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Abstract

In this paper a new indexing method, called multidimensional interval ®lter, is proposed to speed up processing of

subpicture query. The basic idea is the transformation of spatial information of each image into a multidimensional

rectangle. Processing of subpicture query becomes that of rectangle containment query which can be further speeded up

by some well-developed spatial access methods such as R-Trees. Ó 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

Content-based image retrieval is one of the important issues in the design of multimedia information
system, digital library and visual information system. Approaches of recent works on content-based image
retrieval include retrieval by color, by shape, by texture, by sketch and by spatial constraints (Gudivada and
Raghavan, 1995). Image retrieval by spatial constraints retrieves images based on the spatial relationships
among the objects in images. This paper only focuses on retrieval by spatial constraints.

Approaches of image retrieval by spatial constraints were originated from the 2D String approach
(Chang et al., 1987). In this approach, objects and their spatial relationships in an image are represented as
a spatial data structure, 2D String. Processing of subpicture query is achieved by 2D subsequence matching.
However, usually there are a great number of images in an image database. It is essential to develop an
indexing method to avoid exhaustive 2D subsequence matching.

In this paper, a new indexing method for subpicture query is proposed. The basic idea of this indexing
method is to prune o� a large amount of unquali®ed images by a fast ®lter mechanism. The spatial in-
formation of each image is transformed to a multidimensional rectangle. Those images whose corre-
sponding rectangles do not contain the query rectangle are ®ltered out. The beauty of the proposed ®lter
mechanism lies in that rectangle containment query can be speeded up by some well-developed spatial
indexing structures, such as R-Trees, TV-Trees (Guttman, 1984; Lin et al., 1994).
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The remainder of this paper is organized as follows. In Section 2, a brief review of 2D String approaches
is given. Section 3 describes the proposed indexing method. In Section 4, experimental results are pre-
sented. The conclusions are presented in Section 5.

2. Review of 2D String approaches

The 2D String describes objects and their spatial relationships according to projection of the image along
x- and y-axis direction, respectively. The ®rst part of the 2D String describes the left±right relationship
while the second part of that describes the bottom±top relationship. A permutation function may be added
to the 2D String to prevent ambiguity when there are multiple identical objects in the image. For example,
the symbolic picture I0 in Fig. 1 can be represented as the 2D String (A < B�D < C, B < A < D < C,
2134).

Because a symbolic picture is represented as a 2D String, a picture query can also be speci®ed as a 2D
String. The problem of subpicture query then becomes the problem of 2D subsequence matching. Chang
et al. (1987) have de®ned type-0, type-1 and type-2 2D subsequence as follows.

De®nition 1. A String U 0 is a type-i 1D subsequence of string U, if (1) U 0 is contained in U and (2) if a1w1b1

is a substring of U 0, a2 and b2 are symbols of U, a1 matches a2 in U and b1 matches b2 in U, then

�type-0� r�b2� ÿ r�a2�P r�b1� ÿ r�a1� or r�b1� ÿ r�a1� � 0;

�type-1� r�b2� ÿ r�a2�P r�b1� ÿ r�a1� > 0 or r�b2� ÿ r�a2� � r�b1� ÿ r�a1� � 0;

�type-2� r�b2� ÿ r�a2� � r�b1� ÿ r�a1�;
where r(x), the rank of symbol x, is de®ned as one plus the number of ``<'' preceding this symbol x.

De®nition 2. The 2D String (U 0, V 0) is a type-i 2D subsequence of the 2D String (U, V) if U 0 is a type-i 1D
subsequence of U and V 0 is a type-i 1D subsequence of V.

For example, in Fig. 1, I1, I2 and I3 are all type-0 subpictures of I0, I1 and I2 are type-1 subpictures of I0.
Only I1 is a type-2 subpicture of I0. The problem of 2D subsequence matching has been proven to be NP-
complete (Tucci et al., 1991).

Since the invention of 2D String, some variants have been proposed to represent more complex spatial
relationships among nonzero sized objects of symbolic pictures. There are generalized 2D G-String
(Chang et al., 1988), 2D C-String (Lee and Hsu, 1991), 2D B-String (Lee et al., 1992), 2D C�-String
(Huang and Jean, 1994), 2D H-String (Chang and Li, 1988), Adaptive 2D H-String (Chang and Lin, 1996)
and 2D N-String (Chou et al., 1997), et al. The basic concept of our proposed indexing method can be
applied to any of these variants. Therefore, for the sake of clarity, we only consider the original 2D String
representation.

Fig. 1. Example of type-0, type-1, type-2 subpicture query.
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3. The proposed indexing method

The basic idea of the proposed indexing method is a fast ®lter mechanism. The spatial information of
each image is transformed to a multidimensional rectangle. The spatial information of the query image is
also transformed to a multidimensional rectangle. Those images whose corresponding rectangles do not
contain the query rectangle are ®ltered out. Only those images whose rectangles contain the query rectangle
are processed further by 2D subsequence matching. Rectangle containment query can be speeded up by
some well-developed spatial indexing structures such as R-Trees.

Of course, the ®lter mechanism may incur false drops. False drops denote those images, which are
quali®ed by the rectangle containment matching, but actually are not quali®ed by 2D subsequence
matching. False drops cause unnecessary 2D subsequence matching and should be minimized as small as
possible.

There are two steps for the transformation of spatial information into a rectangle. The ®rst step
transforms the spatial information of each image to a set of spatial strings. The second step transforms each
set of spatial strings into a rectangle. We ®rst introduce the de®nition of the spatial string.

De®nition 3. A type-i 1D spatial code VAB is a code describing the spatial relationship between symbols A and
B in the 1D String, whereas

�type 0� VAB � \0" if r�A� � r�B�;
VAB � \1" and VAB � \0" if r�A� < r�B�;
VAB � \2" and VAB � \0" if r�A� > r�B�;

�type 1� VAB � \0" if r�A� � r�B�;
VAB � \1" if r�A� < r�B�;
VAB � \2" if r�A� > r�B�;

�type 2� VAB � \0"� str�r�A�±r�B�� if r�A� � r�B�;
VAB � \1"� str�r�A�±r�B�� if r�A� < r�B�;
VAB � \2"� str�r�A�±r�B�� if r�A� > r�B�;

where r(X) is the rank of symbol X, symbol ``+'' denotes the string concatenating operator, str(Y) is a
transformation function which returns the string form of integer Y.

De®nition 4. A type-i 2D spatial string TAB of objects A and B is a string by concatenating symbol A, B
and type-i spatial character V x

AB and V y
AB, where the alphanumeric order of the object A is smaller than or

equal to that of the object B, V x
AB; V

y
AB is the spatial code along the x-dimension and the y-dimension,

respectively.

De®nition 5. A type-i spatial string collection P �I� for an image I is de®ned as the collection
fTAB j 8A;B 2 Ig.

Note that it is permitted that there may exist duplicate copies of the spatial string in the spatial string
collection.

Example 1. Given an image represented as 2D String (A < B�C, B < A < C), the type-0, type-1, type-2
spatial string collections are (type-0): {`AB02', `AB01', `AB12', `AC01', `AC10', `AC11', `BC01'}, (type-1):
{`AB12', `AC11', `BC01'}, (type-2): {`AB1121', `AC1111', `BC0012'}.
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The methodologies for the fast indexing method of the three types of subpicture query are all the same.
Therefore, for the clarity of explanation, we only deal with the type-1 subpicture query in the following.
Other types of subpicture query can be processed in the same way as that of type-1 subpicture query. In the
following description, the term ``subpicture query'' denotes the type-1 subpicture query.

It is obvious that if a query image Q is a subpicture of an image I in the image database, then the spatial
string collection of Q, P(Q), is a subset of P(I). The reverse is not always true. If P(Q) is a subset of P(I), it is
possible that the query image Q is not a subpicture of database image I. This occurs when there are multiple
same objects in the image. However, since the proposed method is a ®lter mechanism which prunes most,
not all, of the unquali®ed images, we can apply subset testing for the indexing of subpicture query.

Having transformed the process of subpicture query into that of subset matching, the next step tries to
avoid exhaustive subset testing of all the spatial string collection. Some strategies may be employed. The
®rst strategy, interval ®lter, assigns each spatial string in the image database a unique number. Each spatial
string collection P(I) is represented as an interval R(I) which denotes the range of the assigned numbers of
spatial strings contained in P(I). Given a query image Q, if R(I) does not contain R(Q), then P(Q) is not a
subset of P(I) and I must be an unquali®ed image.

The assigned numbers of the spatial strings can be determined arbitrarily, as long as the numbers are
assigned uniquely.

Example 2. Assume that in the image database, there are eight images shown in Fig. 2. The 2D Strings
corresponding to these pictures are I0: �C < A < B; B < C < A; 312�, I1: �C < A < B; A < C < B; 213�, I2:
�A � B < C; B < C < A; 231�, I3: �C < B < A < B; B < B < C < A; 4213�, I4: �C < A < B < C; A < C <
C < B; 2413�, I5: �A � B < C � C; B � C < C < A; 2341�, I6: �C < B < A; B < C < A; 213�, I7: �C < B <
A; A < C < B; 312�. The spatial string collection corresponding to each image is shown in the second
column of Table 1. Assume that each spatial string in the image database is assigned a unique number
shown in the third column of Table 2, the third column of Table 1 lists the interval for each image.

It is not necessary to assign numbers to those spatial strings which do not exist in the example image
database. These absent spatial strings are not shown in Table 2. Given the query image Q represented as 2D
String (C < B < A, B < C < A), then P(Q)� {`AB22', `AC22', `BC21'} and R�Q�� (5±13). I2 is ®ltered
out by interval ®lter. Actually, I3 and I6 are quali®ed images. I0, I1, I4, I5 and I7 are false drops.

The ®ltering e�ect of interval ®lter may be improved by the second strategy, multidimensional interval
®lter. Instead of assigning a unique number, we can assign each spatial string a unique multidimensional
vector in the Euclidean vector space. Therefore, each spatial string collection P(I), the spatial information
of image I, is represented as a multidimensional interval R(I). In terms of geometry, each spatial string is
represented as a multidimensional point, each spatial string collection is represented as a multidimensional
rectangle. With multidimensional interval ®lter, the false drop probability is lowered down.

Fig. 2. Symbolic pictures of eight images in an example image database.
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Table 1

Spatial string collections and intervals of images for the example image database

Image Spatial string collection Interval

®lter

2-dimensional

interval ®lter

2-dimensional interval ®lter

with clustering

2-dimensional interval

®lter with clustering

after ordering

I0 AC22, BC21, AB12 (3�13) (3�13, 9�14) ()1.01 ´ 10ÿ15�)8.72 ´ 10ÿ16,

)8.60 ´ 10ÿ17�)7.45 ´ 10ÿ17)

(1�6, 1�5)

I1 AC21, BC22, AB11 (2�14) (2�14, 5�15) (3.44 ´ 10ÿ1�3.61 ´ 10ÿ1,

1.25 ´ 10ÿ17�2.25 ´ 10ÿ17)

(14�16, 8�10)

I2 AB02, AC12, BC11 (1�11) (1�11, 1�6) (1.25 ´ 10ÿ16�1.43 ´ 10ÿ16,

3.91 ´ 10ÿ1�4.31 ´ 10ÿ1)

(10�12, 15�20)

I3 AB12, AB22, AC22, BC21,

BC21, BB12, BB21

(3�16) (3�16, 4�19) ()1.01 ´ 10ÿ15�)8.72 ´ 10ÿ16,

)8.60 ´ 10ÿ17�)7.45 ´ 10ÿ17)

(1�6, 1�6)

I4 AB11, AC11, AC21, BC22,

BC12, CC12, CC21

(2�20) (2�20, 2�20) (3.44 ´ 10ÿ1�3.95 ´ 10ÿ1,

1.25 ´ 10ÿ17�3.14 ´ 10ÿ17)

(14�20, 8�14)

I5 AB02, AC12, AC12, BC10,

BC11, CC01, CC02

(1�18) (1�18, 1�18) (7.69 ´ 10ÿ17�1.43 ´ 10ÿ16,

3.91 ´ 10ÿ1�4.31 ´ 10ÿ1)

(7�12, 15�20)

I6 AB22, AC22, BC21 (5�13) (5�13, 11�17) ()1.01 ´ 10ÿ15�)8.72 ´ 10ÿ16,

)8.60 ´ 10ÿ17�)7.45 ´ 10ÿ17)

(1�6, 1�6)

I7 AB21, AC21, BC22 (4�14) (4�14, 10�15) (8.54 ´ 10ÿ2�3.44 ´ 10ÿ1,

)1.01 ´ 10ÿ17�1.25 ´ 10ÿ17)

(13�16, 7�9)

Table 2

Vector assignment of spatial strings in the example image database

Spatial

string

Occurrence vector Assigned vector

I0 I1 I2 I3 I4 I5 I6 I7 Interval

®lter

Two-dimensional

interval ®lter

Two-dimensional interval ®lter

with clustering

Two dimensional

interval ®lter with

clustering after

ordering

AB02 0 0 1 0 0 1 0 0 1 (1, 1) (1.43 ´ 10ÿ16, 3.91 ´ 10ÿ1) (11, 15)

AB11 0 1 0 0 1 0 0 0 2 (2, 5) (3.61 ´ 10ÿ1, 2.25 ´ 10ÿ17) (14, 10)

AB12 1 0 0 1 0 0 0 0 3 (3, 9) ()8.76 ´ 10ÿ16, )7.45 ´ 10ÿ17) (4, 5)

AB21 0 0 0 0 0 0 0 1 4 (4, 13) (8.45 ´ 10ÿ2, )1.01 ´ 10ÿ17) (13, 7)

AB22 0 0 0 1 0 0 1 0 5 (5, 17) ()8.76 ´ 10ÿ16, )7.45 ´ 10ÿ17) (5, 6)

AC11 0 0 0 0 1 0 0 0 6 (6, 2) (3.95 ´ 10ÿ1, 3.14 ´ 10ÿ17) (17, 11)

AC12 0 0 1 0 0 2 0 0 7 (7, 6) (1.25 ´ 10ÿ16, 4.31 ´ 10ÿ1) (10, 20)

AC21 0 1 0 0 1 0 0 1 8 (8, 10) (3.44 ´ 10ÿ1, 1.25 ´ 10ÿ17) (15, 8)

AC22 1 0 0 1 0 0 1 0 9 (9, 14) ()8.72 ´ 10ÿ16, )7.59 ´ 10ÿ17) (6, 4)

BC10 0 0 0 0 0 1 0 0 10 (10, 18) (7.69 ´ 10ÿ17, 4.12 ´ 10ÿ1) (7, 17)

BC11 0 0 1 0 0 1 0 0 11 (11, 3) (1.43 ´ 10ÿ16, 3.91 ´ 10ÿ1) (12, 16)

BC12 0 0 0 0 1 0 0 0 12 (12, 7) (3.95 ´ 10ÿ1, 3.14 ´ 10ÿ17) (18, 12)

BC21 1 0 0 2 0 0 1 0 13 (13, 11) ()1.01 ´ 10ÿ15, )8.60 ´ 10ÿ17) (1, 1)

BC22 0 1 0 0 1 0 0 1 14 (14, 15) (3.44 ´ 10ÿ1, 1.25 ´ 10ÿ17) (16, 9)

BB12 0 0 0 1 0 0 0 0 15 (15, 19) ()9.68 ´ 10ÿ16, )7.93 ´ 10ÿ17) (2, 2)

BB21 0 0 0 1 0 0 0 0 16 (16, 4) ()9.68 ´ 10ÿ16, )7.93 ´ 10ÿ17) (3, 3)

CC01 0 0 0 0 0 1 0 0 17 (17, 8) (7.69 ´ 10ÿ17, 4.12 ´ 10ÿ1) (8, 18)

CC02 0 0 0 0 0 1 0 0 18 (18, 12) (7.69 ´ 10ÿ17, 4.12 ´ 10ÿ1) (9, 19)

CC12 0 0 0 0 1 0 0 0 19 (19, 16) (3.95 ´ 10ÿ1, 3.14 ´ 10ÿ17) (19, 13)

CC21 0 0 0 0 1 0 0 0 20 (20, 20) (3.95 ´ 10ÿ1, 3.14 ´ 10ÿ17) (20, 14)
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Example 3. For the same example image database in Example 2, each spatial string is assigned a unique
2-dimensional vector as shown in the fourth column of Table 2. Therefore, the interval corresponding to
each image is shown in the fourth column of Table 1. Fig. 3 plots the corresponding two-dimensional
rectangles. The numbers in the four corners of each rectangle denote the corresponding image numbers.
The query rectangle is the shadowed block. Given the query image Q represented as 2D String �C < B
< A; B < C < A�, then R�Q� � (5�13, 11�17), which is enclosed by R�I3�, R�I4�, R�I5�, R�I6�. I0, I1, I2 and
I7 are ®ltered out. I3 and I6 are actually quali®ed, I4 and I5 are false drops. For the same query image, two
false drops are generated by multidimensional interval ®lter while four false drops are generated by interval
®lter.

In Example 3, it can be found that most of the rectangles overlap each other. Certainly, two rectangles
overlap if the corresponding images have some common spatial strings. For example, in Example 3, R(I1)
and R(I7) overlap because I1 and I7 have the common spatial strings `BC22' and `AC21'. However, it is
possible that two overlapping rectangles have no common spatial strings. For example, R(I2) and R(I4)
overlap but there is no common spatial string between I2 and I4. This phenomenon comes from the as-
signment of multidimensional vector for the spatial strings. If the query rectangle falls into these over-
lapping region, it is expected to incur false drops.

The third strategy, multidimensional interval ®lter with clustering improves the ®ltering e�ect by e�cient
assignment of multidimensional vector. The goal of e�cient assignment tries to minimize the areas of
multidimensional rectangles of the images in the database, because larger rectangles are more likely to cover
the query rectangle and produce more false drops. This goal can be achieved heuristically by clustering the
coordinates of spatial strings in multidimensional space. The criterion of clustering depends on the cor-
relation among the spatial strings in the image database. Those spatial strings which tend to appear

Fig. 3. The two-dimensional rectangles of the eight images in Example 4.
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concurrently are clustered. On the contrary, those spatial strings which seldom appear concurrently are
dispersed. This will reduce the false drop probability. We ®rst give some de®nitions concerning the cor-
relation between spatial strings.

De®nition 6. The occurrence vector of a spatial string TAB is de®ned as a vector of images. The ith element of
the vector represents the occurrences of TAB in the spatial string collection of image i.

De®nition 7. Consider two vectors vi and vj which are the occurrence vectors of two spatial strings, the
correlation cij between these two spatial strings is measured as vi � vj=jvij � jvjj, where `�' is the inner
product of two vectors and jvij stands for the Euclidean norm of the vector.

Therefore, the problem to be solved is stated as follows. Given that in the image database, totally
there are b objects, m images and n spatial strings. The goal is to ®nd the vectors of the n spatial strings
in multidimensional space such that the Euclidean distances between vectors of spatial strings satisfy the
following distance criterion. For any three spatial strings with occurrence vectors vi, vj, vk, if cij > cik, then
dij < dik, where cij, dij is the correlation, distance between spatial strings corresponding to vi, vj,
respectively.

To solve this problem for multidimensional case, the multidimensional vector of the spatial string with
occurrence vector vi is assigned the normalized occurrence vector, vi=jvij. That is, the assigned multidi-
mensional vectors of the spatial strings are unit vectors. Given three unit vectors ur, us, ut, if ur � us > ur � ut,
we have crs > crt. Since, ur, us, ut are normalized, so crs6 1 and crt6 1. Therefore, 1ÿcrs < 1ÿcrt which
implies drs < drt. It is obvious that the assignment satis®es the above criterion.

The assignment stated above satis®es the distance criterion. However, usually the number of images, m,
is large. It is impractical to assign each spatial string an m-dimensional vector. The reason comes not only
from the storage space consideration but also from the e�ciency consideration of existing spatial indexing
structure. Most of the developed spatial indexing structures, such as R-Trees, work well when the number
of dimensions is less than 20 (Faloutsos, 1994). It is necessary to ®nd the solution for a speci®c number of
dimension, say k. Of course, it is possible that the solution doesn't exist. In this situation, the goal is not so
strict but to retain the distance criterion as well as possible.

We use the singular value decomposition (SVD) (Leon, 1990) to achieve this goal. Before giving an
introduction to SVD, we ®rst de®ne a spatial information matrix.

De®nition 8. Given an image database with m images and b objects, the spatial information matrix X0

for this image database is de®ned as a matrix of n spatial strings by m images. Each row represents the
m-dimensional normalized occurrence vector of the corresponding spatial string. That is, for each entry
of X0, xij equals yij=

�������������
Rm

j�1y2
ij

q
, where yij is the number of occurences of ith spatial string in the jth

image.

The spatial information matrix represents the spatial information in an image database. The dot
product between two rows represents the correlation between corresponding spatial strings. The spatial
information matrix is taken as the input to the process of SVD. We then give a brief description of
SVD.

Given an n� m matrix X0 with rank f, SVD involves factoring X0 into a product U0S0VT
0 , where U0 is an

n� f orthonormal matrix, V0 is an f � m orthonormal matrix, and S0 is an f � f matrix whose o� di-
agonal entries are all 0's and whose diagonal elements r1; r2; . . . rf satisfy r1 P r2 P � � � P rf P 0.

The orthonormal columns of U0 and V0 are called left and right singular vectors, respectively. The di-
agonal elements of S0 is called singular values. The beauty of SVD lies in the decreasing order of singular
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values which is useful for optimal approximation. If the ®rst k largest singular values and corresponding left
and right orthonormal vectors are kept, then the original matrix X0 is approximated by X � USV T, where U
is an n� k orthonormal matrix, V is a k � m orthonormal matrix, and S is a k � k diagonal matrix (Leon,
1990).

The dot product between two rows of X0 re¯ects the correlation between two spatial strings. Therefore,
the symmetric matrix X0XT

0 represents the correlation between each pair of spatial strings, where

X0X T
0 � XX T � �USV T��USV T�T � �USV T��VSTU T�:

Because V is an orthonormal matrix, S is a diagonal matrix

XX T � �USV T��VSTUT�T � USSTU T � US�US�T:
Thus, we can assign the row of US as the k-dimensional vector for the spatial string. Besides, instead of

taking US, we can take U as the k-dimensional vectors. This is because S is diagonal; the positions of the
points are the same except that each of the axes has been stretched or shrunk in proportion to the cor-
responding diagonal elements of S.

Example 4. The ®fth column of Table 2 shows the two-dimensional vector of each spatial strings by using
the SVD for the example image database in Example 2. The interval corresponding to each image is shown
in the ®fth column of Table 1. Given the query image Q represented as 2D String �C < B < A; B < C < A�,
then R�Q� � �ÿ1:01� 10ÿ15 � ÿ8:72� 10ÿ16;ÿ8:60� 10ÿ17 � ÿ7:45� 10ÿ17�, which is enclosed by R(I0),
R(I3) and R(I6). I1, I2, I4, I5 and I7 are ®ltered out. I3 and I6 are actually quali®ed while I0 is a false drop. For
the same query image, one false drop is incurred while two false drops are generated by multidimensional
interval ®lter.

Observe that in Example 4 the elements of assigned vectors are all real numbers. It takes the storage
space and the query processing time. Therefore, for each dimension of the assigned vectors, we impose a
partial ordering on the corresponding coordinate of the assigned vectors and take the order numbers as the
coordinate of assigned vectors. Two spatial strings with the same singular value are assigned with distinct
order numbers.

Example 5. The sixth column of Table 2 lists the two-dimensional vectors of the spatial strings after
ordering. The interval corresponding to each image is shown in the sixth column of Table 1. Given the
query image Q represented as 2D String �C < B < A; B < C < A�, then R(Q)� (1�6, 1�6), which is
enclosed by R(I3) and R(I6). I0, I1, I2, I4, I5 and I7 are ®ltered out. I3 and I6 are actually quali®ed. No false
drops are incurred. Fig. 4 plots the two-dimensional rectangles of the eight images in Example 5.
Comparing Fig. 4 with Fig. 3, it is observed that less overlapping rectangles exist in the former. In Fig. 4,
two rectangles overlap only if the corresponding images have some common spatial strings. It is expected
that the false drop probability is much lower.

4. Performance analysis

We measure the performance of the proposed indexing method by the false drop probability. The false
drop probability Fd denotes the probability that an image rectangle quali®es, given that the image does not
actually qualify. High false drop probability incurs unnecessary 2D subsequence matching. Therefore false
drop probability of an e�ective ®lter should be as small as possible.
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We implement our multidimensional ®lter with clustering algorithm and carry out experiments in order to
demonstrate the e�ectiveness of our proposed indexing method. The design parameters which a�ect the
false drop probability are listed in Table 3. The software package SVDPACKC developed in University of
Tennessee (Berry et al., 1993) was used for computing the SVD of large sparse matrices using ANSI C.

Given m, b and h, database images are generated randomly. In other words, h objects are randomly
selected from the b objects for each image and randomly placed in a symbolic picture of 10 by 10 cells. The
query images are generated from the database images. For a set of m database images, m query images are
generated. Each query image is generated by randomly selecting g objects from a database image. This way
of generating query images guarantees that at least one image is quali®ed for the query image.

Fig. 4. The two-dimensional rectangles of the eight images in Example 5.

Table 3

Design parameters of simulation

Symbol De®nition

m Total number of images in the image database

b Total number of objects in the image database

h The number of objects in each image

k The number of dimensions

g The number of objects in each query image
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Figs. 5±8 demonstrate the average false drop probability as the function of the design parameters. Note
that in these ®gures, the value of y-axis denotes the base 10 logarithm of false drop probability. Besides,
there exists the case with no false drops in our simulation, and hence the false drop probability is zero. It is
meaningless for logarithm of zero, therefore we approximate the curve by regression analysis.

Fig. 5 shows the average false drop probability as a function of the number of objects in the query image
for di�erent number of objects in the image database (b equals 26, 52 and 78). From the analysis, it can be
seen that the average false drop probability decreases with increasing number of query objects. Increasing
the number of query objects would produce larger size of query rectangle and reduce the false drop
probability. Besides, given a speci®c number of query objects, the false drop probability decreases with
increasing number of objects in the image database.

Fig. 6 gives the average false drop probability as a function of the number of objects in the database
image for total number of objects in the image database b being equal to 26, 52, 78, respectively. It is
obvious that the average false drop probability increases with increasing number of objects in the database
image. Increasing number of objects in the database image would produce larger database image rectangle,
and hence increase the false drop probability. Fig. 7 demonstrates the e�ect of the number of dimensions
for the number of query objects g being equal to 2, 3, 4, 5, 6, 7, 8, 9, 10, respectively. Of course, the average
false drop probability decreases with increasing number of dimensions.

Fig. 5. Average false drop probability versus the number of objects in the query image for total number of objects in the image da-

tabase.

Fig. 6. Average false drop probability versus the number of objects in the database image for total number of objects in the image

database.
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Fig. 8 compares the average false drop probability between the image database with 1000 images and
that with 2000 images. The number of dimension is set to 20. Obviously, the false drop probability of the
case with 2000 images is higher than that with 1000 images. The relationship among the number of images,
the number of dimensions and average false drop probability are critical to the performance of our system.
In practice, the number of dimensions must be chosen to achieve a good retrieval performance.

5. Conclusions

In this paper, we propose a new indexing method for subpicture query of iconic image databases. The
basic mechanism of this indexing method is a multidimensional ®lter which is able to prune out most of the
unquali®ed images. The spatial information of each image is transformed into a multidimensional rect-
angle. Those images whose corresponding rectangles do not contain the query rectangle are ®ltered out. We
also present the method using SVD to improve the e�ectiveness of multidimensional ®lter.

Fig. 7. Average false drop probability versus the number of dimensions for the number of query objects.

Fig. 8. Average false drop probability versus the number of objects in the query image for the number of images in the image database.
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The advantages of the proposed indexing method lies in the e�ectiveness and e�ciency of ®lter process.
For the e�ciency, the proposed indexing method can adopt a spatial searching structure such as R-Trees to
speed up rectangle containment test in a query process. The results of simulations have shown that the
average false drop probability depends on the number of objects in the image database, the number of
objects in each image, the number of objects in the query image, the number of dimensions and the number
of images in the image database. In a typical case with eight objects in each image, 2000 images in the image
database, three query objects in the query image, the average false drop probability for 20 dimensions is
only 0.003, which is very e�ective.

Future research includes the derivation of the formula of false drop probability as a function of the
design parameters and the performance analysis for the other variants of 2D string representation. The
other variants capture more complex spatial relationships. It is worth to investigate the e�ect of more
complex spatial relationships on false drop probability.
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Appendix A

This appendix presents the detailed numerical results for the multidimensional ®lter with clustering using
the example image database in Example 4. The spatial information matrix X0 is presented below. Note that
the corresponding rows for those spatial strings that are absent in the image database are not shown in this
matrix. It does not matter, because the assigned multidimensional vectors (left singular vectors) for these
absent spatial strings, generated from the SVD of the spatial information matrix, are all zero vectors.
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Recall that SVD involves factoring X0 into a product U0S0VT
0 . These matrices U0, S0 and V0 are shown

in the next page. We can verify that X0�U0S0VT
0 except for small rounding errors. To generate the two-

dimensional vectors of the spatial strings, only the ®rst two columns of the left singular matrix are kept. In
other words, we approximate X0 by keeping only the ®rst two singular values and the corresponding
columns from the left singular and right singular matrices U and V.
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