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Abstract 

Distance-hereditary graphs are graphs in which every two vertices have the same distance in 
every connected induced subgraph containing them. This paper studies distance-hereditary graphs 
from an algorithmic viewpoint. In particular, we present linear-time algorithms for finding a 
minimum weighted connected dominating set and a minimum vertex-weighted Steiner tree in a 
distance-hereditary graph. Both problems are MY-complete in general graphs. 0 1998 Elsevier 
Science B.V. All rights reserved. 
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1. Introduction 

The concept of domination can be used to model many location problems in op- 
erations research. In a graph G = (V,E), a dominating set is a subset D of vertices 
such that every vertex in V - D is adjacent to some vertex in D. A dominating set 
of G is connected if the subgraph G[D] induced by D is connected. The connected 
domination problem is to find a minimum-sized connected dominating set of a graph. 
Suppose, moreover, that each vertex u in G is associated with a weight W(V) that is 
a real number. The weighted connected domination problem is to find a connected 
dominating set D such that w(D) = COED w(v) is as small as possible. 

The concept of Steiner trees originally concerned points in Euclidean spaces, but it 
is also closely related to connected domination in graphs. Suppose T is a subset of 
vertices in a graph G = (V, E). The Steiner tree problem is to find a minimal subset 
S of V - T such that G[S U T] is connected. S and T are called the Steiner set and 
target set, respectively. We can also consider the vertex-weighted version of the Steiner 
tree problem, which was originally introduced by Segev [27]. The vertex weight of a 
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Steiner vertex can be interpreted as the cost of adding this vertex when forming the 
tree. Traditionally, the problem of finding the Steiner tree for a set of points in a graph 
has been studied for edge-weighted graphs (see [21]). However, Johnson [22, p. 445, 
line 91, pointed out that the edge-weighted Steiner tree problem is NP-complete for 
any classes that contains all complete graphs. In particular, the edge-weighted Steiner 
tree problem is _&Y-complete for the edge-weighted distance-hereditary graphs as these 
contain the edge-weighted complete graphs. So, we only consider the vertex-weighted 
Steiner tree problem for distance-hereditary graphs in this paper. 

The connected domination and Steiner tree problems have the same complexity for 
many classes of graphs. For instance, they are both polynomially solvable for strongly 
chordal graphs [30], permutation graphs [7], cographs [9, 221, series-parallel graphs 
[12, 26, 29, 301, and distance-hereditary graphs [3, 131; and they are MY-complete for 
bipartite graphs [18, 251, split graphs [23, 301, chordal graphs [23, 301, and chordal 
bipartite graphs [24]. It is also known that the connected domination problem is poly- 
nomially solvable for k-trees (fixed k) [l] and ~-CUBS [l l] and MY-complete for 
~-CUBS (k 22) [ 1 I]. The Steiner tree problem is polynomially solvable in homo- 
geneous graphs [ 141. 

For many location problems, the corresponding domination problems may have differ- 
ent constraints or objective functions. Typical examples are r-domination and weighted 
versions. Results for these variant domination problems are relatively fewer than the 
usual version. Some well-known results of this kind are polynomial algorithms for the 
weighted domination and the weighted independent domination problems in strongly 
chordal graphs [ 171, the weighted perfect domination problem in co-comparability 
graphs [6], the r-domination problems in trees [28] and strongly chordal graphs [5], the 
connected r-domination problem in strongly chordal graphs [S] and distance-hereditary 
graphs [3]. The purpose of this paper is to present linear-time algorithms for the 
weighted connected domination problem with arbitrary weights and the vertex-weighted 
Steiner tree problem with non-negative weights in distance-hereditary graphs. 

In the rest of this section, we give a brief survey of distance-hereditary graphs. A 
graph is distance-hereditary if every two vertices have the same distance in every 
connected-induced subgraph. Distance-hereditary graphs were introduced by Howorka 
[20]. The characterization and recognition of distance-hereditary graphs have been stud- 
ied in [2, 13, 15, 19, 201. Note that the class of distance-hereditary graphs is a subclass 
of all parity graphs [4] and a superclass of all cographs [8, lo]. 

Suppose A and B are two sets of vertices in a graph G = (V,E). The neighborhood 
No of B in A is the set of vertices in A that are adjacent to some vertex in B. The 
closed neighborhood &[B] of B in A is NA[B]UB. For simplicity, NA(u), NA[u], N(B), 

and NW stand for NA({D}), N~[{u}l, NO>, and Nv[B], respectively. The distance 
dC(x, y) or d(x, y) between two vertices x and y in G is the minimum length of an 
x-y path in G. The hanging h, of a connected graph G = (V, E) at a vertex 11 E V is 
the collection of sets LO(U), L,(u), . . . , L,(u) (or Lo, Li,. . ,Lt if there is no ambiguity), 
where t = maxVEvdo(u,v) and Li(U) = {u E V : d~(u,v) = i} for O<i<t. For any 
1 < i d t and any vertex v E Li, let N’(u) = N(o) n Lj_i . For any U C V, a vertex 
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v E U n Li with 1 <i < t has a minimal neighborhood in Li-1 with respect to U if 
N’(w) is not a proper subset of N’(v) for any w E U n Li. When U = V we omit the 
term U in the above definition. 

Theorem 1 (Bandelt and Mulder [2], D’Atri and Moscarini [13], and Day et al. [15]). 
For a connected graph G = (V, E) the following statements are equivalent: 
(1) G is a distance-hereditary graph. 
(2) Every cycle of length at least jive in G has two crossing chords. 
(3) For every hanging h, = (Lo,Ll , . . . , L,) of G and every pair of vertices x, y E L; 

(1 didt) that are in the same component of G[V-L,_I], we have N’(x) = N’(y). 

Theorem 2 (Bandelt and Mulder [2]). Suppose h, = (Lo,L,,...,L,) is a hanging of 
a connected distance-hereditary graph at u. For any two vertices x, y E Li with 
i3 1, N’(x) and N’(y) are either disjoint, or one of the two sets is contained in the 
other. 

Theorem 3 (Fact 3.4 in Hammer and Maffray [19]). Suppose h, = (Lo,L,, . . . , L,) is 
a hanging of a connected distance-hereditary graph at u. For each 1 <i< t, there 
exists a vertex v E Li such that v has a minimal neighborhood in Li-1. In addition, 
tf v satisfies the above condition then for every pair of vertices x and y in N’(v), we 
have NV-N+)(X) = NV-NJ(&Y). 

2. Weighted connected domination 

This section presents a linear-time algorithm for finding a minimum weighted con- 
nected dominating set of a connected distance-hereditary graph G = (V,E) in which 
each vertex v has a weight w(v) that is a real number. 

Lemma 4. Suppose G = (V,E) is a connected graph with a weight function w on 
V. Let V’ be the set of vertices v with w(u) < 0 and w’ be defined by w’(v) = 
m={w(v), O> f or all v E V. If D is a minimum w’-weighted connected dominating 
set of G, then D u V’ is a minimum w-weighted connected dominating set of G. 

Proof. First of all, since D is a connected dominating set of G, D U V’ is also. Next, 
suppose M is a minimum w-weighted connected dominating set of G. Since M is a 
connected dominating set of G and D is a minimum w’-weighted connected dominating 
set of G, w’(M)> w’(D), i.e., w(M - V’) = w’(M)>w’(D) = w(D - V’), and so 

w(M)=w(M-V’)+w(MflV’)~w(D-V’)+w(V’)=w(DuV’). 

This completes the proof of the lemma. 0 

Lemma 4 suggests that it suffices to consider the weighted connected domination 
problem with a non-negative weight function. 
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Lemma 5. Suppose h, = {Lo,Ll,. . ., L,} is a hanging of a connected distance- 
hereditary graph at u. For any connected dominating set D and v E Li with 2 <i < t, 
D n N’(v) # 0. 

Proof. Choose a vertex y in D that dominates v. Then y E Li_1 U Li U Li+l. If y E 
Li_1, then y E D n N’(V). SO we may assume that y E Li U Li+l. Choose a vertex 
x E Dfl(LoULl) and an x-y path P: 

x = 211,212,. . . )  0, = y 

using vertices only in D. Let j be the smallest index such that {Vj, Vj+l, . . . , v,} C LiU 
Li+l U ’ ” U Lt. Then Uj E Li, vi-1 E N’(vj), and v and Uj are in the same component 
of G[V - Li_l]. By Theorem 1 (3), N’(V) = N’(vj) and SO vi-1 E DnN’(v). In any 
case, D r-7 N’(v) # 0. 0 

Theorem 6. Suppose G = (V, E) is a connected distance-hereditary graph with a non- 
negative weight function w on its vertices. Let h, = {LO, LI, . . . , L,} be a hanging at a 
vertex u of minimum weight. Consider the set d = {N’(v) : v E Li with 2 < i 6 t and 
v has a minimal neighborhood in Li_I}. For each N’(v) in d, choose one vertex v* 
in N’(v) of minimum weight, and let D be the set of all such v*. Then D or D U {u} 
or some {v} with v E V is a minimum weighted connected dominating set of G. 

Proof. For any x E Li with 2 <i < t, by Theorem 2, N’(x) includes some N’(u) in d. 
Thus we have Claim 1. 

Claim 1. For any x E Li with 2 <i< t, x is adjacent to some vertex in Li_1 n D. 

Claim 2. D U {u} is a connected dominating set of G. 

Proof of Claim 2. By Claim 1 and N[u] = L1 U {u}, D U {u} is a dominating set of G. 
Also, by Claim 1, for any vertex x in D U {u} there exists an x-u path using vertices 
only in D U {u}, i.e., G[D U {u}] is connected. ??

Suppose M is a minimum weighted connected dominating set of G. By Lemma 5, 
M n N’(v) # 0 for each N’(v) E d, say u** E M n N’(v). Note that any two sets in 
d are disjoint, so [Ml>]&’ = IDI. 

Case 1: ]M] = 1. The theorem is obvious in this case. 
Case 2: ]MI > IDI. In this case, there is at least one vertex x in M that is not a 

ii++. So 

This together with Claim 2 proves that D U {u} is a minimum weighted connected 
dominating set of G. 
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Case 3: IMI = IDI 22. Since d contains pairwise disjoint sets, M = {u**: N’(u) E 

d}. so w(M) = c,** w(u**)> c,. w(v*) = w(D). 
For any two vertices x* and y* in D, x** and y** are in M. Since G[M] is connected, 

there is an x**-y** path in G[M]: 

** x =v ** ** ** 
0 2 v, ) . . . )  v;* = y . 

For any 1 di<n, since v: and uf’ are both in N’(Vi) E d, by Theorem 3, Nv__NI(~,,) 
(UT) = NV-~+,)(u;*). But u,!:, EN _ Y N~(~~,)(uT*). So vFT1 E Nv__N/(~,)(u~) and v; E 
NV-,,,:,,_, ,(ui*_*, ). Also, that o;_i and vi*_r, are both in N’(Ui_ 1) E d implies that 

NV-N+_,)(u,?-,) = NV-N+_, )(~i+-*~). Then o,* E N v - ~t(~>,_,)(u,*_~). This proves that 

vi*-, is adjacent to VT for 1 <i d n and then 

x* = l&v; )  .  . . ) v; = y* 

is an x*-y* path in G[D], i.e., G[D] is connected. 
For any x in V, since A4 is a dominating set, x E N[u**] for some N’(v) E &. Note 

that v** and v* are both in N’(v). By Theorem 3, Nv_N/(~)(u**) = NY_~~(~)(u*). In 
the case of x $! N’(u), x E N[v**] implies x E N[u*], i.e., D dominates x. In the case 
of x E N’(o), Nv_,~/(~)(D*) = NY-NJ(~)(X). Since G[D] is connected and IDI >2, u* is 
adjacent to some y* E D - N’(u). Then x is also adjacent to y*, i.e., D dominates X. 
In any case, D is a dominating set. Therefore, D is a minimum weighted connected 
dominating set of G. 0 

By Lemma 4 and Theorem 6, we can design an efficient algorithm for the weighted 
connected domination problem in distance-hereditary graphs. To implement the algo- 
rithm efficiently, we do not actually find the set d. Instead, we perform the following 
step for each 2 <i <t. Sort the vertices in Li such that 

IN’(xi)I 6 IN’(xz)I < < (N’(xj)I. 

We then process N’(xk) for k from 1 to j. At iteration k, if N’(xk) n D = 0, then 
N’(xk) is in d and we choose a vertex of minimum weight to put it into D; otherwise, 
N'(xB ) +! d and we do nothing. 

Algorithm WCD-dh. Find a minimum weighted connected dominating set of a con- 
nected distance-hereditary graph. 
Input: A connected distance-hereditary graph G = (I’, E) and a weight w(u) of real 
number for each v E V. 
Output: A minimum weighted connected dominating set D of graph G. 
begin 

D - 0; 
let V’ = (0 E V : w(v) < O}; 
w(u) c 0 for each v E V’; 
let u be a vertex of minimum weight in V; 
determine the hanging h, = (Lo,Ll,. . . ,L,) of G at U; 



250 H.-G. Yeh, G. J. Chung I Discrete Applied Mathematics 87 (1998) 245-253 

for i = 2 to t do 
begin 

let Li = {Xt,...,Xj}; 
SOI? Li such that JN’(Xi, )I 6 lN’(Xi2)/ 6 . . . < IN’(Xi,)l; 
for k = 1 to j do 

end 

if N’(XiJ n D = 8 then D +-- D U {y} where y is a vertex 
of minimum weight in N’(xi,) 

if not (Lt CN[D] and G[D] is connected) then D - D U {u}; 
for v E V that dominates V: if w(v) < w(D) then D - {v}; 
D-DUV’ 

end 

Theorem 7. Algorithm WCD-dh gives a minimum weighted connected dominating set 
of a connected distance-hereditary graph in linear time. 

Proof. The correctness of the algorithm follows from Lemma 4 and Theorem 6. For 
each i, we can sort Li by using a bucket sort. So the algorithm is linear to ) VI + IEl. 

0 

3. Vertex-weighted Steiner tree 

This section presents a linear-time algorithm for finding a minimum vertex-weighted 
Steiner tree with respect to a target set T C V in a connected distance-hereditary graph 
G = (V,E) with a non-negative weight w(v) for each v E V. In this section h, = 
{Lo, . . . , L,} denotes a hanging of G at a vertex u in the target set T. The key to our 
algorithm for the vertex-weighted Steiner tree problem is the following theorem. The 
theorem is similar to Theorem 6, but even simpler. 

Theorem 8. Suppose U = {x E V : x lies on a shortest u-v path for some v in T} 
and &J = {N’(x) : x E U n Li has a minimal neighborhood in Li-1 relative to U and 
N’(x) n T = 0). Then the set S formed by choosing a vertex x* of minimum weight 
in each N’(x) E 99 is a minimum vertex-weighted Steiner set with respect to T in G. 

Proof. We first note that for each u-v path P with v E Li, P is a shortest path if and 
only if P is of the form 

U=VO,V~ ,..., Vi=V, 

where Vj E Lj for 0 <j < i. Therefore N’(x) C: U for each x E U. Consequently, S u 

T c U. For each x E SUT, x E U. Either N’(x) E 9# or N’(x)nT # 0 or N’(x) 2 N’(y) 
for some N’(y) E 29. Then there exists some vertex z E N’(x) rl (S u T). The same 
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argument can be applied repeatedly to show that there exists a shortest x-u path using 
vertices only in S U T. This proves that G[S U T] is connected. 

Next, suppose M is a minimum vertex-weighted Steiner set with respect to T in G. 
For each N’(x) E ~8, by the definition of U, x lies on a shortest u-v path 

u = VO,VI ,...) x = v I)..., vj = v 

for some v in T, where each t.& E Lk. Since G[M LI T] is connected, there 

path 

is a u-v 

u = uo,uj )...) u, )...) us = v 

in G[M U T], where ~~-1 E Li_1, ur E Li, and u,tl,...,u, are in Lk’s with k>i. 
By Theorem 1 (3), N’(x) = N’(u,). Therefore N’(x) contains u,_t E A4 U T. Since 
T n N’(x) = 0, A4 f? N’(x) # 8. Since any two sets in &J are disjoint and x* is a vertex 
of minimum vertex-weight in N’(x), we conclude that w(M) > w(S). This proves that 
S is a minimum vertex-weighted Steiner set with respect to T in G. 0 

Theorem 8 provides the basic idea for designing a good algorithm for the vertex- 
weighted Steiner tree problem. Similar to the implementation of WCD-dh, we do not 
actually find U and 2J. Instead, at any Li we sort IN’(x)/ for all x E S U T to find g. 

Algorithm WST-dh. Find a minimum vertex-weighted Steiner set of a distance- 
hereditary graph with non-negative weights on its vertices. 
Input: A connected distance-hereditary graph G = (V,E) with non-negative weight 
w(v) for each u E V and a subset T C V. 
Output: A subset S C V - T of minimum weight such that G[S U T] is connected. 
begin 

s- 0; 
let u be a vertex of T; 
determine the hanging h, = (LO, L1 , . . . , L, ) of G at U; 
for i = t to 2 step -1 do 
begin 

let (Su T)nLi = {x,,...,x~}; 

if p # 0 then 
begin 

sort x1,x2,..., xp such that ~N’(.x,, )I < . . . < IN’(xj,,)j; 
for k = 1 to p do 

if N’(Xjk) has no vertices in S U T 

then S - S U {y} where JJ is a vertex of minimum weight in N/(x], ) 
end 

end 
end 
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Theorem 9. Algorithm WST-dh solves the vertex-weighted Steiner tree problem for 
a connected distance-hereditary graph with a non-negative weight function in linear 
time. 

Proof. Similar to the proof of Theorem 7. ??

The vertex-weighted Steiner tree problem with arbitrary real weights on its vertices 
remains open. 
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