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Abstract 

Weights of criteria are the important factors in decision-making. However, from a behavioral perspective, traditional 
weighting methods account for too few factors to deal with decisions properly. Based on the behavior mechanism and 
the theory of habitual domains, this study is undertaken to develop a new weight-assessing model that treats decision- 
making as a dynamically adjusting process proceeding from the ideal to actual states. The new model is built upon the 
dynamic analysis for the connectivities between criteria instead of the static analysis of traditional models. Finally, we 
have studied Taipei City motorcycle users, mode-choice behavior through questionnaire in order to show the applica- 
bility of the new model. From the empirical results, it is found that our weight-assessing method has significant appli- 
cation potential in practice. © 1998 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

In the process of  decision-making, trade-offs between the criteria that influence the final decision must be 
made. These trade-offs can be computed in terms of  a relative ratio of  their importance, which can be pre- 
sented in a "weight" form. From the viewpoint of  behavior, the influential factors determining the weight 
of  a decision-making criterion include: the difference between the ideal and actual values of  the criterion 
(i.e., level of  charge), the diversification and intensification of  other ideas which can activate the criterion 
(i.e., connectivity), the duration (or tenure) of  the criterion belonging to the core of habitual domains (i.e., 
the frequency of  input stimuli), the decision-maker's personality and social-economic attributes, the intrin- 
sic value of  the weight, and the interaction among other criteria. Traditional weighting methods (Hwang 
and Yoon, 1981), such as the eigen-vector method, weighted least-square method, entropy method, utility 
function method, consider only the "interaction among other criteria" and forego consideration of  the 
other factors. 
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In general, most traditional weighting methods are based on static analysis, and their results usually only 
reflect the intuition or perception of decision-makers at the time of analysis. In fact, weights of criteria must 
be variable in different situations including input information, time, learning process, environment, etc. 
Thus, it is not easy to clearly delineate the absolute weightings for decision criteria. On the other hand, 
our model treats decision-making as a dynamically adjusting process from the ideal state to the actual state, 
allowing us to realize the dynamic change of weights depending on different situations. 

This research considers most of these factors simultaneously using the concept of habitual domains. The 
habitual domains concept was first introduced by Yu in 1980. It claims that a human being's decision-mak- 
ing process is gradually fixed by habit. The main idea of habitual domains is that the set of ideas and con- 
cepts that are encoded and stored in the brain tend to progressively stabilize in the absence of an 
extraordinary destabilizing event. Thus, thinking processes will reach some steady state or may even be- 
come fixed. Once the habitual domain is extended, it could greatly enhance the quality of decision-making. 

In order to express the changes in weights throughout the decision-making process, we use connectivi- 
ties between criteria to set up a fuzzy directed graph that is a collection of crisp criterion sets. According to 
the connectivity network and neighborhoods identified by the connectivities, this research develops the 
weight-assessing method with habitual domains as an alternative to traditional weighting methods. Our mod- 
el can assess weights based on behavior mechanisms and overcome many of the disadvantages of traditional 
weighting methods. 

This paper is organized as follows: in Section 2, we review traditional weighting models. In Section 3, we 
introduce human behavior mechanisms and describe four hypotheses that capture the basic workings of the 
brain. We then introduce the concept of habitual domains. Section 4 presents a model of activation pro- 
pensity and connectivity. We have started with two very practical examples before doing the mathematical 
work, including the mode choice behavior and the house-purchasing decision-making. Then we use the con- 
nectivities between criteria to establish the network structure in Section 5. Section 6 introduces an algorithm 
for weight assessing and provides an empirical study of motorcycle travelers. We end the paper with con- 
cluding remarks in Section 7. 

2. Review of weight-assessing method 

There are five primary components in any decision-making process, including: (i) decision alternatives; 
(ii) decision objectives or criteria; (iii) decision outcomes; (iv) preference structure; (v) information inputs 
(Yu, 1990). Weight is the most general form of preference structure. There are certain benefits in defining a 
preference structure by a set of weights, such as: (i) it allows the importance of each objective to be repre- 
sented as a set of numbers; (ii) the ratio of two objectives is equal to their "relative importance"; (iii) the 
sum of all weights is equal to 1 (Saaty, 1980; Hwang and Yoon, 1981). 

There is an abundance of research on weighting characteristics which might be applied to the decision- 
making process including: rating method (Eckenrode, 1965); utility function method (Keeney and Raiffa, 
1976; Keeney and Nair, 1977); entropy method (Zeleny, 1974; Nijkamp, 1977); extreme weight approach; 
random weight approach (Voogd, 1983); LINMAP (Srinivasan and Shocker, 1973); analytic hierarchy pro- 
cess (AHP) (Saaty, 1977, 1980); least-square method; logarithmic least-square method; geometric mean 
method (Krovak, 1987; Cook and Kress, 1988). From a structural viewpoint, there are two types of weight- 
ing criteria: subjective and objective. 

The objective weight can be computed from the outcomes without asking the perceptions of the deci- 
sion-makers. For example, the extreme weight approach, random weight approach, and entropy method 
are all objective weight-assessing methods. The entropy method is one of the best objective weight-assessing 
methods. Entropy is a physical measurement of the second law of thermal-dynamics and has become an 
important concept in the social sciences as well as in the physical sciences. 
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In the information theory of Shannon, the entropy is used to measure the expected information content 
of certain messages. Entropy in information theory is a criterion for the amount of "uncertainty" repre- 
sented by a discrete probability distribution. The entropy method assumes that those criteria with less un- 
certainty are more important. Moreover, the method computes the anti-uncertainty (amount of 
information) of each criterion based on its possible outcomes, and normalizes them to a set of weights 
whose summation is equal to 1. 

AHP is the well-known type of subjective weight-assessing method. AHP was introduced by Saaty in the 
1970s. AHP organizes all objectives into a hierarchical structure. In AHP, the objectives are independent of 
each other in the parallel level, and the summations of weights in the same level are equal to their direct 
higher objective. Saaty suggests two techniques for obtaining the information on preference: pairwise com- 
parison and eigen-vector computing. In fact, we can get these values by a direct-rating process or compute 
them through the least-square method, without affecting the validity of the AHP model. 

These objective methods show that the weight of a criterion is relative to its clearness. Thus, in the en- 
tropy method, the clear criteria are more important than the fuzzy criteria. Subjective methods show us to 
obtain the information on preference by asking the decision-maker. Some of these methods provide ratings 
or pairwise-comparison techniques, while some suggest that we organize the objectives as a hierarchical 
structure. There is a common assumption in all of these weight-assessing schemes that the preference struc- 
ture exists; the problem is how to obtain it. Thus, the question arises: if the preference structure is not sta- 
ble, will a weight-assessing approach be useful? Is the importance of food to a hungry person similar to that 
for a normal person? Surely it is not. From the viewpoint of habitual domains, the weight comes from the 
charge structure, and the difference between the perceived actual state and the ideal state is the primary con- 
sideration within the charge structure. In other words, the distance between "where you want to go" and 
"where you are" decides the weight. 

3. Habitual domains 

In Section 3.1 we introduce some basic human behavior mechanisms. In addition, we shall describe four 
hypotheses that capture the basic workings of the brain: circuit pattern, unlimited capacity, efficient restruc- 
turing, and the analogy and association hypothesis. Then, we introduce the concept of habitual domains in 
Section 3.2. In Section 3.3, we shall introduce four classes of decision problems that are to be selected for 
particular situations based on the regularity and availability of skill sets. 

3.1. Behavioral bases for decision-making 

The main idea of the model of Yu (1985) of human decision behavior is that each human being has an 
endowed internal information-processing and problem-solving capacity that is consciously allocated as 
needed to various activities and events over time to adapt to, and achieve in, the multi-dimensional human 
environment. The brain is the human internal information processing center. Moreover, it is recognized 
that when external stimuli are cognitively attended to a human being, a special sequence of circuit patterns 
of activated neurons, containing the cognitive function, appears in the brain. This sequence represents one 
of the many possible cognitive functions that has been engendered by the stimuli. Some of the major cat- 
egories of cognitive brain function include: encoding, storing, retrieving, and interpretation. 

Yu (1990) summarized memory and thought processes according to four basic hypotheses: (i) the circuit 
pattern hypothesis (that is, human memory and thought can be represented by electrochemical patterns in 
the brain cells); (ii) the unlimited capacity hypothesis (that is, the capacity of memory that our brain can 
encode (not retrieve) is practically unlimited); (iii) efficient restructuring hypothesis (that is, our memory 
can be restructured in an efficient way so as to effectively process the encoded information); (iv) analogy 
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and association hypothesis (that is, our brain interprets incoming information using analogy and associa- 
tion with the existing memory). 

Among these four hypotheses, the analogy and association hypothesis is one of the most pervasive and 
important observations concerning human cognitive processes. Most people conjure up an impression in 
response to receiving an abstract symbol and their cognitive ability then enables them to retrieve informa- 
tion and perform analysis is conserving the symbol. According to Yu's definition, the analogy and associ- 
ation hypothesis can be stated as follows: 

The perception of new events, subjects, or ideas can be learned primarily by analogy and/or associa- 
tion with what is already known. When faced with a new event, subject, or idea, the brain first investi- 
gates its features and attributes in order to establish a relationship with what is already known by 
analogy and/or association. Once the fight relationship has been established, the whole of the past 
knowledge (preexisting memory structure) is automatically brought to bear on the interpretation 
and understanding of the new event, subject or idea. 

The main points to be emphasized are: (i) there is a preexisting code or memory structure which can po- 
tentially alter or aid in the interpretation of an arriving symbol; (ii) a relationship between the arriving sym- 
bol and the preexisting code must be established before the preexisting code can play its role in interpreting 
the arriving symbol. 

3.2. Habitual domains 

The concept of habitual domains (HD) was first formulated by Yu (1980). It claims that a human being's 
decision-making process is gradually fixed by habit. The main idea of habitual domains is that the set of 
ideas and concepts that are encoded and stored in the brain tend to progressively stabilize with time and 
in the absence of an extraordinary destabilizing event will approach a steady state (Yu, 1990). 

There are two kinds of thoughts stored in human memory: (i) the ideas that can be activated in thinking 
processes; and, (ii) the operators that transform the activated ideas into other ideas. The operators are re- 
lated to thinking processes or judging methods. Generally speaking, operators are also ideas. However, be- 
cause of their ability to transform or generate (new) ideas, they are called operators. 

Habitual domains have four primary elements (Yu, 1991): (i) potential domain, PDt, which is the col- 
lection of ideas or operators that can be potentially activated at time t (or stage t); (ii) actual domain, 
ADt, which is the set of ideas or operators that are actually activated at time t (or stage t); (iii) activated 
probability, APt, which is defined for each subset of PDt and is the probability that a subset of PDt is ac- 
tually activated or is in ADt; and, (iv) reachable domain, R(It, Or), which is the set of ideas or operators that 
can potentially be reached from the initial set of ideas, It, and the initial set of operators, Or. 

Given a decision-making problem E that catches a decision-maker's attention at time t (or stage t), the 
propensity for an idea vi to be activated is denoted by Pt(vi, E). As with probability functions, Pt(vi, E) may 
be estimated by determining its relative frequency, as well as statistical probability (Yu and Zhang, 1989). 
The cz-core Kt of the HD for problem E at time t (or stage t) is the collection of the ideas or concepts that can 
be activated with a propensity larger than or equal to ~. That is, 

Kt(~,E) = {Yi E HD [ Pt(vi, E) >/ct}. (1) 

3.3. Classification o f  decision problems 

Depending on the perception of the availability of skill sets and the or-cores of HD, we can classify de- 
cision problems into four categories: routine problems, mixed routine problems, fuzzy problems and chal- 



346 G -H. Tzeng et al. I European Journal o f  Operational Research 110 (1998) 342-367 

lenging problems (Shi and Yu, 1987; Yu and Zhang, 1992a, b). We note that what is unknown to the de- 
cision-maker may be known to another. Therefore, the classifications below depend on each decision-mak- 
er's HD. 
(i) Routine problems. For a routine problem, the idea set that is needed to successfully solve problems is 

well known to the decision-maker, and the decision-maker has acquired the set. With proper training 
and practice, most decision-makers can develop the capability to solve routine problems. 

(ii) Mixed routine problems. A decision problem is called a mixed routine problem if it consists of a number 
of routine subproblems. 

(iii) Fuzzy problems. The truly needed idea set is only fuzzily known to the decision-maker. Therefore, the 
decision-maker has not yet mastered the skills, concepts and operations necessary for successfully solv- 
ing these problems. 

(iv) Challenging problems. The truly needed idea set is unknown or only partially known to the decision- 
maker. These problems cannot be successfully solved by the ~-core of HD, no matter how small ~ is. 

4. Activation propensity and connectivity 

4.1. Measurable space 

In order to specify measurable space in our study, we first introduce the concept of goal setting. For a 
decision problem, denoted by E, there exists a set of goal functions to be achieved for its satisfactory so- 
lution. The goal functions in the internal information-processing center are used to measure the many di- 
mensional aspects of the decision problem. For each goal function there is an ideal state or equilibrium 
point to reach and maintain. This process is called goal setting. Goal functions can be measured by a col- 
lection of elementary criteria, { v l, v2, v3,. . . ,  vn } (n is the number of criteria), which is finite. Each goal func- 
tion is a subset of the total collection of all elementary criteria.We say that two goal functions are related or 
associated if their two corresponding criterion subsets have a non-empty intersection. We can consider the 
elementary criteria {Vl, v2, v3,.. . ,  v,} to be the discussion universe, HD, for the problem E. 

For example, when drivers of private vehicles begin a trip, the first problem is how to choose their route. 
The objectives which drivers would consider during the route choice process include the minimal travel 
cost, the fastest driving speed, optimal safety and comfort, the fewest risks, and the most familiar route. 
It is not necessary to optimize each objective for users, but to acquire only the satisfactory level of each 
objective. Therefore, for the route choice problem E, its discussion universe HD = {travel time, delay, 
driving speed, degree of safety, degree of comfort, degree of risk, and familiarity to the route}. Another 
example: when we desire to purchase a house, the criteria to be taken into consideration would be of price, 
size of the house, age of the house, distance of the house from the office, and convenience to shopping. Ad- 
ditionally, these criteria would have made up as the discussion universe for the decision-making of house- 
purchasing. 

Let HD (habitual domains) be the discussion universe, i.e. a set consisting of all vertices (i.e. criteria) for 
the discussion of problem E. The family of sets consisting of all the subsets of HD is referred to as the power 
set of HD and is indicated by P (HD). a(HD) C P (HD) is a family of subsets of HD, so that: 
(i) ~ E a(HD) and HD E a(HD); 
(ii) if A c a(HD), then A C a(HD); 
(iii) a(HD) is closed under the operation of set union; that is, if AI,A2, A3,... E a(HD), then 

Ui°~=I 2i C a(HD) 
The set a(HD) is usually called the Borel field or a-field. We usually take a(HD) to be the smallest a-field 
containing as numbers all of the sets of particular interest, and a(HD) is called a a-algebra. We treat HD as 
a measurable space, 
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HD = (HD, a(HD),  p), (2) 

where a(HD) is a a-algebra generated by HD, and / t  is a meaning measure. Assume the HD is finite and 
that a (HD)  = P(HD),  i.e., every subset of HD is measurable. 

4.2. Activation propensity and connectivity 

Given an input stimulus St at time t (or stage t), the propensity for criterion v~ to be activated is denoted 
by Pt(viSt). For c~ E [0, 1], the s-core of  HD at time t (or stage t), denoted by Kt(~, HD),  or simply by 
Kt~(HD) when no confusion can occur, is defined as the collection of  criteria that can be activated with 
a propensity larger than or equal to cc That is, 

Kt(c~,HD) = {v~ E HD I Pt(v,,St) >~ o~}. (3) 

Take route choice as an example: when road users have received the message of a traffic jam on the road 
ahead, the difference between the ideal and actual values of travel time will be enlarged. Thus, the activation 
propensity of travel time will increase and such criterion will become the core of decision-making as trav- 
elers make their en-route switching. Should road users receive the message of  rock slide on the road ahead, 
their decision core will be transferred to safety. Similarly, the price of the house is most often not the core of 
habitual domain for rich people during their house-purchasing decision process, and price is, therefore, not 
a major factor to be considered. 

Note that the s - c o r e  Kt(o~, HD) is just the closed s-cut of  a fuzzy subset of  HD with membership function 
Pt (Yu and Zhang, 1990). Furthermore, the activation propensity function can be generalized into a func- 
tion defined on HD × HD: 

Definition 4.1. For  any v~ and vj in HD, Pt(vi, Yi) denotes the propensity that criterion vj will be activated 
when the criterion vi is presented to the input stimuli at time t (or stage t). 

It is trivially known that the higher the activation propensity, the more strongly the criteria are connect- 
ed and vice versa. Therefore, we can reasonably treat the activation propensity function as an approxima- 
tion of  the connectivity function and define the connectivity function following the definition of (Yu and 
Zhang, 1990) as: 

Definition 4.2. A function Ct(vi, vj) defined on HD x HD at time t (or stage t) is called a connectivity func- 
tion on HD if it satisfies the following axioms: 
(i) Ct(v~, vj) E [0, 1]; 
(ii) Ct(vi, vi) = 1,Vvi E HD. 

Because the number of  stimuli perceived by the senses of  an individual at any point in time is enormous, 
selective perception is required. Thus, arriving symbols are processed in an unrefined way for the sake of 
convenience and efficiency. According to the analogy and association hypothesis, when faced with an ex- 
ternal stimulus, the brain first investigates its features and attributes in order to establish a relationship with 
what is already known by analogy and association. The relationship can be treated as the connectivity func- 
tion. Once the right connectivity relationship has been established, the whole of  the past knowledge (pre- 
existing memory structure) is automatically brought to bear on the interpretation and understanding of the 
stimuli, resulting in a decision being made. 

According to the definition, if Ct is a connectivity function, then Ct(vi, v j) is called the connectivity from 
v~ to vj at time t (or stage t). If  Ct(Yi, •j) > Ct(Yi, Yk), then we say that V i is more strongly connected to vj than 
to vk. In terms of the route choice problem, should the driving speed of  the alternative route be slower, the 
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road user would then have to spend more time to reach his destination. Thus, driving speed can be connect- 
ed with travel time by analogy and association. Likewise, when the driving speed is slower, the feeling of 
comfort that the route brings to users would be less; as a result, it can be seen that driving speed is connect- 
ed with degree of comfort. Generally speaking, driving speed is more likely to be associated with travel 
time; in a word, the connection between driving speed and travel time is stronger than that of driving speed 
with comfort. 

It should be noted that learning processes are usually directed, i.e., the connectivity from vi to vj is not 
equal to the connectivity from vj to vi. Thus, Ct is not necessarily a symmetric connectivity function; in oth- 
er words, the activation propensity is non-symmetric. We can summarize the above discussion with Prop- 
osition 4.1. 

Proposition 4.1. Assume that Pt(vj, vi) is such that Pt(vj, vi) = 1 i f  vt = vj. Let  Ct(vi, vj) = Pt(vj, vi) for  all vi 
and vj in the HD at time t (or stage t). Then, Ct(vi, vj) is a connectivity function that satisfies the conditions 
o f  Definition 4. 2. 

It is noted that people usually utilize an approximation of the necessary criteria in solving a particular 
decision-making problem E based on the limits of personal charge structure, external information, atten- 
tion allocation, self-suggestion or physiological monitoring, etc. Decision-makers are also apt to be affected 
by external considerations such as time and cost. Only in the absence of palpable external stimulation, goal 
setting, charge structure, and information input will the solution process maintain steady. This indicates 
that the decision-makers' perceived connection between criteria is only fuzzily known. In other words, 
the connectivity between the criteria for a decision-making problem E is roughly, but not clearly, known. 
Consequently, the connectivity function on HD will continue to change as long as the situation, viewpoint, 
or physiological state varies. This being the case, we define Ct(v~, vj) as a function of time t (or stage t). 

5. Connectivity network 

5.1. Ne twork  structure 

We assume that HD is discrete and finite; that is, HD = {vl, v2, v3, . . . ,  Vn} is finite. We treat HD as a 
vertex (or node) set. Let A denote a subset of  HD × HD, i.e., A c_ HD × HD and A is called an arc (or link) 
set. An element in A is called an arc. For  any vi and vj in HD, (vi, vj) E A is called an arc that joins vi and vj 
(starting from vi and arriving at v j). Now we set up a connectivity network G. 

A fuzzy directed graph (i.e., digraph) G(HD,R t )  consists of a finite set HD -- {vl, v2, v3, . . . ,  vn} and a 
fuzzy relation Rt o n  HD at time t (or stage t), where the relation Rt satisfies: 
(i) R,(vi, Vj) E [0, 1]; 
(ii) Rt(vi, vi) = 1, Vvi ~ HD (reflexivity). 

Let the fuzzy relation Rt on HD be the connectivity function Ct(v~, vj) on HD at time t (or stage t). There- 
fore, the digraph is represented by G(HD, Ct), i.e., the connectivity network. Consider a connectivity func- 
tion Ct defined on a finite set HD. The connectivity Ct is interpreted in terms of a connectivity network. 
That is, for vi, vj c HD, Ct(vi, vj) is the grade of  adjacency from vi to vj at time t (or stage t). Furthermore, 
the adjacency matrix of G(HD, Q) is defined as [Ct(vi, vj)], where vi, vj E HD. 

An a-core of G -- (HD, Ct) is defined to be a crisp digraph K t ( G  ), when 

KT(C) = v: E 6 I >- (4) 

Clearly the 0t-core K~([Ct(vi, vj)]) is the crisp adjacency matrix of the crisp digraph K~(G). 
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The concept of a connectivity network G can be considered to be a collection of its ~-cores. In particular, 
K°(G) is always a complete digraph; that is, every pair of criteria in K~t(G ) is adjacent. 

5.2. Assessment of  connectivity 

In this section we discuss a method for assessing connectivity functions based on max-min operators. 
Before further discussion, we know that the arc (vi, vy) is active at the level ~t if Ct(vi, vj) >~ e; that is, 
(vi, vj) is present in K~(G) at time t (or stage t). Thus, Ct(vi, vj) is equal to the maximum level at which 
the arc (vi, vy) is active. 

A walk in a connectivity network G(HD, Ct) from vii to vik is a sequence of criteria v~l, vi2,. . . ,  v~k that 
are connected by the arcs (Vil,Vn),.. . ,  (v~k-l,vik) (these arcs are usually considered to be part of the 
walk). A walk is called simple if each criterion appears in it only once at most, and a simple walk is 
called a path. Hence a path in G is a sequence of distinct criteria such that for all (vi, vy), 
Ct(v~, vj) >/e; in other words, a path in G is also called active at the level ~ if the path is present in 
KT(G ). The strength of the path is min {Ct(v~, vj)} for all criteria contained in the path. The length of a 
path is the number of criteria contained in the path. The directed path also represents a learning sequence. 
It should be noted that some learning processes perhaps express a directed walk, not a path. However, as we 
know, if the walk is active at some level, the path contained in the walk is also active at the same level. Such 
being the case, in our study we consider only those situations in which learning processes are represented by 
the paths for simplicity. 

A criterion vj of G is called at-reachable from another criterion v~ if there is a path from v~ to vj in the 
crisp digraph Kt~(G). Furthermore, any criterion vi is ~-reachable from Yi itself, for any ~ E [0, 1]. G is or-con- 
nected if and only if all pairs of criteria of G are ~-reachable; that is, G is called or-connected if Kt(G ) is 
connected (Miyamoto, 1990). 

Given a connectivity network G(HD, Ct), a connectivity function C~ is defined by C2t(vi, vj) = ~ if and 
only if there is a path of length 2 from criterion v~ to criterion vy in KT(G), and for any e > 0 there is no 
path of length 2 from vi to v] in Kt+~(G) at time t (or stage t). Therefore, Ct(vi , vy) is the maximum level 
of the ~-core so that there is a path of length 2 starting from vi and arriving at vj. 

The discussion concerning Ct ~, k > 2, can be carried out in a similar manner. First, Ck,(vi, v j )= • if 
and only if there is a path of length k from criterion vi to criterion vy in K~(G) at time t (or stage t). More- 
over, if Ckt(vi, vj) = ~, then there is no path of length k from vi to vj in K~'+'(G) for any e > 0 at time t (or 
stage t). That is, Ckt (v~, v j) is the maximum level of the ~-core so that there is a path of length k starting from 
v~ and arriving at vj. Consequently, the connectivity Ct k, k/> 2 is calculated by the max-min composition 
rule: 

Proposition 5.1. Given a connectivity network G(HD, Ct), then the connectivity Cgt at time t (or stage t) is cal- 
culated by the following iterative formula: 

C2t (vi, Yj) = max min[Ct(vi, v), C,(v, vj)], 
vcHD 

(5) 

Ckt(vi, v j) = max min[Ct k-l (vi, v), Ct(v, vs) ] 
vcHD 

where n & the number of  criter& & G. 

(3 ~<,k ~<,n), (6) 

Proof. Find out v' such that v' is the element belonging to HD that achieves 

max min[Ct(vi, v), Ct(v, vy)] = min[Ct(vi, v'), Ct(v', vj)]. 
vcHD 
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Let ~' = min[Ct(vi, v'), Ct(v', vj)]. Then both a r c  (vi, v t) and arc (v', vj) are active at the level ~t'. This means 
that there is a path of length 2 at the level ~' (i.e., in Kt ~' (G)) starting from v; and arriving at vj. Therefore, we 
have the following inequality: 

C2(vi, vj) >~ min[Ct(vi, v'), Ct(v t, •j)] 

= max min[Ct(vi, v), Ct(v, vj)]. 
vEHD 

On the other hand, for any e > 0 there is no path of length 2 from vi to vj in K~'+~(G) at time t (or stage t). 
That is, for any e > 0, Ct(vg, v) < ~' + e, Ct(v, vj) < ct' + e, for all v E HD. Furthermore, from the definition 
of Cet (vi, vj), we have C2(vg, vg) < ~' + ~. 
This means that 

C2(vi, vj) > max min[Ct(vi, v), Ct(v, vfl] 
vcHD 

does not hold for any vi, vj E HD. 
Hence, we have proved the first equation of the proposition. Moreover, the second equation can be 

proved in the same way except for the "path of length k" condition. For simplicity, we omit the details. 
The connectivity function Ct ~ can be calculated by the iterative formula described in Proposition 5.1. [] 

Let Ct* (vi, vfl = ~ if and only if the criterion vj is reachable from Yi in K 7 (G), and vj is not reachable from 
vi in K~+~(G) for any e > 0 at time t (or stage t). Then, Ct(vi, vfl is the maximum level such that vj is reach- 
able from vi; that is, vj is or-reachable from vi if and only if C;(vi, vj) >~ ~. The connectivity C t on HD de- 
scribed above is called a connectivitiy index. The connectivity index is calculated from Ctk,, k = 1,2, 3 , . . . ,  n 
(n is the number of criteria), as described in Proposition 5.2. 

Proposition 5.2. Given a connectivity network G(HD, Ct), then the connectivity index C t at time t (or stage t) 
is calculated from Ckt, where k = 1,2, 3 , . . . ,  n: 

C;(v,, vj) = max{ Ct(vi, vj), C2(v,, vf l , . . . ,  Ckt (v,, vj) , . . . ,  Ct (v,, vj)}. (7) 

Furthermore, the connectivity index C~ is also given by: 

C~ (vi, vj) = max{min{  Ct(x,y)l(x,y ) E Path(vi, vj) } l Path(v~, vj)}, (8) 

where Path(vi, vy) is a path in G from vi to vj. 

Proof. From the definition it is obvious that the connectivity index C t (vi, vj) is equal to the maximum level 
of all the paths of arbitrary length (it is noted that the length of the path is always less than or equal to the 
number of criteria in HD) from vi to vj, which in turn is equal to the maximum of Ckt(vi, vj) the maximum 
level of paths of length k, for all k. This implies the first equation. As for the latter equation, that is simply 
another expression of the first equation. [] 

Remark 5.1. Given a connectivity network G(HD, Ct), Ct(l~i, 1Jj) is the connectivity index from vi to vj at 
time t (or stage t) which satisfies the following axioms: 
(i) Ct(v,,vg) E [0.1]; 
(ii) Ct (vi.vt ) = 1, Vvg E HD. 

Consequently, we can assess the connectivity index C~ by the max-min extension (according to the max- 
min composition rule) discussed above. Moreover, the max-min extension of the connectivity function Ct 
can be called the "conservative extension" (Yu and Zhang, 1990). 
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We have already shown that learning processes are usually directed, i.e., the connectivity from vi to vj 
may not be equal to the connectivity from vj to v~. Hence, Ct is not necessarily a symmetric connectivity 
function. Furthermore, the connectivity function may be non-transitive. Ct is (max-min) transitive if and 
only if 

Ct('gi, Vk) ~ max min[Ct(vi, vj), Ct(vj, vk)] (9) 
vjEHD 

is satisfied for each pair (v~, vk) E HD x HD. A Ct failing to satisfy the above inequality for some criteria of 
HD is called non-transitive; that is, 

Ct(vi, vk) < max min[Ct(vi, vj), Ct(vy, vk)] (10) 
v/EHD 

for some (vi, vk) E HD x HD. For example, if there is no arc connecting vk directly from v~, this implies that 
it is practically impossible to learn vk from v~ directly. Therefore, the connectivity function Ct does not re- 
quire symmetry and transitivity. 

5.3. Generalized current domain 

As mentioned before, there exists a set of goal functions that must be achieved for the satisfactory so- 
lution of a decision problem E. Goal functions can be measured by finite elementary criteria, 
{Vl,V2, V3,...,vn} (n is the number of criteria). The ideal values of criteria are denoted by 
q* = {q~, q~, q~, . . . ,  q*}. In parallel with goal setting, goal state evaluation is constantly being performed 
in the brain. For the external stimuli, we continuously investigate, measure and attempt to detect any 
and all current deviations from ideal goal states. This process is called state evaluation. The actual values 
of criteria are denoted by q = {q l, q2, q3 , . . . ,  qn }. Goal setting and state evaluation are dynamic, interactive 
processes that are affected by physiological forces, self-suggestion, external information forces, current 
memory and information-processing capacity (Yu, 1990). 

Each stimulus is related to a set of goal functions. When there is an unfavorable deviation of the per- 
ceived value from the ideal, each goal function will produce a corresponding level of charge. Take the dy- 
namic route choice problem as example: when users receive information of the real-time traffic jam on the 
road ahead, their expected travel time and delay will increase if they proceed straight ahead. Furthermore, 
their driving speed will also be slowed. Thus, the charge of travel time, delay, and driving speed directly 
related to the real-time information will, as well, increase. The totality of the charge by all goal functions 
is called the charge structure. The charge structure can change dynamically since, at any point in time, our 
attention will be drawn to the event that has the greatest influence on charge structure. The difference be- 
tween the ideal and actual values of each criterion is calculated by [Iq* - q[[, which also measures the level of 
charge. We can summarize the above discussion with Definition 5.1. 

Definition 5.1. For any criterion vi in HD, q* and qi respectively denote the ideal and actual values of criteria 
vi. Furthermore, the level of charge, denoted by Qi, of vi is measured by the difference between ideal and 
actual values 

Q, = Ilq* -q~ll vi E [1,n], (11) 

where 11 II is a meaning norm such that 0 ~< Qi ~< 1 for all Yi E HD. 

If  St \ HD ~ ~b, it indicates that the stimulus St is unknown or only partially known to our existing HD. 
This situation implies that St contains some elementary criteria outside of the existing discussion universe 
(HD) for the decision problem E. It also implies that St cannot be completely contained in any or-core, no 
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matter how small ~ is. For example, if road users do not have enough experience about ramp control of the 
highway, they would not be sure whether everything goes well as they enter the highway. Additionally, if 
users have no information about the traffic situation of other substitute path, it is very difficult for them to 
conduct route choice decision-making. Furthermore, even if the decision has been made, the result, such as 
total travel time, would be not quite desirable. In this case, the decision problem E will be challenging to the 
decision-maker. However, we notice that what is unknown to one person may possibly be known to some- 
one else; that is, what is a challenging problem to one person may be a fuzzy or routine problem to another. 
Even so, E is still a challenging problem to all decision-makers. Generally speaking, challenging problems 
are very difficult to solve unless decision-makers can expand and/or restructure their HD. For simplicity, we 
will not discuss the case of St \ HD # q~. 

On the other hand, even though what is not in HD may be more important than what is in it, people 
usually ignore those criteria belonging to St \ HD. This observation can be attributed to the property of 
habitual domains that is an indication of the way that people process arriving stimuli. In this context of 
arriving stimuli, absorption is defined as the possibility that information input will be accepted. A sugges- 
tion is more easily accepted if it strikes a consonance in the receiver's memory; therefore, the degree of ab- 
sorption will depend on a decision-maker's memory, goal setting, state evaluation, charge structure, and 
charge release. For example, sales advertisements about houses would often publicize such public facilities 
as swimming pool, exercise facilities, etc. However, this kind of information would be ignored by those who 
cannot swim or hate sports. Generally speaking, people will actively or progressively learn to accept those 
ideas, concepts and experiences which can help them reach their goals; that is, they accept the stimuli which 
are related to individual goal functions. If  the external information is not related to a decision-maker's goal 
setting, charge structure and charge release, it is likely to be rejected. Therefore, it is not necessary to con- 
sider criteria outside of the existing discussion universe (HD) of decision problem E. 

Given an external stimulus St at time t (or stage t) of the problem E, we assume that the arriving stimulus 
can be broken down into several elementary criteria belonging to HD; that is, St c_ HD. The corresponding 
level of  charge for each criterion vi is denoted by Qi. For ~ E [0, 1], the a-core of  St at time t (or stage t), 
denoted by S t,  is defined as the collection of criteria that can be activated with a level of charge larger than 
or equal to ~. That is, 

S t = {Vi E S in  HD I Qi ~>z~}. (12) 

S t is the actual domain in a narrow sense at the time t (or stage t) concerned with an external stimulus St. 
Before illustrating the actual domain in a broad sense and the reachable domain, we define the connectivity 
from the existing domain to a particular criterion. Let us first give the following axiomatic definition: 

Definition 5.2. The mapping cgt : a(HD) x HD ~ Ctt is called a connectivity function of criteria with sub- 
sets of HD at time t (or stage t) if it satisfies the following axioms: 
(i) cg/> 0 (non-negativity); 
(ii) c~t(Aj, vi) = 1,Vv, E Aj; 
(iii) cgt(Aj, vi) <~ cgt(Ak, vi), Vvi E HD; if Aj C_ Ak (monotonicity), where a(HD) is a a-algebra generated by 

HD. 
As mentioned before, S t is the existing domain which can represent a criterion set activated by an ex- 

ternal stimulus at time t (or stage t) for the problem E; that is, S~' is the collection of criteria that can be 
activated with a level of charge larger than or equal to ~. Now, since c~, is a connectivity function, we 
can denote ¢gt(St, vi) as the connectivity of a criterion vi with the existing domain (the actual domain in 
a narrow sense) S~'. When there is no confusion, we treat a connectivity function of criteria with the actual 
domain as a connectivity function. That is, a function Ct(S~', vi) defined on a(HD) x HD at time t (or stage 
t) is called a connectivity function. The proof of  Proposition 5.3 demonstrates that ~g,(St, v;) E [0, 1]. 
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Proposition 5.3. (~t(St, vi) is bounded by 1. 

Proof. For any V i in H D  and any S t in a(HD), we can obtain the following inequality according to the 
monotonicity axiom of (gt and the condition that S t C_ St c_ HD, 

(~2t(at, Yt) ~ (~2,(St, v,) ~ (gt(HD, v;) -- 1. []  

As for the relationship between the connectivity function of  a criterion to a criterion and that of a do- 
main to a criterion, the latter can be considered to be an extension of  the former. To make this concept 
clearer, let us give Proposition 5.4. 

Proposition 5.4. (1) Let H D  be finite and C t be the connectivity index with C t (v~, v j) the strongest connectivity 
from criteria vi to vj. Given an external stimulus St at time t (or stage t), the ~-core of  St is denoted by S t, where 
S t E a(HD). For any criterion vj in HD, tf we define the connectivity o f  vj with the existing domain S t as 

(gt(St~,vj) = max{Ct(vi,  vj) [ vi E St~}, (13) 

then (gt satisfies the axioms as defined in Definition 5.2. 
(2) The power set o f  l iD  is indicated by P(HD).  Assume that a(HD) = P(HD).  Given that (gt is a con- 

nectivity function o f  criteria with the existing domain as defined in Definition 5.2 then 

C t (vi, vj) = ~t({v,}, vj) (14) 

is the connectivity index starting from v, arriving at vj as described in Remark 5.1. 

Proof. (1) According to Proposition 5.2, we know that the connectivity index C t is given by 

C~(v,, vj) + max{min{Ct(x,y)l[ (x,y) E Path(v,, b)}  I Path(vi, vj)}, 

where Ct(vi, vj) is the connectivity from v; to vj. 
(i) For any vi E S t and any vj c HD, the non-negativity of ~, is implied by the relationship 

~,(St,  ~j) >1 C;(v,, vj) >1 C,(v,, ~j) >>. O. 

(ii) If  vj E S t, then 

vj) >1 C;(v j ,  vj) = 

By Proposition 5.1, we know 
we can see that (~,({$7, b )  = 

(iii) Let S t E a(HD); if S t 

max{Ct(v,, vj)lvi E St} 

. 

that (~t(St, v j )  ~ 1. By combining this relationship with the above condition, 
1. 
c_ St fl, then Vvj E H D  we have the following inequalities: 

<~ max{  Ct (vi, vj)[vi E Stfl},cgt(St, vj) <~ (rt, (Sflt ,vj). 

It is obvious that there exists monotonicity of  (gt. Thus (1) is proved. 
(2) (i) By the non-negativity of  Ct and Proposition 5.3. we see that 0 <~ ~gt({vi}, vj) ~< 1 corresponding 

o C;(v),,  vs) <. 1. 
(ii) If v, = v2, then vj E {vi} and Ct(vi, vj) = (gt({vi}, vy) = 1. Consequently, by (i) and (ii), Ct(v,, vj) sat- 

isfies the following axioms: (i) Ct(v, , vj) E [0, 1]; (ii) Ct(vi, vj) = 1 if v, = b- This completes the proof. []  

Remark 5.2. For any vi c S t and any vj c HD, Path*(vi, Vg) is the optimal path from vi to vj such that 
(gt(S t, vi) is a maximum. In other words, Path* (vi, vj) is the strongest path because its connectivity index is 
the maximal of  all possible paths. 
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According to the analogy and association hypothesis, we can conclude that new things can be more easily 
learned if they are similar to some things that are already known. Because people associate arriving stimuli 
with preexisting memory, arriving stimuli tend to be initially treated as either positive or negative. If  the ar- 
riving stimulus is perceived to be relevant to a decision-makers goal function, then it is more carefully ex- 
amined and composed to fit preexisting codes. Also, we may say that if a newly arriving stimulus is very 
similar to a preexisting code, it will be quickly processed in a positive or favorable way. Conversely, a stim- 
ulus that is perceived as irrelevant or quite dissimilar to preexisting codes will be filtered or ignored. It should 
be noted that frequently repeated events will have a stronger influence on analogy and association. However, 
those events preexisting in weak codes, which are stored in remote areas of the brain, will have little impact 
on the analogy and association process. Therefore, we must first specify the influential domain from the pre- 
existing memory through external stimuli. We can restrict the neighborhood of the actual domain in the nar- 
row sense to be the reachable domain. In order to figure out the neighborhood of the actual domain in this 
case, we facilitate our discussion by using the connectivity of criteria with the existing domain. 

Definition 5.3. Given a connectivity network G(HD, Ct) and an external stimulus St at time t (or stage t), the 
a-core of St is denoted by S 7 and cgt is a connectivity function of the criteria with the existing domain. Let 
2 HD denote the collection of all non-empty compact subsets of HD. The e-neighborhood of  S~' for S t E 2 HD 

is defined by Nt(St, e) 

Nt(St, e ) = {vj E H D \  S, I 3vi ~ St ,~  ~,(ST, v j) >1 e}, VS 7 ~ 2 riD. (15) 

S 7 can be considered as the actual domain that contains the set of criteria that are actually activated. 
Moreover, Nt(S t, e) represents the reachable domain that contains the collection of criteria that are reach- 
able from the existing domain through external stimuli. Therefore, St ~ tO N,, (S~', e) is the actual domain in a 
broad sense, and we call it the generalized current domain. 

When external stimuli are repeated, the corresponding circuit patterns will be reinforced and strength- 
ened. Furthermore, the stronger the circuit patterns become, the more easily the corresponding circuit pat- 
terns are retrieved in the learning processes. Therefore, it seems reasonable to assume that the connection 
between a pair of criteria in the actual domain and its e-neighborhood will be reinforced as the learning 
process progresses. In other words, the connectivity between pairs of criteria in the generalized current do- 
main will increase. Hence, the connectivity function Ct must be updated after each learning iteration. 

The uncertainty that arises from human thought processes and the randomness associated with exper- 
iments is often confused by social scientists (Kaufmann and Gupta, 1991). Some of  the data obtained in this 
manner are hybrid; that is, their components are not homogeneous, but a blend of precise and fuzzy infor- 
mation. Furthermore, a fuzzy relation, such as the connectivity function, is not a measurement. That is, the 
connectivity function is a subjective valuation assigned by one or more human operators. To simplify mat- 
ters, we suppose that Ct(vi, vj) is a continuous random variable, uniformly distributed within the interval 

[(C(vi, vj)) 1/fl, (C(vi ,  !)j))fl] , 

where -C(vi, D) is the mean of Ct(vi, vj). fl is called the determinate index and its value is in the unit interval 
[0,1]. fl characterizes the degree of  certainty since the higher the fl value is the less change is performed by 
the connectivity function. That is, when fl approaches 1, the connectivity is rather stable. On the other 
hand, when fl approaches 0, we do not have sufficient evidence to point out the exact value of the connec- 
tivity function. Let U(0,1) represent a continuous random variable that is uniformly distributed over the 
interval [0,1]. From simple proportionality, we can write 

C,(vi, vj) = (C(vi, vj)) lifts- [(-C(vi, vj))fl-(-C(vi, 1Jj)) l/fl] U(O, 1). (1 6) 
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Thus, it is very simple to generate Ct(vi, vj) from a given U(0, 1) provided the lower bound and upper 
bound are known. In order to reflect the fact that the connectivity between each pair of criteria is enhanced 
through the learning processes, we define an index parameter It (vi, v j) for each pair (vi, v j) belonging to HD at 
time t (or stage t) and a concentration parameter 6 as follows. The initial values o f / f o r  pairs of criteria are set 
to zero. If vi is activated when vj is presented to the input stimuli, the value of I increases by 1. The concen- 
tration parameter, 6, represents the change in size of the definition domain, and 0 < 6 < 1. Consequently, the 
connectivity function is calculated within the adjustment interval 

[ ( C(vi, vj) + It(vi, vj)3)'/#, (C(vi, vj) + I,(vi, vj)6)# 1 

and now Ct(vi, vj) is given by 

Ct(vi, vj) = min{ 1, (C(vi, vj) + It(vi, vj)3)1/# + [(C(vi, vj) + It(vi, vj)6) # 

-(-C(vi, vj) + It(vi, vj)6)1/#] U(0,1)) .  (17) 

To avoid the condition where the connectivity exceeds 1, we utilize a "min" operator. That is, we use the 
index parameter, I, and the concentration parameter, 6, to indicate the reinforcement change of circuit pat- 
terns. 

6. Weight-assessing method with habitual domains 

6.1. Architecture 

The architecture of the weight-assessing method with habitual domains is shown in Fig. 1. All elements 
within the network are fully interconnected. 

The weight-assessing method with habitual domains is based on competitive learning. As we described 
above, the elementary criteria are the basic elements of our discussion universe. Each criterion has routes 
that connect it to the neighboring ideas. In the presence of external stimuli, some criteria can be "fired" and 
"lit up" sequentially through the learning processes, while others will remain "dark".  The external stimuli 
are registered and processed using the circuit patterns or sequences of circuit patterns in our discussion uni- 
verse. In other words, external stimuli are encoded as digraphs, routes or paths of lit ideas, and activation 
occurs when attention is paid. This in turn triggers the appropriate interconnecting arcs to fire or the ap- 
propriate criteria to discharge. Therefore, the output ideas of the digraph compete with each other and only 
some of them are activated or fired at any one time. Such being the case, our weight-assessing method is 
based on the concept of competitive learning. 

In the most general case, competitive learning belongs to unsupervised learning (Fausett, 1994). In un- 
supervised learning, the network is presented with a set of training patterns, but is not given a target 
answer for each input pattern. Thus, we can modify the weights of the network without specifying the 
desired output for any of the input patterns. 

In competitive learning, the output ideas of the network compete among themselves to be active (or 
fired). Competitive learning begins with a random arrangement of weights and gives all output ideas a 
chance to compete. It also limits the strength of the weights. Each criterion has a temporally fixed amount 
of weight. The weights are limited to values between 0 and 1; that is, 

n 

wt(vi) >1 0 for each vi, Z w t ( v i  ) = l, (18) 
i = 1  
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Fig. 1. Architecture of weight-assessing method with habitual domains. 

where wt(vi) is the weight of the criterion vi (competitive layer) from the input stimulus St. 
An internal mechanism creates a competition among the ideas for the right to respond to a given subset 

of input stimuli, so that only one output idea, or only one idea per group, is active (i.e., "on")  at a time. The 
idea that wins the competition is called the "winner-take-all" idea (Haykin, 1994). In this study, the criteria 
in the generalized current domain are chosen as the winners during the learning process. This is different 
from the traditional concept of winner-take-all because there is not necessarily only one criterion in the win- 
ner group when the competition is completed. This form of competition among a group of criteria is called 
generalized winner-take-all, and our weight-assessing method performs a generalized winner-take-all com- 
petition. 

Let S t denote the actual domain of all winning criteria, and its e-neighborhood (i.e., the reachable do- 
main) be Nt(S~, 5). The output signals of the generalized current domain are set equal to one; the output 
signals of all the criteria that lose the competition are set equal to zero. The output signal is also called 
the index parameter It. We use the winning set and its neighborhood to update the weights of the network. 
Then, we can form a new weight vector that is a linear combination of the old weight vector and the current 
input vector. Weight corrections are accumulated over an entire epoch of training patterns (i.e., batch up- 
dating). This updating procedure has a smoothing effect on the correction terms. The learning rule of the 
weight correction is thus 
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Wt+l (Vi) = Wt(~i) ÷ Awt (v t ) .  (19) 

We can define the adjustment factor r/~ for each criterion vi through the level of charge and the connec- 
tivity function. For each vi E Nt(S t, ~), vk is the precedent criterion of v~ so that 

C;(vk, vi) : max{Ct(vj ,  vi ) I vj E St} .  

The level of charge of vk is denoted by Qk. The adjustment factor r/i is computed by: 

Qi if vi E s~, 
~li = QkC~t(St, vi) if vi G Nt(S~,  e), 

0 otherwise. 
(20) 

Assume that the input stimulus contains a set of p vectors. Let ~1 be the average of all r/is during the 
particular learning iteration; then ~ is 

~p rti 
r/-- 7 = (21) 

P 

Using the average adjustment factor, we can obtain the change Awt(vi) 

Aw,(vi) = ~, x ~7 -w, (v i )  , (22) 

where it is the learning-rate parameter and its value is chosen by users. Note that the values of it '  s must be 
between 0 and 1. 

Remark 6.1. The learning rule of the weight correction, as described by (19)-(22), guarantees that the sum 
of the weights for all criteria in our discussion universe is always equal to one. 

Proof. For all criteria in our discussion universe HD at time t (or stage t), the sum of weight changes is equal 
to zero; that is, 

Z, Aw, (v i )  = × L, 

= ( t  × [ 1 - 1 ] = 0 .  (22) 

Thus, the sum of the weights for all criteria in HD at time t + 1 (or stage t + 1) is 

wt+l (vi) = y ~  wt(vi) + ~ Awt(vi) = 1 + 0 = 1. [] 
i i i 

We now want to discuss equilibrium states of the routine and mixed routine systems. From Proposi- 
tion 6.1, the weights of criteria clearly are only related to the level of charge and the connectivities with 
the existing domain in the equilibrium state. 

Proposition 6.1. For routine and mixed routine problems, the weight o f  criterion vi is only related to the level o f  
charge and the connectivity o f  vi with the existing domain in the equilibrium state. Moreover, ceteris paribus, 
the weight o f  vi is also f ixed and stable. 
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Proof. Let hk be the probability that stimulus Sk is presented on any trail and gk(Vi) be the probability that 
criterion v~ wins (i.e., is in the generalized current domain) when stimulus Sk is presented. We consider the 
case in which 

Awt(vi)hkgk(vi) = O, 
k 

that is, the case in which the average change in the weights is zero. We refer to such a state as the equilib- 
rium state (Rumelhart and McClelland, 1986). Thus, using the learning rule and averaging over all of the 
stimulus patterns, we have 

it Z ['--'~ hkgk(vi) -- ~t Z[wt(vi)hkgk(vi)] = 0, 
k [ j,Tj 

and thus 

 -  khkgk(vi) rl-- i 
wt(v i )  = E k h k g k ( v i  ) ----- 

The average adjustment factor for criterion vi is calculated using the charge and the connectivity func- 
tion, so the weight of vi is only related to the level of charge and the connectivity of vi in the existing do- 
main. Let us consider the situation in which the level of charge and the connectivity corresponding to the 
input stimuli remain stable. In this case, the average adjustment factor does not make significant changes; 
thus, the weight is a constant. Whenever the system is in the state in which, on average, the weights are not 
changing, we say that the system has reached an equilibrium state. When this happens, the system always 
responds the same way to a particular stimulus pattern. Note that the equilibrium state only holds for rou- 
tine and mixed routine problems. 

According to Yu (1990), a routine problem means that the needed idea set (i.e., the truly needed com- 
petence set) is well known, and the decision-maker has mastered the set. Because the needed idea set is well- 
known, ceteris paribus, the difference between the ideal and actual values of each decision criterion does 
not change. Furthermore, the decision-maker has acquired and mastered the truly needed set, so his con- 
nectivity network is quite stable. Since a mixed routine problem consists of a number of routine subprob- 
lems, the discussion concerned with mixed routine problem is similar. Therefore, the weights of criteria 
remain unchanged in response to any single stimulus in the equilibrium state in routine and mixed routine 
problem. [] 

From Proposition 6.1, we know that for routine and mixed routine problems, the weights of criteria are 
stable in the equilibrium state. However, it is possible that weights will be pushed out of equilibrium by an 
unfortunate sequence of stimuli. In this case, the system can move toward a new equilibrium state (or pos- 
sibly back to a previous one). 

For a fuzzy problem, the ideas, concepts and skills needed to successfully solve the decision problem are 
roughly, but not clearly, known. This implies that the decision-maker has not mastered the ideas and skills 
necessary for solving these problems (Yu, 1990). Such being the case, the connectivity network of the de- 
cision-maker does not reach a stable state. However, we can obtain a temporally fixed amount of weight 
through the algorithm introduced in Section 6.2 even though the weight does not remain stable throughout 
the decision-making process. 

The architecture and algorithm introduced in the next section for the connectivity network can be used 
in routine, mixed routine, and fuzzy problems. 
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6.2. Algorithm 

The algorithm given here is suitable for routine, mixed routine, or fuzzy problems. Note that weights for 
routine or mixed routine problems are rather stable, but weights for fuzzy problems are in a stable state 
only when there has been a convergence that satisfied the stopping rule. When the stopping condition is 
false, we cannot obtain the approximate amounts of weights. 

Step O. Initialize weights wt(vi) for each vi belonging to HD so that ~i"=l wt(vi) = 1. 
Initialize the continuous random variate, U(0, 1), that is uniformly distributed over the interval [0,1]. 
Initialize the index parameters It(vi, vj) = 0 for each pair (vi, vj) belonging to digraph G. 
Initialize the e-neighborhoods Nt(St, e) = ~b for all S t E 2 HD. 
Obtain the ideal values of criteria q*, the actual values of criteria q, and the initial mean connec- 
tivity matrix Ct -- [-fft(vi, vj)] for each pair (vi, vj) belonging to the digraph G through the ques- 
tionnaire survey. 
Set the concentration parameter 6, 0 < 6 < 1. 
Set the determinate index/3, 0 ~</3 ~< 1. 
Set the learning rate parameters i r  Set the threshold parameter ~, 0 ~< ~ ~< 1. 

Step 1. Compute the initial connectivity for each pair (vi, v i) belonging to digraph G. 

CI(Yi, Yj) ~ (-C(Yi, Yj))l/fl"~ [(-C(Yi, Yj)) f l -  (-C(Yi, Yj))l/fl]U(O, 1). 

Step 2. When the stopping condition is false, do steps 3-13. 
Step 3. For each stimulus vector St, do steps 4-9. 

Step 4. Specify the actual domain in the narrow sense, S~': 

S t = {Yi ~ St t~ HD I Qi >~ ~}, 

where Qi = IIv* -vi i i ,  vi  E [1,n]. 
Step 5. For each criterion v-i ~ HD \ S t,  compute the connectivity of v-i with the existing domain St: 

c~/(St, v-i) = max{Ct*(vi, vj) [ vi c St}, 

where Ct (vi , v i) = max{min{Ct(x,y)]  (x,y) E Path(vi, vj) }lPath(vi, v-i)}. 
Step 6. Find the e-neighborhood of S~': 

Nt(St, e) = {v-i C HD \ Stl3vi c S t, ~ cgt(St, vj) >~ e}, VSt ~ E 2 HD. 

Step 7. For each vi E S t, vj c Nt(S t, e), Path* (vi, v-i) is the optimal path from vi to v-i such that 
~gt(S t ,  vi) is a maximum. 
Update the index parameters for all criteria x,y within Path* (vi, v j): 

gnew) (x,y) = gold)(x,y) + 1. 

Step 8. For each vi, compute the adjustment factor qi: 

Qi if vi E S~, 
qi = Qk%(St,  vi) if vi ~ Nt(S t, E), 

0 otherwise. 

where vk is the precedent criterion of vi. 
Step 9. For  all vi, v-i E S t u Nt(St,  e), update the connectivity from vi to v/ 
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Ci new)" min(1,(c}°ld)(vi, I~new)(vi, vj)~)l/l~+[(c~°ld)(vi, vj)+l{neW)(vi, vj)~)l~ (~i, v j )  = vj) + 

Step 10. Let ~ be the average of all r/~s. 

_ ~ p  r/i 
r/i = 

P 

Step 11. Compute the weights wt+l (vi) for each criterion vi within HD at stage t + 1: 

w,+l (v,) = w,(v , )  + Awt(v,), 

whereAwt(v i ) : ' t x  [ ( ~ ) - w t ( v i ) ]  • 

Step 12. Update the learning rate. 
Step 13. Test for the stopping condition: 

Let Owt(vi) = Iw'+l (vi) - wt(vi)l 

If maxi Owt(vi) is smaller than a specified tolerance Vi E [1, n], then stop; otherwise, continue. 

6.3. Empirical study 

In this section, we will discuss an application that employs the weight-assessing method with habitual 
domains. In the following, we will introduce the background of the problem and the questionnaire content 
of our empirical study. 

In Taiwan, a great number of people use motorcycles as their primary commuting mode because of low 
car-ownership and low car-operating costs, comparatively small size, high mobility, and ease of operation. 
Take Taipei City, for instance: registered motorcycles amounted to 54% of all motor vehicles at the end of 
1995, and the percentage of growth has risen 10% in the last two years. Furthermore, such statistics do not 
account for the number of motorcycles coming from other cities, which has not yet been taken into account. 
The massive amount of mixed traffic flow created by motorcycles has had severe effects in urban areas. And 
it has also posed a serious threat to safety and driving in urban traffic, not to mention air and noise pol- 
lution as well as the high risk of damages resulting from the inferior stability and fragile structure of mo- 
torcycles. Therefore, how to promote public transportation in motorcycle users habitual domains becomes 
more and more important for traffic authorities. 

This empirical study is undertaken to test the applicability of our weight-assessing method through ques- 
tionnaires to motorcycle travelers in Taipei. We investigated the decision attributes as well as the grade of 
importance considered by motorcycle travelers during their mode choice process. It is possible to encourage 
motorcycle users to shift to public transit if the latter possesses those attributes. Such being the case, the 
traffic authorities can realize how to attract motorcycle travelers to use transit under the specific attribute 
stimulus. Therefore, the empirical results for motorcycle travelers will help to set up transportation market- 
ing strategies and corresponding policies favoring public transportation usage in the future. 

A two-stage approach was used for the empirical research of motorcycle users in Taipei. We first ob- 
tained the influential factors of mode choice for motorcycle users through the first stage questionnaire with 
open questions. Nine criteria of high membership are selected, which includes walking time (vl), waiting 
time (v2), in-vehicle time (v3), transfer time (V4) , accessibility (vs), travel c o s t  (v6)  , punctual arrival (V7) , 

difficulty of parking (v8), and degree of traffic jam (v9). Then the second stage questionnaire will be 
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subsequently conducted. The population is the people living in the administrative zones comprising Taipei 
City. We employ the stratified sampling, and the criterion of proportion allocation is according to the sub- 
population of each zone. A total of 160 questionnaires were sent out and 155 valid copies retrieved. 

The main content of investigation includes the connectivity between any two criteria. The connectivity 
means the degree of ease from one criterion to another by analogy and association. The mean value of the 
connectivity C(vi, v j) for all interviewees will be denoted as C(vi, v j), then we can construct the connectivity 
network. Because it is difficult to specify the ideal values of all criteria, we intend to use the tolerance value 
of each criterion instead of the ideal value. Furthermore, we use the difference between the tolerance and 
actual values of each criterion to specify the level of charge, and [0,1] is the range of the norm for the level of 
charge. When the actual value of a criterion is equal to or has exceeded the tolerance value, there is an un- 
favorable deviation of the perceived value from the goal; the corresponding level of charge then is 1. When 
the actual value of a criterion is smaller than tolerance value, the corresponding level of charge approxi- 
mates to 1 if the actual value is close to the tolerance value. The collection of criteria whose levels of charge 
have exceeded a threshold value is called the significant stimulus set. 

In view of the nine criteria obtained from the first stage investigation, we asked interviewees the toler- 
ance values of above criteria according to their commuting experiences. It is noted that accessibility is mea- 
sured by the distance between the destination and the place that their mode can reach. Furthermore, 
punctual arrival is expressed by the delay time, and difficulty of parking means the searching or waiting 
time for parking space. Then the tolerance values obtained will be compared to the actual values of each 
criterion so as to find out what criteria might create change to the charge structure of motorcycle users, and 
users attentions will be directed to those criteria. 

This study assumes that motorcycle travelers choice set includes all traffic modes. The mean values of 
criteria for each mode according to the past investigation data would be taken to be the actual values 
for the model (Chen et al., 1997). The in-vehicle time is found by taking the walking distance out of the 
average origin-to-destination distance, then dividing it by the speed of the mode. Additionally, the delay 
time in Taipei amounts to 41.2% of the travel time as found from the report of optimal control on the entire 
transportation system within Taipei City; thus, the delay time should be resolved by having such percentage 
multiplied by the in-vehicle time. And the travel cost of the train can be found based on the pricing struc- 
ture stipulated by the Taiwan Railway Administration. 

Now we use nine criteria and six input stimuli to present the following illustration. The input data in- 
clude the connectivity matrix of all criteria (C), the tolerable values of criteria (q*), and the actual values of 
criteria for each input stimulus (q). Suppose the learning rate (geometric decrease) is 

40 = 0.6, ~t+l =0.5~i, 

Step O. We obtain the values of, q*, and q through questionnaire survey. 

II Vl v2 ~3 v4 V5 V6 v7 v8 v9 

1 Walking Waiting time In-vehicle Transfer  Accessibility Travel cost punctual  Difficulty Degree of  
time time time arrival of  parking traffic j am 

vt 1.000 0.419 0.573 0.406 0.672 0.209 0.590 0.545 0.303 
v2 0.406 1.000 0.457 0.542 0.320 0.307 0.788 0.325 0.745 
v3 0.494 0.461 1.000 0.437 0.525 0.465 0.818 0.424 0.805 
v4 0.518 0.546 0.412 1.000 0.417 0.291 0.664 0.275 0.566 

= v5 0.708 0.406 0.527 0.432 1.000 0.401 0.420 0.301 0.265 
v6 0.234 0.385 0.510 0.293 0.417 1.000 0.252 0.302 0.394 
vv 0.721 0.750 0.786 0.609 0.287 0.318 1.000 0.581 0.789 
v8 0.491 0.203 0.446 0.225 0.274 0.255 0.610 1.000 0.558 
v9 0.259 0.553 0.680 0.462 0.297 0.332 0.725 0.544 1.000 
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The above table indicates the connectivity between criteria of  total samples, and the connectivity stands for 
the degree of  difficulty being associated from criterion I to criterion II. The connectivity from the in-vehicle 
time to punctual arrival ranks the highest (0.818), followed by from the in-vehicle time to traffic jam (0.805), 
from punctual arrival to traffic jam (0.789), and from the waiting time to punctual arrival (0.788). On the 
other hand, those of  lower connectivity are from the association of  the walking time to travel cost (0.209), 
and from difficulty of parking to the transfer time (0.225). 

Vl (min) v2 (min) v3 (min) v4 (min) v5 (m) v6 (NT$) V 7 (min) v8 (min) v9 (km/hr) 

q* = 12.60 14.89 34.78 16.17 803.04 45.23 14.23 4.33 24.87 

In terms of  the tolerance values of  each criterion, the tolerable walking time is 12.60 min, waiting time is 
14.89 min, in-vehicle time is 34.78 min, transfer time is 16.17 min, the distance between the destination and 
the place which the mode can reach would be 803.04 m, the tolerable travel cost is no more than 45.23 NT 
dollars, the delay time is no more than 14.23 min, and the speed of  the mode is no less than 24.87 km/h. The 
following table shows the actual values of  each criterion for each mode, including motorcycle, private ve- 
hicle, bus, train, taxi, and commuting bus. 

v~(rnin) v2(min) v3(min) v4(min) vs(m) v6(NT$) v7(min) vs(min) v9(km/hr) 

Motorcycle 2.46 - 34.25 - 113.53 0.67 14.11 1.30 14.10 
Private vehicle 3.24 - 43.90 - 149.53 2.32 18.09 7.90 11.00 
q = bus 11.38 10.48 37.73 8.50 525.23 1.70 15.54 - 12.80 
Train 11.30 6.46 14.95 16.10 521.50 2.04 3.76 - 32.30 
Taxi 0.69 3.69 43.90 - 31.85 14.21 18.09 - 11.00 
Commutingbus 7.02 8.66 43.90 - 324.00 1.26 18.09 - 11.00 

Suppose the intrinsic preference structure of  criteria is unknown; initialize the weight wt(vi) for each cri- 
terion vi to be 0.1111 and ~9=i wt (v i )=  1. 

V 1 V2 V3 1~4 •5 V6 1~7 V8 V9 

W = 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 

Set the concentration parameter 6 = 0.0001. 
Set the determinate index/3 = 0.5. 
Set the threshold parameter ot = 0.5. 
Initialize the learning rate: 

Go = 0.6. 

Suppose the threshold value for an e-neighborhood of  S~' is 

e = 0.7. 

Step 1. Compute the initial connectivity for each pair (vi, vj). 
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V I V2 113 V4 V5 V6 V7 V8 ~'~9 

vL 1.000 0.539 0.440 0.489 0.456 0.304 0.416 0.518 0.108 
v2 0.519 1.000 0.491 0.636 0.389 0.528 0.753 0.415 0.685 
v3 0.424 0.344 1.000 0.353 0.467 0.366 0.812 0.397 0.686 
v4 0.399 0.514 0.375 1.000 0.202 0.357 0.716 0.300 0.512 

Ct = v5 0.767 0.455 0.395 0.282 1.000 0.407 0.232 0.234 0.256 
v6 0.154 0.230 0.704 0.378 0.335 1.000 0.205 0.487 0.350 
v7 0.826 0.644 0.707 0.547 0.475 0.342 1.000 0.692 0.826 
v8 0.326 0.218 0.584 0.200 0.494 0.327 0.426 1.000 0.414 
v9 0.111 0.335 0.633 0.479 0.307 0.539 0.605 0.359 1.000 

Step 2. Because the stopping condition is false, we do steps 3-13. Let t = 1 represent the first iteration. 
Step 3. For the first stimulus vector, do steps 4-9. 

First v i V2 V3 V4 V5 V6 V7 ~'8 V9 

St = 2.46 - 34.25 - 113.53 0.67 14.11 1.30 14.10 

Step 4. Calculate the level of  charge Qi of  each vi. 

Vl V 2 V 3 V 4 V 5 V 6 V 7 V 8 V,,~ 

Qi - 0.80 0.00 0.02 0.00 0.86 0.99 0.01 0.70 0.43 

Specify the actual domain in the narrow sense, St: 

S 7 = {1 ,5 ,6 ,8}  

Step 5. Compute the connectivity of  vj with the existing domain St: 

V 1 ~'2 V3 Y4 V5 Y6 Y7 V8 ;'9 

v~ 1.000 0.539 0.539 0.539 0.494 0.539 0.539 0.539 0.539 
v2 0.753 1.000 0.707 0.636 0.494 0.539 0.753 0.692 0.753 
v3 0.812 0.644 1.000 0.636 0.494 0.539 0.812 0.692 0.812 
v4 0.716 0.644 0.707 1.000 0.494 0.539 0.716 0.692 0.716 

C7 = v5 0.767 0.539 0.539 0.539 1.000 0.539 0.539 0.539 0.539 
v6 0.704 0.644 0.704 0.636 0.494 1.000 0.704 0.692 0.704 
v7 0.826 0.644 0.707 0.636 0.494 0.539 1.000 0.692 0.826 
v~ 0.584 0.584 0.584 0.584 0.494 0.539 0.584 1.000 0.584 
v9 0.633 0.633 0.633 0.633 0.494 0.539 0.633 0.633 1.000 

C(v~, v,) HD\S~ 

0.539 0.539 0.539 - - 0.539 0.539 
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0.539 0.539 0.539 - - 0.539 
0.644 0.704 0.636 - - 0.704 

0.584 0.584 0.584 - - 0.584 

0.644 0.704 0.636 - - 0.704 

0.539 
0.704 

0.584 

0.704 

Step 6. F i n d  t h e  e - n e i g h b o r h o o d  o f  S~: 

Nt(St, e) = { 3 . 7 . 9 } .  

Step 7. U p d a t e  t h e  i n d e x  p a r a m e t e r s  f o r  a l l  c r i t e r i a  x , y  w i t h i n  Path* (vi, v j ) :  

Vl V2 V3 V4 V5 V6 V7 V8 V9 

V 1 . . . . . . . . .  

V 2 . . . . . . . . .  

v3 . . . . . .  2 - - 
~4 . . . . . . . . .  

}new) V5 . . . . . . . . .  

v6 - - 3 . . . . . .  
vv - - 1 . . . . .  l 
V 8 . . . . . . . . .  

V 9 . . . . . . . . .  

Step 8. Compute the adjustment factor r/i." 

V I V2 I~3 V4 ~5 V6 V7 V8 V9 

t / =  0.805 0 0.693 0 0.859 0.985 0.693 0.7 0.693 

Step 9. F o r  a l l  vi, vj E S t UNt(S~,e), u p d a t e  t h e  c o n n e c t i v i t y  f r o m  vi t o  v /  ( C o n t i n u e  u n t i l  o n e  e p o c h  o f  

t r a i n i n g  is  c o m p l e t e d ) .  

VI V2 V3 V4 ~5 V6 V7 ~8 V9 

vl 1.000 0.663 0.211 0.274 0.419 0.305 0.305 0.504 0.193 
v2 0.618 1.000 0.539 0.755 0.243 0.600 0.687 0.502 0.663 
v3 0.187 0.219 1.000 0.408 0.645 0.335 0.713 0.516 0.502 
v4 0.563 0.607 0.234 1.000 0.277 0.535 0.813 0.428 0.314 

C~neW)v5 0.682 0.623 0.570 0.498 1.000 0.605 0.386 0.294 0.068 
v6 0.097 0.225 0.584 0.235 0.145 1.000 0.221 0.499 0.394 
v7 0.903 0.723 0.832 0.599 0.452 0.338 1.000 0.786 0.710 
v8 0.131 0.099 0.460 0.304 0.604 0.363 0.586 1.000 0.563 
v9 0.069 0.427 0.415 0.661 0.204 0.733 0.530 0.271 1.000 

Step 10. C a l c u l a t e  t h e  a v e r a g e  q-S o f  a l l  r/Is. 
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Vl v2 v3 V4 V5 v6 V7 V8 v9 

711 0.80 0.00 0.69 0.00 0.86 0.99 0.69 0.70 0.69 
72 0.74 0.00 0.00 0.00 0.81 0.95 0.00 0.82 0.56 
73 0.69 0.69 0.71 0.69 0.69 0.96 0.69 0.69 0.69 
74 0.68 0.57 0.57 0.50 0.00 0.95 0.74 0.65 0.42 
75 0.95 0.75 0.57 0.64 0.96 0.69 0.57 0.57 0.56 
7'/6 0.72 0.00 0.72 0.00 0.60 0.97 0.72 0.46 0.56 
~// 0.72 0.00 0.72 0.00 0.60 0.97 0.72 0.46 0.56 

Step 11. Compute the weights wt+l (vi) for each criterion v~ at stage t + 1: 

Vl V2 V3 V4 V5 V6 V7 V8 V9 

W~(Vi) 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 
~// /) '~i~ 0.1435 0.0630 0.1023 0.0576 0.1229 0.1727 0.1068 0.1220 0.1092 
Awt(v,) 0.0194 -0.0288 -0.0053 -0.0321 0.0071 0.0370 -0.0026 0.0066 -0.0012 
wt+l(vi) 0.1305 0.0823 0.1058 0.0790 0.1182 0.1481 0.1085 0.1177 0.1099 

Step 12. Update the learning rate. 

~t+l  = ~i )< 0 . 5  = 0 . 1 .  

Step 13. Test for the stopping condition: 

v I v2 V3 V4 V5 V6 V7 v8 v9 

wt(vi) O.1111 O . l l l l  0.1111 0.1111 O.1111 0.1111 O.1111 O . l l l l  O.1111 
wt+l(vi) 0.1305 0.0823 0.1058 0.0790 0.1182 0.1481 0.1085 0.1177 0.1099 
cOwt(vi) 0.1746 0.2592 0.0477 0.2889 0.0639 0.3330 0.0234 0.0594 0.0108 

if m a x  Owt(v i )  = 0.3330 > 0.01, then continue. 
Modifying the adjustment procedure for the learning rate over seven iterations (epochs) gives the 
following results: 

Vl V2 V3 V4 •5 V6 V7 V8 V 9 

wt(vi) 0.1305 0.0797 0.1105 0,0753 0.1196 0.1706 0.1124 0.1015 0.0998 
wt+l(vi) 0.1306 0.0794 0.1104 0.0750 0.1195 0.1707 0.1129 O.lOl4 O.lO00 
O~t(Vt) 0.0008 0.0038 0.0009 0.0040 0.0008 0.0006 0.0044 0.0010 0.0020 

if max Owt(vi) = 0.0044 < 0.01, then stop. 
This gives th~ weight vector (Iteration 10): 

Vl ~2 v3 ~4 v5 ~6 v7 V8 v9 

w = 0.1306 0.0794 0.1104 0.0750 0.1195 0.1707 0.1129 0.1014 0.1000 
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Among the nine evaluation criteria, the most important criterion in the motorcycle drivers mind is the 
travel cost (v6) and its weight is 0.1707; the second is walking time (Vl) with weight 0.1306. The criterion of 
least importance is the transfer time (v4) and its weight is 0.0750; the next is the waiting time (v2) with 
weight 0.0794. 

In actual practice, the purpose of the transportation authorities is to attract motorcycle travelers to use 
public transit. After finding out the major criteria considered by motorcycle travelers, we can promote the 
criteria in which public transportation performs better than motorcycle. On the other hand, transportation 
authorities should improve public transit in those criteria with worse performance than motorcycle or em- 
ploy relevant policy to place constraints on motorcycle. In a word, if motorcycle users cantake into account 
those criteria with better performance in transit than motorcycles, it is possible to persuade them to switch 
their mode to transit. 

As for the values of parameters ~, r, 6, ~, and e, they are obtained by the subjective judgment of re- 
searchers and, as well, according to the needs of the authorities. For those who employ motorcycle as 
their commuter mode, habitual decision exists in their mode choice behavior (Chen et al., 1997). Due 
to the fact that motorcycle users mode choice is a routine or mixed routine problem, the weights of cri- 
teria are rather stable. Such being the case, we will devise the specification principles of parameter values. 
Also, the measurement of the ups and downs for parameter designation depends primarily on the effect 
of convergence on the network. For routine and mixed routine problems, the determination of parameter 
should avoid the oscillation of weight values or divergence of the network resulting from over-revision 
during the learning process of the network. As a result, reasonable parameter determination should per- 
form desirable convergence within the value range and acceptable sensitivity so as to enhance the efficien- 
cy of network. It is suggested that we use simulation data or partial empirical data to put into the 
network as the test illustration. According to the experiment experience, we can determine more favor- 
able ranges of parameter values and obtain desirable convergence within such range for the network, 
which can be offered as reference for future empirical application. 

Before the application of weight-assessing method in this study, we conducted the sensitivity analysis of 
the initial weight with the simulation data. Regardless of initial values of criterion weights, it is found that 
there would not be much difference after several learning iterations. Since weight assessing is low sensitive 
to the initial weights, we have assumed that the initial weight value of each criterion is the same during the 
empirical study. It is further suggested that subsequent study can investigate the intrinsic preference struc- 
ture of each criterion so as to learn about the initial values of weights. 

7. Conclusion 

Weights of criteria are the deciding factors in decision-making, but from a behavioral perspective, tra- 
ditional weighting methods take into account too few factors to deal with them effectively. Based on a mod- 
el of behavior mechanism and the theory of habitual domains, we use connectivities between criteria to 
establish a network structure. We define a fuzzy directed graph using the concept of connectivity, and call 
it the connectivity network. We then identify the neighborhood of the fired criteria during the stimulus-re- 
sponse process, and we specify the actual domain in a broad sense as the generalized current domain. Our 
model treats decision-making as a dynamically adjusting process from the ideal state to the actual state. We 
develop the new weight-assessing method using the theory of habitual domains, which is based on compet- 
itive learning. Our assessing method performs a generalized winner-take-all competition. We prove that the 
weight is only related to the level of charge and the connectivity of the criterion with the existing domain in 
the equilibrium state for routine and mixed routine problems. Moreover, ceteris paribus, the weight also 
has a stable fixed value. However, for fuzzy problems, the weight does not remain stable during the whole 
decision-making process. The algorithm presented is suitable for routine, mixed routine, or fuzzy problems. 



G.-H. Tzeng et al. I European Journal of Operational Research 110 (1998) 342-367 367 

Finally, we have studied motorcycle users' mode-choice behavior in Taipei City through questionnaires 
in order to show the applicability of the weight-assessing method with habitual domains. From the analysis 
results of the empirical study, it is found that the most important criteria for motorcycle travelers are the 
travel cost and the walking time, while the criteria with less importance are the transfer time and the waiting 
time. The weight-assessing method being put forward in this study, aside from being applied to decision- 
making problem, can help describe the consumption and choice behaviors. Furthermore, it can be also used 
in new product design, marketing management, pricing and market segmentation. To sum up, our weight- 
assessing method, in comparison with other weight methods, can help researchers to approximate human 
thinking process more accurately. Furthermore, its implementation procedures are feasible in practice. 
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