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Abstract

The generalized stability factor of a general resonator was obtained from its iterative map based on the linear stability
Ž .analysis. Since a physical system tends to stay with high stability, the preferred resonator for Kerr-lens mode-locking KLM

is determined by the relative stability between KLM and CW operations. With this criterion the preferable KLM regions
agree with the previous experimental self-starting regions when the Kerr medium is located around the center of the
resonator. q 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

In recent years, an approach borrowed from the nonlin-
ear dynamics has been used to study the dynamics of laser

w xresonators 1–3 . By constructing the iterative maps from
the beam parameters, the researchers found that the dy-
namics of the beam parameters have intrinsically compli-
cated behaviors obtained by the bare resonators without

w xinvoking the effect of the laser medium 1,2 . In some
special resonators the dynamics is very sensitive to nonlin-

w xear effect in the geometrically stable region 2 . This
approach offers a useful tool to discuss the dynamics of
the resonators; in particular, an optical resonator attracts
attention on its nonlinearly physical properties.

Ž .In a Kerr-lens mode-locking KLM resonator, which is
a well-known nonlinear resonator for femtosecond pulse
generation, the self-focusing effect within a Kerr medium

w xmodifies the cavity mode profile 4,5 . This is described as
Ž .a self-amplitude modulation SAM resulting from either

decreasing loss through an internal aperture as increasing
Ž . w xthe KLM intensity referred to as hard aperturing 6 or
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increasing gain by properly adjusting the overlap of the
Žcavity and pump mode profiles referred to as soft apertur-

. w xing 7,8 . Although it was believed that the KLM Ti:sap-
phire lasers could not start without initial perturbation
because of too low nonlinear SAM, several groups had
reported self-starting KLM Ti:sapphire lasers without per-

w xturbation 6–8 . The self-starting KLM lasers can be
w xachieved by a carefully analytical cavity design 9,10 to

optimize dynamic loss modulation for hard aperturing or
dynamic gain modulation for soft aperturing. Therefore,
the KLM laser is very sensitive to its geometrical structure
of resonator. From this characteristic, the iterative map
derived from the beam parameters of cavity configuration
is suitable for studying the dynamic stability of KLM
resonator.

w xRecently, Hnilo 3 used 4=4 time–space matrix and
gain–saturation equation to construct an iterative map on
the KLM laser. The map has at least two fixed points
corresponding to CW operation and a transform-limited
ultrashort pulse. The self-mode-locking region of stable
pulse operation was obtained from all the eigenvalues of
the maps having moduli smaller than one, but in this
region CW operation was also stable. Therefore, he was
not able to verify whether a system prefers to operate on
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the basin of the fixed point corresponding to the pulse
operation. Here, we present a new method which is sim-
pler and more practical in discussing this problem. Be-
cause the Kerr parameter, the beam power over the critical

w xpower of self-trapping 11 , can be used to distinguish the
laser resonators operating at KLM or CW in the spatial

w xdomain 9–12 , we simplify the map to two-dimensions
corresponding to curvature and spot size. On the basis of
the nonlinear dynamics, the eigenvalue of the map repre-
sents the variant rate of the dynamic system against a
small perturbation. Comparing the eigenvalues between
KLM and CW operations, we can define the relative
stability and obtain the preferred configurations for KLM
resonators. We found that the preferable KLM regions
agree with that of the previous experiment self-starting

w xregions 6 when the Kerr medium is located around the
center of the resonator, even though the maps are con-
structed from the two-dimensional matrix only.

2. Theory

Now we consider a dynamic system, evolving with an
n-dimensional state vector y, governed by

ysF y ;k , ygR n, 1Ž . Ž .˙
where k is the dynamical parameter. Using the linear
stability analysis, the time evolution of a small perturba-
tion on the state vector, usd y, at the fixed point can be

w xwritten as 13

2< <us D F y ;k uqO u , 2Ž . Ž .˙ Ž .y

where D F is the derivative of F to state vector y andy
Ž < < 2. nO u denotes the order of norm of u on R to the

second power. As a result, the dynamic stability at the
Ž .fixed point is simply determined by solving Eq. 2 . This is

equivalent to calculate the eigenvalues of the Jacobian
matrix at the fixed point for a system governed by an
iterative map. The system is dynamically stable when all
the moduli of eigenvalues are less than unity and it is
unstable if at least one of them is greater than one.
Therefore, the stability of the system determined by the
dynamic stability of the map is governed by the largest
modulus of the eigenvalues. The largest modulus of the
eigenvalues, presented as x , will be focused on and
defined as the stability factor of the dynamic system in the

Ž .following discussion. When the dynamic system F y;k is
subjected to a small increment of dynamical parameter
from k to kqd k, the time evolution of small perturbation
on the state vector becomes

E D F y ;kŽ .y
us D F y ;k uqŽ .˙ y ½ E k

E D F y ;k E yŽ .y i 2< <q d k uqO u . 3Ž .Ž .Ý 5E y E kii

Similarly, the stability of the system with dynamical pa-
Ž .rameter kqd k is determined by solving Eq. 3 for the

field or calculating equivalently the eigenvalues of the
Jacobian matrix for the map at the fixed point. The former

Ž .term in the brace of Eq. 3 , corresponding to the partial
derivative of the stability factor with respect to k at the
fixed point, is attributed to adding an external change to
the system from increment of k. The latter one corre-
sponds to the system response to the stability factor, due to
the variation of the fixed point against increment of k.
These two influences will be discussed later by numerical
simulation in Section 3.

Moreover, it is worth to note that x represents the
Ž .convergent or divergent rate of the system against a

small perturbation. If the value of x is smaller, the mode
is more stable. Thus, the relative stability between the
systems with a small successive increment of k can be
defined by

dx x kqd k yx kŽ . Ž .
g k ' s . 4Ž . Ž .

d k d k

The dynamic system tends to stay at the lower stability
Ž .factor, so g k -0 represents more stable with increment

of k. We will use this concept to deal with the KLM laser
with Kerr parameter as a dynamical parameter in the
following discussion.

In this paper, a four-mirror KLM laser system, shown
in Fig. 1, is used to discuss the stability of the KLM
resonator. The iterative map for the resonator configuration
is derived from propagating the complex beam parameter
q in the cavity. The q-parameter is represented as 1rqs

Ž .21rRy ilr p w , where R is the radius of curvature, w
is the spot size and l is the wavelength of the cavity
beam. By adopting the transfer matrix of the q-parameter

w xpropagating across the Kerr medium 11 , we can obtain all
matrices for Gaussian beam across all optical components.

Fig. 1. Four-mirror KLM laser standing-wave resonator. A Kerr
medium having length L is placed between curved mirrors M2

and M with high reflection. M is the output coupler and M are3 1 4

flat mirrors with high reflection.
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Then the iterative map is easily derived from ABCD law
w x14 . Assuming that

A B
C D

is the round-trip transfer matrix and the reference plane is
chosen to be just after the beam having left the end mirrors
M . By applying the ABCD law, we can relate the q-1

Ž .parameter of the nq1 th round-trip to the nth one as

y1
1 l° ¶

CqD y i 2ž /R p wn n~ •R s Re 5Ž .nq1 1 l
AqB y i¢ ß2ž /R p wn n

and

y1r2
1 l° ¶

CqD y i 2ž /p R p wn n~ •w s y Im , 6Ž .nq1 1 ll
AqB y i¢ ß2ž /R p wn n

where Re and Im represent the real and imaginary parts of
a complex number. Then we obtained the two-dimensional
iterative map, which time interval is equal to the round-trip
time of the resonator. In this system, the fixed point, R ,0

w , of the map is the self-consistent solution of the0
w xgeometrical resonator, i.e., the steady-state solution 9,10 .

Thus calculating the stability factor of the map at the fixed
point is equivalent to determining the dynamic stability of
laser cavity.

Solving the eigenvalues of the Jacobian matrix at the
fixed point on the map, we get the stability factor

y12 2
B B l B B lr i i r

xs A q q q A q y ,r i2 2ž / ž /ž /R Rp w p w0 00 0

7Ž .

where the subscripts r and i represent the real and imagi-
nary part of the elements in the round-trip transfer matrix.
When all optical components of resonator for Gaussian
beam transformations are represented as the first-order
optical transfer matrices, the above result is the same as

w xthe one in Ref. 15 , except that the stability factor was
y1r2 w xdefined as x . The method in Ref. 15 considered only

the variation of q-parameter under a small perturbation,
i.e., a one-dimension map is considered. Since a first-order
optical transfer system belongs to a linear transfer system,
the variation of complex q-parameter is equal to the
combination of the variation of the q-parameter’s real and
imaginary parts. It is expected that the stability factor
derived from our method is the same as the result of Ref.
w x15 . If the Gaussian beam transformation of an optical
component cannot be simply represented as a transfer
matrix, the variations concerned with real and imaginary

parts of q-parameter are usually different. For example,
w xone may use the renormalized q-parameter 12 to study

the propagation of q-parameter across Kerr medium in
KLM laser. It is more convenient and easier to handle such
problem by separating the real and imaginary parts of

w xq-parameter than the method in Ref. 15 . Although the
transformation of q-parameter cannot be directly governed
by ABCD law in the renormalized q-parameter method,
the stability factor can also be obtained from the iterative
map derived from the variable relationship between before
and after one round-trip. In addition, if more effects such
as time domain and gain are considered, the stability
factors can be obtained from the maps with higher dimen-
sion. For sake of simplifying the calculation and obtaining
analytical results, we just discuss the dynamic properties
by the matrix method with ABCD law.

When the ABCD law is used and all optical compo-
nents are represented as the first-order real transfer matri-
ces, we have proved that the dynamical behavior of the
map is equivalent to the behavior of the simple harmonic
oscillation in Appendix A. The iterative map belongs to a
Hamiltonian system. Furthermore, on considering the loss,
the loss optical component is usually represented as the
transfer matrix having the complex elements. The dynami-
cal behavior becomes a damping oscillation and the imagi-
nary part of the matrix element corresponds to the damp-
ing parameter, however, it is still governed by its Hamilto-

w xnian 2 . In fact, the real system always has loss such as
the mirror having finite extend. A Gaussian function is
usually used to taper the mirror with finite extend as a loss

w xcomponent 16 and the taper constant will correspond to
the damping parameter. When the loss is included, the
stability factor stands for the converge rate of the system
against perturbation. Under the same damping parameter,
the faster converge rate with the smaller stability factor
implies the more stable of the system between neighbor
dynamical parameter. Thus, the stability factor can be used
to determine the relative stability.

Based on the previous discussion, the system with the
variation of the Kerr effect is still equivalent to the simple
harmonic oscillation and just has different focusing strength
for different K. Whether this ‘oscillator’ prefers to operate

Ž . Ž .at the CW operation Ks0 or KLM operation K)0 is
determined by the relative stability

dx
g s . 8Ž .0

dK Ks0

If g -0, KLM operation has faster convergence rate0

against perturbation than CW one under the same damping
parameter. In other words, the KLM operation is more
stable than CW one in such resonator structure. We will
use the criterion, g -0, to determine the resonator for0

preferable KLM operation. It is worth to note that the map
has only one fixed point associated with the steady-state
solution for a fixed K. This fixed point stands for CW
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Žoperation as Ks0 and KLM operation as K)0 again,
. w xK just stands for the beam power of KLM 11 . Dis-

cussing the stability neighbor Ks0 is capable to deter-
mine the tendency about the resonator preferrence toward
KLM or CW operation.

3. Numerical results

For comparing the theoretical results with the experi-
w xmental data 6 , our studies focused on the symmetrically

hard aperturing KLM resonator. The resonator’s parame-
w xters, shown in Fig. 1, are the same as in Ref. 6 . In the

symmetric resonator the equal arms d and d are 8501 2

mm, the radii of curvature on the curved mirrors M and2

M are both 100 mm, and the Brewster-cut Ti:sapphire rod3

is Ls20 mm. Considering the astigmatism compensation
of Brewster-cut about the rod, the curved mirrors are tilted
by us14.58. The separation of the curved mirrors, z, and
the distance, x, between the curved mirror M and the rod2

endface I are the adjustable variables. Moreover, we con-
sidered the resonator as two orthogonal astigmatic optical
systems corresponding to the tangential and sagittal planes,
then we will construct the iterative maps for the corre-
sponding planes. In a hard aperturing KLM laser, one
normally inserts a slit near M to constrain the tangential1

spot size. Thus, the map of tangential plane determines the
stability of the resonator from calculating the eigenvalues
of the map’s Jacobian matrix at the fixed point. The hard

w xaperturing with d-0 6 , d denoting the small signal
relative spot size variation, represents that the system has
the capability to sustain the KLM operation. Of course, the
system also has the capability to sustain the CW operation
due to the resonator satisfying geometrically stable condi-
tion. Whether the resonator prefers the KLM operation is
further determined by g of tangential plane.0

From the discussion in Section 2, the dynamical behav-
ior of the system is governed by its Hamiltonian and the
loss associates with the damping effect. The preferable
operation, which is our main concern in this paper, will not
change by varying the tapering constant. The numerical
verification is shown in Fig. 2. Fig. 2 shows the relation

Fig. 2. The relative stability versus the tapering constant.

Fig. 3. The modulus of eigenvalue versus the Kerr parameter K.
Ž .Curve a represents the evolution of eigenvalue corresponding to

Ž .the influence of the former term in the brace of Eq. 3 and curve
Ž .b is obtained from considering the influence of the latter one.

Ž .The total evolution with respect to K is plotted as curve c with
extended scale.

between g and the tapering constant with zs116.5 mm.0

Owing to the tapering constant just corresponding to the
damping parameter, we simplified to add a Gaussian taper-
ing at M , respectively. From Fig. 2, the tendency is4

classified into two cases. One is that g is always greater0

than zero and a monotonically decreasing function of the
tapering constant such as at xs45 mm in Fig. 2. The
other has contrary change with g being always less than0

zero and increasing g against the tapering constant such0

as at xs50 mm in Fig. 2. Although g depends on the0

tapering constant for a resonator, the sign of g is un-0
Žchanged, i.e., the preferable operation g -0 for KLM or0

.g )0 for CW of the resonator is independent of the0

tapering constant. The result agrees with the previous
discussion. Thus the tapering constant is set as 10 cm in
the following simulations.

Ž .From Eq. 3 , there are two types of influence on the
stability factor: one is attributed to the partial derivative of
the stability factor with respect to K , the other results from
the variation of the fixed point against increment K. For
the sake of understanding these two effects, we had sepa-
rately calculated the modulus of eigenvalue about these

Ž .two types of influence by increasing K. Curve a in Fig. 3
represents the modulus of eigenvalue versus K just con-
sidering the former influence with zs116.5 mm and

Ž .xs50 mm, and curve b describes the result correspond-
ing to the latter influence. The combination of these two
effects determines the variation of the stability factor with
respect to K. The stability factor of the system versus K is

Ž .plotted as curve c in Fig. 3 with extended scale. Obvi-
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ously, these two effects act in opposite and near balance,
so they cancel nearly each other and the variation of the
stability factor becomes small. Besides, we found that the
cavity configurations in the geometrically stable region
have the similar tendency as above mentioned except the
edge of this region. At the edge of geometrically stable
region, the variation of stability factor is dominated by the
influence corresponding to the partial stability factor with
respect to K from our numerical simulations. However,
the influence on the change of the fixed point cannot be
neglected in most cases, so the relative stability g must0

be described as the variation of the stability factor. In
addition, the stability factor is a monotonically decreasing
function of K and the relative stability g -0 at zs116.50

mm and xs50 mm. In other words, the laser system is
more stable by appending power to mode-locking rather
than to CW and the resonator prefers the KLM operation.
In fact, the stability factor is not always a monotonically
decreasing function of K for some z and x with the
relative stability g -0. They have one minimum stability0

factor under the reasonable range of K value in experi-
Ž .ments K-0.4 for our simulation. Owing to the K

standing for the beam power of the KLM laser, the above
cases represent that the higher power operation is more
unstable than the lower power one and these resonators do
not easily obtain higher KLM power. This phenomenon

w xhad been observed in various experiments, e.g., Ref. 17 .
They found that the pulse train became unstable as the
pumping power increased above a specific power. But

Ž .these resonators can still operate at the pulse KLM
operation at lower power. If we focus on the preferable
operation, the g is capable of determining the resonator0

configuration preferring to the KLM or CW operation. We
will use the g to study the stability of hard aperturing0

KLM lasers by changing the configuration variables z and
x.

For the hard aperturing KLM lasers, the contour figure
of g in the tangential plane is shown in Fig. 4 where the0

w xdot marks are the duplicated self-starting results in Ref. 6
for comparison. From Fig. 4, the resonator configuration
with g -0 prefers KLM operation when a mechanism,0

such as the hard aperturing in this case, has capability to
sustain the KLM and CW operations. We find that the
regions with g -0 agree with the self-starting regions of0

w xRef. 6 when the Kerr medium is placed around the center
of the resonator. However, when the Kerr medium is
placed far away from the center of the resonator, the beam
waist may be located far away from the center of Kerr
medium or outside the material. Then the effects of beam

w xfocalization 11 and the efficiencies of extracting power
from gain medium must be considered in practice. We
think that this is the main reason for the unpredicted
results of our method. Besides, the resonator may also be
affected by other additional perturbations such as vibra-
tion, thermal and turbulence fluctuation, existence and
competition of high-order transverse modes, etc. Owing to

Fig. 4. The simulated KLM preferable region of hard-aperturing
Ž . Ž . y6KLM lasers. The contour values are a g s0, b g sy10 ,0 0

Ž . y5 Ž . y6c g sy10 , and d g sy5=10 , respectively. The dot0 0
w xmarks are the duplicated self-starting results of Ref. 6 .

the strength of mechanical tapping which may be beyond
that of the intrinsic perturbation discussed above to cause
large cavity structure change, our simple approach is not
suitable for the KLM initiated by mechanical tapping.

On the other hand, another approach borrowed from the
classical mechanics can also be used to verify the previous
results. In this approach we do not consider the loss. From
Appendix A, we can obtain the Hamiltonian for a res-

Ž .onator, which is function of K and denoted as H K .
Because the Hamiltonian represents the energy of the
harmonic oscillation system and the system prefers to stay

Ž Ž . . <at the lower energy, dH K rdK -0 stands for theKs0

system having lower energy with larger K and it prefers to
Ž .operate at K)0 KLM operation . From our numerical

experiment, the same regions of the preferable resonators
for KLM are obtained from these two approaches. This
result also verifies that the dynamical behavior about the
preferable operation is governed by the Hamiltonian, how-
ever, the system is a loss or lossless one.

Due to the nature that KLM resonator is sensitive to
geometrical configuration, the dynamics of Gaussian beam
in bare resonator may govern the preferable condition for
self-starting KLM. As a result, even though we do not
consider the mechanism of the self-starting in KLM res-
onator, the regions with g -0 agree with the self-starting0

regions of experiment. Moreover, not only the d-0 re-
gion contains g -0 but also g is always greater than0 0

zero in the region with d)0. From this result, g -00

seems to be a more strict condition than the one with
d-0. In addition, we can optimize the resonator design by
minimizing g . The minimum g in the whole region is0 0

y8.06=10y4 at zs116.1 mm and xs50 mm under
above mentioned resonator parameters. The optimal hard
aperturing KLM laser favors to operate near the confocal
edge of the geometrically stable region. This result also
agrees with the previous one that the KLM favors to

w xoperate at the borders of the stability region 6 .
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4. Conclusion

By considering a two-dimensional iterative map de-
rived from the propagation of q-parameter, we have gener-
alized the stability factor as the modulus of eigenvalue at
fixed point. The system tends to operate at lower stability
factor as a successive variation on dynamical parameter k
because the stability factor corresponds to converging rate
against perturbation. We found that the variation of stabil-
ity factor with respect to the Kerr parameter provides an
available criterion for studying self-starting KLM lasers in
the bare resonator with Kerr-lens effect only. As a result,
the numerical simulation agrees with previous self-starting
experimental data in the hard aperturing KLM lasers. In
addition, this effective procedure can be used to study
preferable resonator configuration for three-mirror KLM or
the other mode competition systems. One can obtain opti-
mal resonator designs based on simple mathematical calcu-
lations.
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Appendix A. Hamiltonian for the propagation of
Gaussian beam

A.1. Beam propagating in a lenslike medium

Because the laws of transformation of Gaussian beams
are identical to the laws of transformation of ray pencils
w x18 , we begin our discussion from the ray tracing. Let us
consider a lenslike medium, whose index has the square-

X X 1Ž . wlaw profile on coordinate x and is n x sn 1y0 2
2Ž X.2 xV x where n is the axial index and V is the0

focusing strength. When a ray propagates in the lenslike
medium along zX, the distance away from the optical axis,

Ž X.denoted by u z , and the slope of ray, denoted by u,˙
w xfollow the ray equation 18

du
su A1Ž .˙Xd z

and

d u̇
2syV u , A2Ž .Xd z

where zX is the system axial. We can obtain a Hamiltonian

1
2 2 2Hs u qV u , A3Ž . Ž .˙

2

and the ABCD transfer matrix is

1
X Xcos V z sin V zŽ . Ž .

. A4V Ž .
X XyV sin V z cos V zŽ . Ž .

On the other hand, the lowest mode Gaussian beam
parameters can be obtained in terms of guiding ray param-

w xeters as 19

X X' < <w z s 2 u z A5Ž . Ž . Ž .
and

R zX sw zX rw zX . A6Ž . Ž . Ž . Ž .˙
Ž . Ž . Ž .From Eqs. A4 , A5 and A6 , the Hamiltonian of the

Gaussian beam propagating in the lenslike medium is
X21 w zŽ .

X2 2Hs qV w z . A7Ž . Ž .X24 R zŽ .

A.2. Beam propagating in a lossless optical resonator

Under unchanging focusing properties, a curved mirror
with radius of curvature r can be replaced by a flat mirror

w xand a lens in front of it with focal length fsr 18 . Then
we can obtain the equivalent resonator having two flat
end-mirrors and take the reference plane at one of these
mirrors. Let us denote

a b
c d

as the ray transfer matrix of the system from the reference
plane to the other end mirror. The elements of matrix are
all real numbers in the lossless optical resonator. We get
the round-trip matrix M of the resonator andrt

X XA B a bd bM s sX Xr t c aC D c d

adqbc 2bds . A8Ž .
2 ac adqbc

Since M is a symmetric matrix, it can be equivalent tort
Ž .Eq. A4 when we choose

cos V zX sadqbc A9Ž . Ž .
and

ac
2V sy . A10Ž .

bd

It can be verified under the determinant of transfer matrix
equal to unity that the V and zX are real number if and

<Ž X X. < Žonly if A qD r2 -1 the geometrical stable condition
.of the resonator . This result shows that the Gaussian beam

propagating in the optical resonator after every round-trip
has identical dynamical behavior as propagating in the
lenslike medium. When we construct the iterative map of
the beam parameter for the optical resonator with the
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interval time equal to a round-trip time, the map belongs to
Ž . Ž . Ž .the Hamiltonian one. From Eqs. A6 , A8 and A9 , the

Hamiltonian corresponding to the iterative map described
Ž . Ž .as Eqs. 5 and 6 is

X21 w z cdŽ .
X2Hs q y w z . A11Ž . Ž .X2 ž /4 abR zŽ .

The evolution of spot size of the map is governed by the
simple harmonic oscillation, the result agrees with the

w xnumerical simulation of our previous result in Ref. 2 .
Moreover, if we consider the loss effect by the elements of
transfer matrix having the imaginary number, the evolution

w xof spot size has the behavior like a damping oscillation 2 .
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