1) is the j-th partitions of the i-th frame Ri . Each partition is served by a
specific processing unit. Therefore, from now on, the terms ‘partition’ and ‘processing unit’ are used

interchangeably. Without loss of generality, we assume that pni = 2”. With Quick Filter, frame signatures

with the same h-bits prefix are grouped in partition PiJ and allocated in the same processing unit.

(Step 3) Second horizontal fragmentation: each partition PU is fragmented horizontally further into bnij

blocks Bij,& by Quick Filter (0 5 k I bni,/ - l), where 2 ‘rr < bnid 5 2*i, for some integer hi. The value of hi

is the level of Quick Filter. Buk is the k-th block of partition PU . Each block is allocated a disk page and
is also the access unit of FSF. So the terms “block” and “page” are used interchangeably. With Quick

Filter, the frame signatures of frame file Ri in the same partition P/J with the same (hi-l) or hi-bits suffix

are grouped into block Buk.

Figure 4 demonstrates an example of Fragmented Signature File. In this example, the signature file is
fragmented vertically into 3 frame signature files Ro, RI, Rz (fi = 3). Each frame signature file RI is

fragmented horizontally to 2 partitions Pco, PIJ (pnr = 2, lr = Lop pnr = 1). Each partition PIJ is

fragmented horizontally to 4 blocks BUO, BIJ,~, Bu2, BiJ,3 (bnij = 4, hi = Log2 bniJ = 2). The binary code

word shown in each box represents the h-bits common prefix and hi-bits common suffix of signatures
stored in the block. For example, O_ 10 represents the common prefix CO> and common suKx <lo>

Of the signatures shown in blocks B0~0.2, B1.0.2, B2.0.2. Given a signature <loll 0101 lOlO>, frame

signatures <lOl l>, <OlOl>, <lOlO> are allocated in Bo.1.3 of Po,J, BJ.@J of PLO, B2.1.2 of P2,1,

respectively.

Dynamic Allocation of Signature Files on Parallel Devices 493

O-00
O-01 El o-10

o-11

1 -00
1 -01

~

1 -10
1 -11

o-10

o-11

-II
l-Of_ i,j,O

1 01 u i.j, I

1 -10 id.2

l-1 1 ij.3

PO.0 PO,1 PI.0 PIJ P2.0 P2.1

Ro RI R2

Fig. 4: An Allocation Example of FSF

In general, the advantages in FSF are stated as follows:
(1) Given the same number of processing units for each frame file and the same frame size, the load is

balanced among clusters of processing units.
(2) In query processing, the first horizontal fragmentation discards the unqualified partitions and

achieves inter-query parallelism. For the example in Figure 4, given query signature < 1011 0101 lOlO>,

only partitions Po,I, PLO, PLI, PZJ need to be activated, i.e. there are no qualified frame signatures in other
partitions. These non-activated partitions are available to serve other queries and the inter-query
parallelism can be achieved. Furthermore, if the signatures are generated as frame-sliced signatures, the
degree of inter-query parallelism can be promoted. In this case, only the processing unit allocating hit
frames are activated.

(3) The second horizontal fragmentation discards the unqualified blocks in each activated partition

and reduces the search space. For the same example in the above paragraph, in Po,r, only block Bo.1.3 needs

to be accessed for query evaluation. In PLO, blocks BI.OJ and B1.0.3, in PIJ, blocks BIJJ and B1.1.3, in P2.1,

blocks B2.1.2 and Bz,~.s are accessed.

3. DYNAMIC ALLOCATION SCEME

3.1. Proposed Parallel Signature File

Disk striping and declustering are two popular techniques for distribution of data in parallel device.
Disk striping is a general purpose facility for achieving parallel data I/O and for achieving fault tolerance
[20]. Disk striping tries to store each accessed object as a one-dimensional stream among the disks.
Declustering technique tries to distribute the qualified objects among the disks.

The Fragmented Signature File is an integration of striping and partitioning technique. However, the
performance of FSF can be improved further by increasing the degree of intra-query parallelism. Figure 5

shows an allocation example of a frame signature file Ro after vertical fragmentation in FSF. In this

example, the frame signature file Ro is partitioned horizontally into 4 partitions. Frame signature with the
same 2-bit prefix are allocated in the same processing unit. Each partition is partitioned horizontally into
4 blocks. Frame signatures in a processing unit with the same suffix are allocated in the same disk block.
Given the frame signature of query signature with prefix and suffix -K lo>, then only partitions

POJ, Po.3 are activated. In each of these two partitions, there are two blocks activated. The activated blocks

are blocks Bo.1.2 and Bo,1,3 in partition Po.1, blocks Bo.3.2 and Bo,s3 in partition Po.3. These accessed blocks
are shadowed in Figure 5. The response time of the query frame signature is 2 units of disk block access
time.

If the allocation example of Figure 5 is replaced by that shown in Figure 6, it is obvious that the query
response time is one unit of disk block access time and is less than that of Fragmented Signature File. The

qualified blocks are Bo.0.1 in Po,o, Bo.1.3 in Po,I, Bo,t3 in Po.2, B0.3.1 in Po,s. They are distributed evenly in
the processing units allocated for this frame file.

Before describing the proposed Parallel Signature File (PSF), the definitions of symbols used in PSF
and FSF are listed in Table 1 for convenience.

494 MAN-KWAN SHAN and SUH-YIN m

Fig. 5: An Allocntion Ex;unple of Fmme Signature File R0 of FSF

Symbol

Ri

PiJ

i%k

fi

v

i

i

F?

RQi

SQi
bnu

li, hl

Si

2

dni

ri

G(Sr, pm, ri)

H(Si, pm, n)

I.41

Method(s)
Both

Definition

Both

Both

Both
Both

Both
Both
Both
Both
Both

Both

FSF

FSF

PSF

PSF

PSF

PSF

PSF

PSF

PSF

The i-th frame signature file

The j-th partition (processing unit) of frame Ri

The k-th block of partition (or processing unit) Pu
Number of frames
Number of partitions (processing units) in the i-th frame

Index of frame
Index of partition (processing unit)
Index of block
query signature
The i-th frame of query signature Q

Common suffix of Rqi

Number of blocks allocated in partition (processing unit) Pu
Number of bits of common prefix, suffix of signature block of frame Ri

A block of frame Ri, represented by a *-bits vector [sri . . . si]

Index of bit position of [sri sri-t...st...si]
Total number of blocks in the i-th frame

Number of bits of common suffix of signature block of frame RI
Disk allocation function

Block location function

Logplu
pointer of frame Ri, which designate the block to be split Spi PSF

Table 1: Definitions of the Symbols

0.0.0

O.O,l

0.0.2

O&3

1.0 0.2.0 0,3,0

1,1 0.2.1 0.3.1

1.2 0,2*2 0.3.2

I,3 0.233 0,3.3

PO,1 PO,2 PO,3

Fig. 6: An Improvement Example of FSF

The proposed Parallel Signature File (PSF), similar to Fragmented Signature File, is based on the
Shared-Nothing parallel architecture of multiprocessor database computers. It can also be implemented on
other parallel database computer architecture or multiple disk system such as disk array. PSF is generated
as follows:

Dynamic Allocation of Signature Files on Parallel Devices 495

(Step 1) Verticalfragmentation: all the object signatures in a signature file is fragmented vertically into

fi frame files, Ri (i = 0, 1,2,...fn-l).fit, the number of frames, is a design parameter. Each frame is served
by a cluster of pni processing units.

(Step 2) Horizontalfragmentation: each frame file Ri is partitioned horizontally into dni blocks by Quick

Filter (2’i” < dni I 29. The value of ri depends on the level of linear hashing function of Quick Filter.

Each block is allocated in a disk page and is the access unit of PSF. Frame signatures with the same (ri -

1)-bits or n-bits suffix are grouped together. Furthermore, we define the common key of each partitioned

block as the *-bit common suffix of frame signatures in the same block. Each block is represented by Si=

<Sri Sri-i.... Sl> , wheresz=Oor 1, 1 I zIn.

(Step 3) Declustering: these dni blocks are distributed uniformly in a cluster of pni processing units

allocated to frame Ri by a declustering technique. For a given partitioned block <sri sli-I.. .a>, the index j

of allocated processing unit P/j is determined by the following disk allocation function,

Figure 7 shows an example of allocation of frame signature file Ro. The binary code word shown in

each box represents the ro-bits common suffix of signatures stored in the block. For example, -1011

represents the 4 bits common suffix < loll> of block B0~1.2. In this example 10 = 4, pno = 4, log2pno = 2,

WI = 1, wz = 2, w3 = 1, w4 = 2. Note that the proposed Parallel Signature File groups frame signature Ri by

*-bit common suffix, instead of L-bit prefix and hi-bit suffix. In fact, given the same design parameters,

the *-bit common suffix of blocks in Parallel Signature File may be regarded as the concatenation of the

li-bit prefix and hi-bit suffix in Fragment Signature File. In FSF, the distribution of blocks considers only

the hi-bit suffix by the nature of Quick Filter. While in PSF, all the (L + hi) bits are considered.

0.w

0111 0.0.1 q 1010 OJX
1101 0.0.3

PO,0

-@)o’ O.I.0

_Oloo 0.1.1 Al -1011 0.1.2

-1110 0.1.3

PO,1

Fig. 7: An Allocation Example of Frame Signuture File Ro of PSF

When pni is not a power of two, log 2 pni in Equation (1) is replaced by L log 2 pni 1 or r log 2 pni 1.

If L log 2 pni J nears log2 Pni, then L10g2 Pn*] I is chosen. Otherwise, r log 2 pni 1 is chosen to replace

log 2 Pni .

The disk allocation function is borrowed from the declustering technique for binary Cartesian product

file with a little modification [3]. This function can be understood as follows. Let ui be
(Ii-1 “8 MOD Ui

ual to log pm.

Then WI = 2’, w2 = 2l,wui = 2+-’ , wui+l = 2’, wu,+2 = 2’, w 15’3 = 22, wri =2 . It is a cyclic

sequence with cycle length ui. The disk allocation function

I/l ‘i
G(Si,pniqc)=(3sZwz)MODpni=(zd,)MOD pni, (2)

z=l x=1

where +,+,l...d2 di> is the base-2#’ representation of Si. For example, given pm=B, rt=5, then ui=3,

wi=l, w*2, w3=4, w4=1, w5=2. The base-8 representation of <l lOlO> is <32>. The frame signature
block <l lOlO> is allocated in processing unit (3+2) MOD 8 = 5 of the i-th frame.

4% MAN-KWAN SHAN and SUH-Ym LEE

Theorem 1 Let Cm be the set, /zl(z-I) MOD ui = n, z=1,2, r11, where 0 Sn 5ui-I. For each query

frame signature in which exactly ui bits of suftZx are set to 0, one from each Cn , all the qualified blocks

are uniformly distributed among pm processing units.

Proof Without loss of generality, we can assume that these ui bits are bit 1,2, ui, then the blocks need

to be accessed are the set { <ll..ls~~...sl> Isz=O or 1, for z = 1, 2, ui). Let t be equal to

c’i z=ui+Il*wz ’ which is a constant for each accessed blocks. Each of these blocks is allocated to

processing unit PU where

j= (x” ;=u,+ll*~z +c!$lSz *wz)MODpni=(t+C~$Sz *Wz)MODpni .
1

Because WI = 2’, wz = 2’,wui = 2Ui’ is a cyclic sequence with cycle length ui, the set of

I(z>;ls, *w,)ls, = Oar 1, for z = lvZ*.*Ui } gives the set of pni numbers {0, 1, 2,..., pm-1 }. These pm

blocks are allocated to processing units (t+O) MOD pm, (t +l) MOD pm, (t + pm -1) MOD pm

respectively. Therefore, they are uniformly distributed among the pm processing units. 0

To evaluate a query signature, the query signature Q is fragmented into fi frame signatures RQi (i = 0,

1, 2, fn-1). Let SQi be the ri-bits common suffix of RQi . Then, for each frame signature RQi, the

frame signature blocks of frame RI activated are the set (SiLlSi A SQI = SQi) .
Besides the query evaluation, the insertion and deletion of signatures all involve the access of frame

signature blocks. The location of the accessed frame signature block Si can be derived as follows. Si is

located in block Bid& of processing unit P~J of frame Ri where j= G(Si., pm, ri). The index value k of BiJ,&
can be derived from

(3)

For example, given pm = 4, ri = 4, SI = -z 1 lOl> is allocated to block Bi,e,J of processing unit Pi.0 of frame

Rr. The derivation of this formula comes from the dynamic feature of PSF , which is stated in the
following subsection.

3.2. Dynamic Features of Parallel Signature File

In dynamic environment, signatures may be inserted or deleted frequently. Storage design of
signature file must be suitable for dynamic environment. The proposed Parallel Signature File has the
dynamic feature that the blocks can be expanded or contracted with frequent insertion or deletion of
signatures, without reorganization of the blocks.

In the construction of PSF, the number of framesfn, is a design parameter that must be predetermined.
The vertical partitioning step does not influence the dynamic organization of PSF. The horizontal
fragmentation and declustering steps concern the dynamic feature of PSF. In the horizontal fragmentation
step, Quick Filter partitions frame signatures by linear hashing. Linear hashing is a dynamic hashing
mechanism that the range values of hashing function can change dynamically. Hashing function of linear
hashing maps the key into one of the n primary pages where 2’-i< n 5 2’. The value of r is the level of
hashing. If the primary page to be stored overflows, the inserted key is stored in an overflow page linked
to the inserted primary page. Besides, occurrence of this overflow triggers a page splitting. Note that the
splitting page needs not be the page which overflows. Instead, pages are split in sequential order. A
pointer sp is used to designate the primary page to be split next. Pointer sp is incremented by one after

page splitting. When sp is equal to 2fi’3 -1, sp is reset to zero and the value of r is incremented. This
completes a run of full expansion.

The mechanism of PSF for dynamic environment consists of a pair of (spr, rf) for each frame signature
file RI. spr is the splitting pointer while rr is the level of hashing. spi is an integer value which designates

Dynamic Allocation of Signature Files on Parallel Devices 497

the splitting frame signature block. The block, whose integer value of the common (n-1) bits equals rpi, is

split next. We can easily determine the splitting block Bidk where j = G(rpi, pni, ri - 1) , k = H(spi, pm, ri -
1). Frame signatures stored in the designated block and its overflow page are distributed between the

block and the newly added block. Frame signatures with suffix <sy-1 . ..sI> are stored in the designated

block while frame signatures with suffix -zsr,-1 . ..sI> are stored in the newly added block.

111 E 1010

1101

PO.0

SPW

H

1010

1101

PO.0

PO.0

-Oool
_OlOo El -1011

PO. I

0001

0100 H 1011

1110

PO,1

0001

0100 q 1011

1110

PO.1

spo=2

PO.2 PO,3

PO.2 PO.3

(b)

PO.2 PO,3

(c)

Fig. 8: Example of Dynamic Expansion of Frame. Signature RO of PSF

Figure 8 demonstrates an example of the expansion process of frame signature file Ro with 4

processing units. In Figure 8(a), (spa. m) = (6.4). G(sp0, pno, ~0 - 1) = G(<l lo>, 4, 3) = 3, H(spo, pno, ro -1)

= 1, block BOAI (41 lo>) is expanded and split into Bo.3.1 (~01 lo>) and B0,1,3 (<ll lo>). After splitting,

(spa, ro) = (7, 4) which is shown in Figure 8(b). Another occurrence of overflow triggers the next

expansion. G(< 1 1 l>, 4, 3) = 0, H(spo, pno, ru -1) = 1, block BOAI (c 111~) is expanded and split into Bo.r.1

(<Olll>) and Bo.1.3(< 111 l>). Because now spa is equal to 24-1 -1, spa is reset to zero and the value of m is

incremented, i.e. (spa, rn) = (0,5) as shown in Figure 8(c).

Lemnta 1 Zr is not necessary to relocate the original designated b&k after block splitting.

Proofi The reason lies in that G(~Osr~~...st>, pni, ri) = (O*wq + ~$~/stwz) MOD pm, which is equal

to G(<s~;I...sI>, pm, WI) = (c& ‘Sz*wz) MOD pm. Therefore, it is not necessary to reorganize the

storage structure of PSF in dynamic environment. q

Lemma 2 Let the split block be allocated to Pi.?, (the t-th processing unit offrame signature file Ri). The

newly added block is allocated to the ((t+ wri) MOD pni)-th processing unit offrame signature file Ri.

498 MAN-KWAN SHAN and SUH-YIN lJ?E

Proot The split block <sr,-~...a> is allocated to Pi,t. Therefore, t = G(<l~r~l...s~>, pm, rd) =

(Xc’i -1 z = 1 Sz W z) MOD pm. The newly added block is allocated to processing unit Pu, where j = G(< lsl,

I...sI>, pm, ri). Since G(<lSriI...Sl>, pi, n) = (l*wq + z2zfS,Wz) MOD pni = (Wri +t)

MOD pni, the newly added block is allocated to ((wri + t) MOD pni)-th processing unit of frame

signature file Ri. cl

Next, we explain the formula of block location function H(Si I Pi I q) .

Deftition 1 Let Sr = -zs~,s~~I...sI> be the common suffix of frame signature in a block. Let ui be equal to

logpni. The Zone code of Si is defined as <s~,s~~I...su,+~>.

For the example in Figure 8(c), pni = 4, ni = 2, the zone code of <Oil l> is x01>.

Theorem 2 For each processing unit PiJ of PSF (i = 0, I, ..,, f&l, j = 0, I, pni-I), the zone codes of
frame signature blocks constitute a binary code order when a run offill expansion completes.

Proof. We prove it by induction on the level of hashing ri.

The case of ri = 1, 2, ui is trivial. In each processung unit, the zone code of this block is null < >.

The binary code values of common suffix of these blocks range from 0 to pm- 1.

Assume that when ri = n, the zone codes <snsn-I...sI++I> of frame signature blocks <snsn-r...sr> in each

processing unit Pij constitute a binary code order. There are 2n/pni = 2n-ui blocks in each processing unit.

Consider ri= n+l. The newly added blocks <lsnsn-i...sr> in processing unit Pij are all split from the 2”-“’

blocks in processing unit PLY-w,+~) MODPI, (according to Lemma 2). Because

(1) the zone codes of these split 2n-ui blocks constitute a binary code order.
(2) the splitting pointer spr advances from 0 to 2”-1. Block with smaller value of zone code is split before

that with larger value of zone code. These split 2”-#’ blocks are split in sequential.
We can conclude that the split 2*Ui blocks and the newly added 2n-ui blocks constitute a binary code

order. cl

With Lemma 2, it is easy to derive the block location function H(Si, pni, ri) which extracts the

zone code as the block location of each processing unit.

4. PERFORMANCE ANALYSIS

There exist some criteria for the performance evaluation of PSF, such as query response time and
throughput. For the unclustered case of PSF, all the frame signature files need to be accessed. Besides, the
number of accessed blocks in each frame signature file is the same and the accessed blocks in each frame
are uniformly distributed. This reduces the query response time and, in turn, increases the throughput.
Therefore, the query response time to measure the uniformity of workload is a feasible measure. For the
clustered case of PSF, only some of the frame signature tiles need to be accessed. Those inactive
processing units allocated for other frames may be served for other requests. Therefore, it is suitable to
measure the performance of clustered PSF not only by query response time, but also by throughput.
However, the performance of clustered frame signature file depends not only on the storage design, but
also on the signature extraction design [141. Investigation of parallel design of clustered frame signature
file concerns the design of signature extraction. The focus of this paper concerns only the storage
allocation of Parallel Signature File. The investigation of performance comparison between clustered and
unclustered approaches for Parallel Signature File is left as the future work. Therefore, in this paper, we
measure the performance by query response time. A lower bound for parallel signature allocation problem
is described as follows.

Dynamic Allocation of Signature files on Parallel Devices 499

Definition 2 The response time R(Q), given query signature Q, is defined as Max(NPiJ(Q)l i=O,1,2,...,fn-

1, j =O, 1,2,..., pni- 1), where NPij(Q) is the number of accessed blocks of processing unit Pij.

Definition 3 An allocation method is strictly optimal for a query signature Q, if the response time R(Q)
is equal to [N(Q) / Ml , where N(Q) is the total number of blocks accessed and M is the number of
disks.

Definition 4 A parallel signature allocation method is strictly optimal, if for every query signature Q, it is
strictly optimal.

This definition states that an allocation method is strictly optimal if for each query signature, the
accessed pages are distributed evenly among the disks.

Svmbol Definition Value
F
sn
BS
M
Fn
M

TQ
w(Q)

w(SQl)

Signature size
Number of signatures

Block size
Number of processing units

Number of frames
Weight of term signature
Number of query terms

Weight of query signature Q

Weight of suffix of query frame signature RQi

2048 bits
1024 to 524288

16384 bits (2K bytes)
8 to 128
1 to32
10 to 35
5 to 40

Table 2: List of Symbols and Parameters of tbe Sample Signature Pile

Several variables may affect the query response time. The total number of signatures, the signature
size and the block size determines the total number of blocks. This affects the response time. The
signature size and the block size is fixed before the design of signature file. The number of processing
units, of course, also affects the response time. The number of frames is another factor. Given a fixed
number of processing units, the number of processing units allocated to each frame signature file is
dependent on the number of frames. The number of frames affects the number of blocks in each frame
signature file. The number of blocks in turn affects the number of bits considered for disk allocation.
Besides, it is apparent that the weight of query signature affect the query response time. By the nature of
Quick Filter, which is the horizontal partitioning mechanism of PSF, the weight of query signature
determines the search space and thus affects the response time. The search space is invariant under
different parallel storage structure. However, from Theorem 1, the query signature weight also affects the
declustering effect. The query signature weight depends on the term signature weight, the number of
query terms and the signature size. Therefore, the term signature weight, the number of query terms affect
the query response time. All these parameters are listed in Table 2.

We measure the performance by mathematical analysis. Then we run an experimental simulation to
verify the mathematical analysis of average response time. For mathematical analysis, consider a sample
signature file with parameters listed in Table 2. We assume that each frame signature file is allocated
with the same number of processing units. Besides, the space overhead taken by the OID of each frame
signature is neglected.

We compare the average response time among the proposed Parallel Signature File (PSF),
Fragmented Signature File (FSF) and the optimal case. The average response time is measured by

Z~b(Q)*R(Q)= Z mWQ)* Ma IR(FQi)),
VQ VQ OSilfi-1 (4)

where Prob(Q) is the probability of occurrence of a query signature Q, R(Q) is the response time of query
signature Q. R(FQJ is the response time of query frame signature FQi .

In general, the probability of occurrence of each query signature is assumed to be the same. The
weight of signature is also assumed to be uniformly distributed among the frame signatures. The
derivation of average response time of equation (4) can be simplified as

500 MAN-KWAN SHAN and SUH-YIN LEE

C~WFQW)*R,,(FQwh
VW

(5)

where FQw is the query frame signature with suffix weight w, Prob(FQW) is the probability of occurrence

of FQ”, RzN(FQ~) is the average response time of FQ”.

We first derive the probability Prob(FQw). Given signature size of F bits, term signature weight of m
bits and the number of query terms TQ specified in a query, then the expected weight of query signature
w(Q) can be estimated as [7]:

w(Q)= F* ~-(l-M,F)TQ]. (6)
We first consider the case of unclustered frames. The weight of query signature is expected to be

uniformly distributed among the frames. Given the number of frame fn, the expected weight of frame
signature

w(FQ) = w(Q)/! . (7)
The size of frame signature is F/fn bits. Given the number of frames fn, the number of bits of

common suffix r-i, the probability Probr,,fi(FQw), can be estimated as

c; *c
Fljit-r;:

~ob,,fi(FQw) = w(FQ)-w
$lfi ’

w(FQ)

(8)

Cf is the combinatorial function. Equation (8) can be explained as follows. Totally, there are Cc(&)

combinations of frame signatures with weight w(FQ). And there are Cz *C~~j$~?w combinations of

frame signatures in which rr-bits suffix has w bits set to 1.
For the case of clustered frames, the estimation of expected weight of frame signature is different

from that of unclustered frames. The expected number of frames that qualify for a query composed of Z’Q
terms can be computed as an application of Cardenas’s formula in the. following way [lo]:

(9)

Hun(Q) estimates the number of frames selected by TQ terms with replacement assuming that the
probability of each frame being selected is the same. With the assumption that TQ query terms are

uniformly distributed among the selected H@(Q) frames, the expected frame weight can be estimated as

w(FQ))Te/ Htfi(Q) I* (10)
Combining equation (10) and equation (8), we can derive the probability of weight of common suffix of
clustered query frame signature.

Finally, Rav(FQ”), the average response time of query frame signature FQw, is estimated by physically
collect the result from the query evaluation of the sample frame signature file. The sample frame

signature file contains frame signature block. Each frame signature block is represented by ri-bits

common suffix. The value ri depends on the number of signatures, block size and the signature frame size
(which in turn depends on the number of frames). The block access time of overflowing pages is ignored.

For each possible query frame signature FQw with suffix weight w, we get the response time R(FQw) for

PSF and FSF respectively. Rw(FQw) is derived by dividing the summation of R(FQ”) by the total number

of FQw.
Figure 9 through Figure 12 show the performance comparison of the unclustered signature files

among the proposed Parallel Signature File, Fragment Signature File and optimal response time. From the
analysis, it can be seen that PSF always outperforms FSF. Besides, performance of PSF is near optimal
response time. In Figure 9, we can also observe that the average response time of PSF improves with
decreasing number of frames. When the number of frames is one, the response time is minimum. This is
because when the number of frames is one, more bits are considered for disk allocation. Therefore, the
best design parameter for the number of frames is one.

Dynamic Allocution of Signature Files on Pamllel Devices 501

8o __ -+-Fragment
7. __ +Parallel

--t Optimal
60 1 I I 1 I I I

32 16 8 4 2 1
Number of Frames

fig. 9: Average response time versus number of frames, unclustemd, signature size = 2048, term signature weight = IS, query
terms = IO, number of signatures = 65536, number of processing units=64

50 --

30 I I 1 1 , I
I I 1 I I I i

5 10 15 20 25 30 35 40
Number of Query Terms

Rg. IO: Average response time versus number of query terms, unclustered, signature size = 2048, tetm signature weight = 10,
number of frm = I, number of signatures = 65536, number of processing units = 64

60
50
40

10 15 20 25 30 35
Term Signature Weight

Fig. 1 I : Average response time versus term signature weight, unclusted. signuture size = 2048. number of query terms = 10,
number of fkumes = 1, number of signatures = 65536, number of processing units = 64

Figure 10 compares the query response time as the function of the number of query terms. Increasing
number of query terms produces increasing query signature weight and, in turn, decreasing number of
accessed blocks. From Figure 10, it is obvious that PSF performs well with increasing number of query
terms.

Figure 11 depicts the response time as a function of weight of term signature. It is well know that
giving the value of signature length F and the number of terms per object D, the optimal value of term
signature weight m, that minimizes the false drop probability is derived from the following formula [7]:

F*ln2=m*D. (11)

502 MAN-KWAN SHAN and SUH-YINLEE

The values of weight in Figure 11 ranges from 10 to 35 which implies that the number of terms ranges
from 40 to 140. A typical value of the number of terms is about 40 in traditional text document [5, 251.
From Figure 11, we can observe that the response time decreases with increasing weight and decreases
with decreasing number of terms per object for a given value of signature length and minimum false drop
probability.

Number of Signatures

1024 2048 4096 8192 16384 32768 65536 131072 262144 524288

0

-1

-2

-3

-4

-5

-6

-7

-8

-9

-10

fig 12: Average execution overhead versus number of signatures for different number of processing units, unclusterrd, signature
size = 2048, number of query terms = 10. number of frame = 1. term signature weight = 10

Figure 12 shows the average execution overhead of query response time as the function of the number
of signatures for different number of processing units. The execution overhead of average response time
is defined as (R~s&,,~)/%pt, where RPsF is the average response time of PSF, kPt is the average optimal
response time. Note that in this figure, the value of y-axis denotes the logarithm of average execution
overhead. Moreover, there exist the cases in which R ps~ equals kpt (sn = 1028,2048 for M = 128). Hence
the average execution overhead is zero. Because it is meaningless for logarithm of zero, there are no
values plot in the figure corresponding to these cases. From Figure 12, it is observed that the declustering
effect improves with increasing number of signatures. This is the advantage of PSF comparing to
Hamming Filter. As we have indicated earlier, although Hamming Filter obtains better declustering
effect, the performance depends on suitable choice of parameters of error correcting codes. When the
number of signatures grows, the performance of Hamming Filter declines. Moreover, one interesting
phenomenon in Figure 12 is the curve of average execution overhead for h4 processing units. It is a cyclic
sequence with cycle length log(Mlfn) while@, the number of frames is chosen to be one. In each cycle,
the average execution overheads are almost the same. For example, in Figure 12, the curve for 16
processing units is a cyclic sequence with cycle length four. This reason lies in that, in Equation 1 (the
disk allocation function), wz , 1 I z, I rr, is a cyclic sequence with cycle length log(pni) for the i-th frame,

where pni is the number of processing units in the i-th frame.
Figure 13 through Figure 16 show the performance comparison for clustered signature files. Again,

PSF outperforms FSF and is not far from optimal response time. Figure 13 demonstrates the effect of the
number of frames on query response time. In Figure 13, in contrast to the unclustered signature file, it is
observed that larger number of frames is desirable. This is because increasing number of frames produces
increasing suffix weight of frame signature. Increasing suffix weight allows greater selectivity of the
quick filter mechanism in the horizontal partitioning in both methods. In unclustered case, the number of
frames has little effect on the suffix weight of frame signature owing to the uniform distribution of weight
among frames.

However, the false drop probability of clustered frame signature file increases with increasing number
of frames. The optimal number of frames must be resolved by physical analysis. Therefore, we take
arbitrary number of frames, 8. Figure 14 and 15 measure the effect of the number of query terms and term
signature weight. The performance of PSF also performs well with increasing number of query terms and

Dynumic Allocation of Signature files on Parallel Devices 503

increasing term signature weight. Figure 16 measures the performance as a function of file size and
number of processing units. We can see that even in the clustered case, the performance of PSF is not far
from optimal despite of the file size or the number of processing units.

--t Fragment
+ Parallel

32 16
Numb% of Frkes

2 1

Fig. 13: Average response time, versus number of f’mmes, clustemd, signature size. = 2048, term signature weight = 15, number of
query terms = 10, number of signatures = 65536, number of processing units = 64

A.“, I 1 I I I I I

5 10 15 20 25 30 35 40
Number of Query Terms

Fig. 14: Average response time versus number of query terms, clustered, signature size = 2048, term signature weight = 15, number
of frames = 8, number of signatures = 65536, number of processing units = 64

100
90
80

B 70
8 60
z 50

, I I I I

10 15 20 25 30 35
Term Signature Weight

Fig. 15: Average response time versus term signature weight, clusteted, signatuture size = 2048, number of query terms = 10, number
of frames = 8, number of signatures = 65536, number of processing units = 64

Figure 16 shows the logarithm of average execution overhead of query response time as the function
of the number of signature for different number of processing units. In this figure, there are no curves for
8 and 16 processing units, because the average execution overheads are all zero. From Figure 16, it is also
observed that the declustering effect improves with increasing number of signatures. Similar to the
unclustered case, the curve of average execution overhead for M processing units is a cyclic sequence
with cycle length log(M/fi) whilefi, the number of frames is chosen to be eight. For example, in Figure
16, the curve for 32 processing units is a cyclic sequence with cycle length two.

504 MAN-KWAN SHAN and SUH-YIN LBE

Number of Signatures

4096 8192 16384 32768 65536 131072 262144

-9 +M=32 -n-M=64 -m-M=128
-10

Wg. 16: Average execution overhead versus number of signatures for different number of processing units, clustemd. signature size
= 2048, number of query terms = 10, number of frames = 8, term signature weight = 10

In order to verify the mathematical analysis of average response time, we have implemented a
simplified experimental system. In the experiment, sn signatures of size 2048 bits are generated by
sampling 40 terms from a vocabulary of 10000 terms (key words). There are it4 disks and the disk page
size is 2K bytes. The average response time is measured over a sample of 5000 queries. Each query
signature is generated by uniformly choosing 7’Q terms from the vocabulary. For the unclustered case, in
order to minimize the false drop probability, the term signature weight is chosen to be 35. For the
clustered case, the weight of term frame signature is 10. The execution overhead of average response time
is observed. Remember that the execution overhead is defined as (RrstR&/%pt, where Rrsr is the
average response time of PSF, R,,pt is the average optimal response time.

Number of Query Terms
5 10 15 20 25 30 35 40

0

-0,5

-1

-1,5

-2

-2,5

+ sn=32768

*sn=8192

+I+ sn=4096

Fig. 17: Average execution overhead versus number of query terms for different number of signatures, unclustemd, signature size.
= 2048, number of processing units = 64, term signature weight = 35

Figure 17 shows the logarithm of execution overhead of query response time as the function of the
number of query terms for different number of signatures. It is observed that the execution overhead
increases with increasing number of query terms. With a typical value of 5 terms query, the execution
overhead is about lo-‘. In Figure 18, the effect of file size for the number of processing units is
demonstrated. It is observed that the overhead decreases with increasing file size. This is one of the
advantage of the proposed PSF. Besides, the cyclic phenomenon of the mathematical analysis shown in
Figure 12 also occurs in Figure 18. The only difference lies in the scale of overhead. The reason comes
from that the term signature weight of the experiment is chosen to be higher than that of mathematical
analysis. Figure 18 also presents the effect of different number of processing units. The phenomenon is
similar to that in Figure 12.

Dynamic Allocation of Signature Ales on Parallel Devices 505

1024 2048

Number of Signatures

4096 8192 16384 32768 65536 131072

-4 --
-e M=8 -W-M=16
+ M=32 -n- M=64
+K- M=128

-5
I I

Fig. 18: Average execution overhead versus number of signatures for different number of processing units, unclusted. signature
size = 2048, number of query terms = 10, term signature weight = 35

As we have presented, the advantage of proposed approach, superior to Hamming+ Filter, is the ability
to deal with cases when the number of processing units is not a power of two. Therefore, the result of
observation for these cases is plotted in Figure 19. In Figure 19, it is observed that the peaks of the curves

occur when the number of processing units is 11. This can be explained as follows. log 2 1 1 equals to

3.4597 while log2 l2 equals to 3.5853. Therefore, I_ log 2 1 1 1 is chosen to replace log 2 1 1 in the former

while r log 2 1 2 1 is chosen to replace log 2 l2 in the latter. Besides, although the overhead is higher when

the number of processing units is not a power of two, the response time is also near optimal.

-3 s 0

8 z -0,5

S -1

‘5 8 -1,5

3 -2

%
8

-2,5

S -3

z -3,5

“M s -4

-4,5

8 9
Number of Processig Units
10 11 12 13 14 15 16

Fig. 19: Average execution overhead versus number of processing units for different number of signatures, unclustered, signature
size = 2048, number of query te.rms = 10, term signature weight = 35

Figure 20, 21 and 22 show the execution overhead of query response time for the clustered case.
Figure 20 illustrates the execution overhead as the function of the number of query terms for different
number of signatures. The execution overhead increases with increasing number of query terms. Besides,
in Figure 20, the curves for 4096.8192 and 16384 signatures form one group while the other curves form
the other group. This phenomenon could be explained by Figure 21. In Figure 21, the curve for 64
processing units is a cyclic curve with cycle length 3. For example, the overhead for 4096, 8192 and

Jo6 MAN-KWAN SHAN and SUH-YIN LEE

16384 signatures are nearly the same. The reason why the cycle length is has been explained previously.
In fact, the same phenomenon also occurs in the unclustered case except that the grouping effect is not so
obvious.

Number of Query Terms
5 10 15 20 25 30 35 40

Fig. 20: Average execution overbead versus number of query terms for different number of signatures, clustered, signature size
= 2048, number of processing units = 64, number of frames = 8, term signature weight = 10

Figure 21 presents the effect of number of number of signatures for different number of processing
units. Similar to the result of mathematical analysis, the curve of average execution overhead for M
processing units is a cyclic sequence with cycle length log(M/j%). Besides, given a specific number of
signatures, the overhead increases with increasing number of processing units. Figure 22 observes the

overhead when pni, the number of processing units allocated to each frame i, is not a power of two.

Similar to the unclustered case shown in Figure 19, the peaks occur when pni equals 11 (88 processing
units/ 8 frames).

Number of Signatures
1024 2048 4096 8192 16384 32768 65536 131072

“0
0 -4

- tl

(\ at
2 -H-M=64 +M=128 -f-M=256
IJ

-5 ’ I

Rg. 21: Average execution overbead versus number of signatures for different number of processing units, clustered, signature size
= 2048, number of query terms = 10, number of frames = 8, term signature weight = 10

Dynamic Allocation of Signature Files on Parallel Devices 507

64 72

Number of Processing Units

80 88 96 104 112 120 128

Fig. 22: Average execution overhead versus number of pmcessing units for different number of signatures, clustemd, signature size
= 2048, number of query terms = 10, number of frames = 8, term signature weight = 10

5. CONCLUSIONS

Signature file access method is efficient for content-based retrieval of unformatted data, such as text,
image. In large servers, parallel device can be used to meet the bandwidth requirements. Using parallel
device with concurrent access, the response time of accessing signature file can be reduced and therefore
the query processing time is reduced also.

Efficient placement of partitioned signature pages in parallel device will speed up query response
time. We propose the dynamic storage management method, Parallel Signature File, using declustering
technique. It is an improvement of previous approach of Fragmented Signature File. We have presented
the disk allocation function and the block location function. The dynamic mechanism for controlling
splitting sequence is also described.

The proposed allocation scheme has some advantages. The accessed blocks are distributed more
uniformly than those of Fragmented Signature File. Parallel Signature File can also be used in dynamic
environment. Besides, when the number of processing units is not a power of two, the proposed approach
also performs well. Furthermore, the blocks in each processing unit can be clustered to minimize the disk
random access time. For each processing unit, we may cluster the blocks based on the technique of Gray
code [22].

The performance analysis shows that the proposed Parallel Signature File outperforms the Fragmented
Signature File. Especially the improvement increases with increasing number of query terms. The
performance analysis shows that in the unclustered case, the optimal number of frames is suggested to be
one. That is, it is not preferable to divide the signatures into frame signatures. In the clustered case, the
optimal number of frames must also consider the growing false drop probability. Analysis is required to
resolve the optimal value.

Acknowledgements - We thank the anonymous referees for their valuable comments and suggestions.

111

121

[31

[41

REFERENCE

L.F. Chien, Fast and quasi-natural language search for gigabits of Chinese texts. In Proceedings of the 18th ACM Internutional
Conference on Research und Development in Information Retrievul SIGIR’95, pp. 112-120, Seattle, WA (1995).

P. Ciaccia, P. Tiberio and P. Zezula, Declustering of key-based partitioned signature files. ACM Tmnsuctions on Database
Systems, 21(3):295-338 (1996).

H.C. Du. Disk allocation methods for binary Cartesian Product tiles. BIT, 26(1):138-147 (1986).

S. Christodoulakis and C. Faloutsos. Design considerations for a message file server. IEEE Transactions on Sojtwure
Engineering, 10(2):201-210 (1984).

508 MANXWAN SHAN and SUH-YIN LEE

[5] C. Faloutsos and S. Christodoulakis. Signature files: an access method for documents and its analytical performance evaluation.
ACM Transactions on Q@ce Informadon System, 2(4):267-288 (1984).

[6] C. Faloutsos. Access methods for text. ACM Computing Surveys, 17(1):49-74 (1985).

[7] C. Faloutsos and S. Christodoulakis. Description and performance analysis of signature file methods for office filing. ACM
Transacdons on office Inform&on System, 5(3):237-257 (1987).

[8] C. FaJoutsos and D. Metaxas. Declustering using error correcting codes. In Proceedings of the 8th ACM SIGACT-SOGMOD-
SIGART Symposium on Principles of Database Systems. pp. 253-258, Philadelphia, PA (1989).

[9] C. Faloutsos. Signature-based text retrieval methods, a survey. IEEE Computer Socity Tech&u1 Comminee on Data
Engineering. Special issue on document rewievul, 13(1):25-32 (1990).

[lO]F. Grandi, P. Tibertio and P. Zezula. Frame-sliced partitioned parallel signature files. In Pmceedings of the 15th ACM
International Conference on Research and Development in Information Retrievul SIGIR92, pp. 286-297, Denmark (1992).

[1 1lD.L. Lee. A word-parallel, bit-serial signature processor for superimposed coding. In Proceedings of the 2rh IEEE infemadonal
Conference on Data Engineering, pp. 352-359, Los Angeles, CA (1986).

[12]D.L. Lee and C. Leng. Partitioned signature files, design issues and performance evaluation. ACM Transactions on Of@e
Information Systems, 7(2): 158-180 (1989).

[13]Z. Lin and C. Faloutsos. Frame-sliced signature files. IEEE Transuctions on Knowledge and Data Engineering, 4(3):281-289
(1992).

[14]Z. Lin. Concurrent frame signature files. Distributed and Parallel Dafabases, 1(3):231-249 (1993).

[15]G. Panagopoulos and C. Faloutsos. Bit-sliced files for very large text databases on a parallel machine architecture. In
Proceedings of the EDBTW, pp. 379-392, Cambridge, UK (1994).

[16]S.Y. Lee and M.K. Shan. Access method of image database. International Journal of Pattern Recognition and Artificial
lntelfigence, 4(1):27-44 (1990).

[17]F. Rabitti and P. Zezula. A dynamic signature technique for multimedia databases. In Proceedings of the 13th ACM
Inrernational Conference on Research and Development in Infonndun Retrieval SIGIRW, pp. 193-210, Belgium (1990).

[18]K. Ramamohanarao and J. Shepherd, A superimposed codeword indexing scheme for very large prolog databases. In
Proceedings of the 3rd Inremational Conference on Logic Programming, pp. 569-576, London, UK (1986).

[19]C.S. Roberts. Partial match retrieval via the method of the superimposed codes. Proceeding of IEEE, 67(12):1624-1642 (1979).

[20]K. Salem and H. Garcia-Molina. Disk stripping. In Proceedings of the 2ih IEEE Conference on Data Engineering, pp. 336-342,
Los Angeles, CA (1986).

[2l]M.K. Shan and S.Y. Lee. Placement of signature file for parallel retrieval of image database. In Proceedings of the Storage asuf
Re@ievalfor Image and Video Databases II, IS&T/SPIE Symposium on Elec. Imaging Sci. &Tech., San Jose, CA (1994).

[22]M.K. Shan and S.Y. Lee. Clustering of pattitioned signature file. Information Science-An Inrrenational Journal, 104(3/4):321-
344 (1997).

[23]M.K. Shan S.Y. Lee. Dynamic allocation of signature file for multimedia document using parallel devices. In Proceedings of
the 18th ACM International Conference on Research and Developmenr in Infomdon Re&vul SIGIRW, Poster Session,
Seattle, WA (1995).

[24]S. Stanfill and B. Kahle. Parallel free-text search on the Connection machine system. Communications of the ACM, 29(12):
1229-1239 (1986).

[25]P. Zezula, F. Rabitti and P. Tiberio. Dynamic partitioning of signature files. ACM Transactions on Informadon Systems,
9(4):336-369 (1991).

[26]P. Zezula, P. Ciaccia and P. Tiberio. Hammin g filter: a dynamic signature file organization for parallel stores. In Proceedings of
the 19th International Conference on Very Large Data Bases, VLDB’93, pp. 314-326, Dublin, Ireland (1993).

