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Abstract. A fast algorithm is proposed to integrate the
trajectory of a low obiter perturbed by the earth's non-
sphericity. The algorithm uses a separation degree to
de®ne the low-degree and the high-degree acceleration
components, the former computed rigorously, and the
latter interpolated from gridded accelerations. An FFT
method is used to grid the accelerations. An optimal grid
type for the algorithm depends on the trajectory's
permissible error, speed, and memory capacity. Using
the non-spherical accelerations computed from EGM96
to harmonic degree 360, orbit integrations were per-
formed for a low orbiter at an altitude of 170 km. For a
separation degree of 50, the new algorithm, together
with the predict-pseudo correct method, speeds up the
integration by 145 times compared to the conventional
algorithm while keeping the errors in position and
velocity below 10ÿ4 m and 10ÿ7 m/s for a 3-day arc.

Key words. Orbit integration � FFT � Perturbation �
Spherical harmonics

1 Introduction

There are many satellite missions that require the use of
low orbiters. For example, the high-low scenario of a
satellite-to-satellite tracking mission, a satellite gradio-
metry mission, and the recently approved GRACE
mission (CSR 1997; see also the review in Seeber 1993).
In the trajectory prediction of a low orbiter, the biggest
challenge comes from the highly time-consuming com-
putation of the accelerations due to the earth's
nonspherical perturbation. In the past this problem
has been noticed and some useful techniques such as

those described in Balmino et al. (1990) and Balmino
and Barriot (1990) have been proposed. This paper
pursues the subject further and proposes a fast
algorithm based on the facts (1) that the trajectories
of most geodetic satellites are near circular and hence
their ranges of motion in the radial direction (called
radial range for short) are small, and (2) that a
predicted trajectory allows some degree of error. For
example, based on real data, it is found that the radial
ranges of TOPEX/POSEIDON and Geosat are about
40 km (between 7695 and 7735 km) and about 50 km
(between 7140 and 7190 km), respectively. For a near-
circular low orbiter, the radial range is even smaller. In
the following development, the basis of the proposed
algorithm and formulae for relevant computations will
be presented. The algorithm is then applied to a satellite
orbiting at an altitude of 170 km to study the e�ciency
of the algorithm. In all the following computations/
experiments we use the IEEE double-precision arith-
metic and scalar machines without parallel computing
facility.

2 Accelerations due to earth's nonspherical perturbation

There are numerous forces acting on a low earth orbiter,
see, e.g., Seeber (1993) and Tapley (1989). In this paper,
the only force considered is that due to the earth's
nonspherical perturbation. Also, only basic formulae
needed in developing the proposed algorithm will be
mentioned. The potential of the earth's nonspherical
perturbation can be expanded into a series of spherical
harmonics as (Heiskanen and Moritz, 1967)
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where l � GM is the product of the gravitational
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coordinates (geocentric distance, geocentric latitude,
and longitude), ae is a scaling factor approximately
equal to the semi-major axis of a reference ellipsoid,
�Cnm and �Snm are the spherical harmonic coe�cients,
and �P nm�sin /� is the fully normalized associated
Legendre function of degree n and order m. The
acceleration vector expressed in the earth-®xed coordi-
nate system is
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where xb; yb, and zb are the earth-®xed coordinates, and
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with d�m� � 1 for m � 0, and d�m� � 0 for m 6� 0. Since
orbit integration must be performed in the inertial
coordinate system, it is necessary to transform �ab to a
vector expressed in the inertial coordinate system. In this
paper, we simplify the transformation by neglecting
precession, nutation, and polar motion and obtain the
acceleration vector expressed in the inertial coordinate
system:
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where x; y; z are the inertial coordinates,
r �
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p
;M is an orthogonal matrix and �a is

the acceleration vector expressed in a local rotating
frame. The geocentric latitude and longitude can be
computed from

/ � sinÿ1
z
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where GAST is the Greenwich apparent sidereal time.

3 Satellite altitude and average power of acceleration

Depending on the satellite altitude, the upper bound of
the degree, which is theoretically 1, in the spherical
harmonic expansion given by Eq. (1), can be replaced by
a cuto� degree. This is due to the factor �ae

r �n in Eq. (1)
that attenuates the magnitude of satellite acceleration
and due to the asymptotic decrease in the �Cnm and �Snm
coe�cients. The cuto� degree can be obtained by
investigating the average power of satellite acceleration
over a sphere at the satellite's altitude according to the
theory adopted below. From Eq. (6) we have
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where Ar;A/, and Ak are the radial, latitudinal, and
longitudinal accelerations, respectively. Since A/ and Ak
lie on a plane perpendicular to the radial direction, the
two form the horizontal acceleration. Assuming the
expansion in Eq. (1) is up to degree K, the average power
of �a over a sphere of radius R (R is approximately equal
to the earth's mean radius plus the satellite mean
altitude) is
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where r is the sphere of radius R, and dr � cos / d/ dk.
With the orthogonality relationship of spherical har-
monics (Heiskanen and Moritz 1967) the average power
of the radial acceleration is
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Using the following property of spherical harmonics
(Hwang 1998)
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we get the average power of the horizontal acceleration:
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From Eqs. (10) and (14), the average power of the radial
acceleration is larger than that of the horizontal
acceleration.

With a speci®ed error tolerance the cuto� degree can
be determined by comparing the power of acceleration
up to the cuto� degree and the ``total'' power of accel-
eration. We assume that the total power of acceleration
can be obtained by an expansion to a very high degree
Nmax. Currently, Nmax � 360 is the highest possible de-
gree, and is used in, e.g., the OSU91A model (Rapp et
al. 1991) and the EGM96 model (Lemoine et al. 1997).
To this end, one may compute the relative power up to
degree K:

qK �
PK
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�16�

We should have qK � 1 for K to be the cuto� degree.
Figure 1 shows the values log10�1ÿ qK� at di�erent
altitudes with Nmax � 360 and the geopotential coe�-
cients from the EGM96 model. From Fig. 1, we ®nd that
the K values for a low orbiter at altitude � 170 km,
TOPEX/POSEIDON and GPS satellites to reach the
condition �1ÿ qK� � 10ÿ14 are 354, 54, and 8, respec-

tively, which can be used as the cuto� degrees for the
corresponding satellites in the IEEE double-precision
environment.

4 Computing accelerations by parts

4.1 The separation degree

The key to the proposed algorithm is that, with the
spherical harmonic expansions, the three accelerations,
Ar;A/, and Ak, can be decomposed into a low-degree and
a high-degree components which have di�erent magni-
tudes and can be computed with di�erent methods. To
see this, we de®ne the relative partial power from
degrees K1 to K2 as

qK1ÿK2 �
PK2 ÿ PK1ÿ1

PNmax

;K1 < K2 �17�

Again, using Nmax � 360 and the geopotential coe�-
cients from the EGM96 model, we computed the relative
partial powers over di�erent ranges of harmonic degrees
at an altitude of 170 km, as shown in Table 1. Table 1
suggests that, compared to the low-degree component,
the high-degree component contributes very little to the
total acceleration. For example, the acceleration due to
the components from degrees 51 to 360 is only about
3� 10ÿ6 of the total acceleration.

Let Ai be any of the three accelerations Ar;A/, and
Ak. At an appropriate harmonic degree S, the total ac-
celeration can be decomposed into the low-degree
component, AL

i , and the high-degree component, AH
i as
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where ri
n is the degree-n component of the acceleration.

In Eq. (18) S is the separation degree. Given a
permissible error of Ai, we can compute AL

i rigorously
while computing AH

i by an approximate and fast
method. Let e and eH be the relative errors of Ai and
AH

i , respectively. The absolute error of Ai will come
entirely from AH

i , namely,

eAi � eH AH
i �19�

Fig. 1. The values log10�1ÿ qK� vs. spherical harmonic degree, qK is
the relative power up to degree K

Table 1. Relative partial powers from harmonic degrees K1 to K2
at an altitude of 170 km

K1 K2 qK1ÿK2

2 50 0.9997997402e+0
2 70 0.9999970705e+0
2 180 0.9999999987e+0
51 70 0.1992062613e)5
51 180 0.2928163588e)5
51 360 0.2929420279e)5
71 180 0.9361009758e)6
71 360 0.9373576658e)6
181 360 0.1256689991e)8

580



Let Ai � aAH
i � AL

i , where a is a large number. From Eq.
(19), we have

a � eH

e
�20�

which gives the criterion for selecting S. For example,
given e � 10ÿ12 and eH � 10ÿ6, we should choose an S
so that the low-degree acceleration component is 106 of
the high-degree acceleration component. In this exam-
ple, the smallest possible S for an altitude of 170 km will
be 50, see also Table 1.

4.2 Computing gridded high-degree accelerations

A procedure to compute AH
i with some degree of error is:

(1) compute AH
i at regular grids over all possible ranges

of satellite motion in the r;/, and k directions, then (2)
interpolate the needed AH

i values at the required loca-
tions. For the ®rst step, the radial range can be
determined by integrating the orbit with the low-degree
acceleration component AL

i . This only needs to be done
once for the entire phase of a satellite mission, and the
computational time is negligible. The range of k is from
0� to 360� and the range of / is fromÿImax to Imax, where
Imax is the maximum value of the satellite inclination. The
gridded AH

i values can be computed by Fast Fourier
transform (FFT). The general expression for computing
AH

i on a sphere of radius R by FFT is:

AH
i �R;/; k� �

XNmax

m�0

( XNmax

n�L

bi
nm�R;/� �Cnm

" #
cos mk

�
XNmax

n�L

bi
nm�R;/��Snm

" #
sin mk

)

�
XNmax

m�0
�Cm cos mk� Sm sin mk� �21�

where

L � S; if m � S
m; if m > S

�
�22�

and the explicit expression for bi
nm�R;/� can be found by

comparing Eq. (21) with Eqs. (3), (4), and (5). If we wish
to compute AH

i along a parallel with a step of Dk, the
number of data grids is N � 2p=Dk. Setting Cm � Sm � 0
for m � Nmax � 1; . . . ;N ÿ 1, the formula equivalent to
Eq. (21) suitable for FFT is
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If we set
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Eq. (23) becomes
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(see, e.g., Press et al. 1989). A ®xed R in Eq. (25)
corresponds to a layer of gridded AH

i values. The speed-
up comes from the fact that all gridded values along the
same parallel can be computed simultaneously by FFT.
Furthermore, by the property of the associated Legend-
re function

�P nm�ÿ sin /� � �ÿ1�n�m �P nm�sin /� �26�
it is advantageous to choose a grid interval along
meridian, D/, so that 90� is an integer multiplier of D/.
That is, the parallels where gridded AH

i values are
wanted are symmetric with respect to the equator, so
that by Eq. (26) the associated Legendre functions need
only be computed once for the two symmetric parallels
situated at the northern and the southern hemispheres,
see also Colombo (1981). For the case Nmax � 360 and S
= 50, the speed-up factors achieved by the FFT method
as compared to the termwise evaluation of the harmonic
series are given in Table 2. Clearly, the e�ciency of the
FFT method increases as the grid interval D/� Dk
decreases.

Grid intervals in the radial, latitudinal, and longitu-
dinal directions, Dr;D/;Dk; and the method of inter-
polation will determine the accuracy of the interpolated
AH

i values at the required locations. Based on Fig. 1, for
an altitude lower than 200 km we need to compute ac-
celerations almost up to Nmax. If Nmax is used, then the
maximum allowable grid intervals in / and k for ``re-
producing'' the acceleration at any point from the
gridded accelerations are p=Nmax. Thus, for a low orbiter
D/ and Dk should ful®ll the condition

D/ � p
Nmax

and Dk � p
Nmax

�27�

Since the average power of the radial acceleration is
greater than that of the horizontal acceleration [compare
Eqs. (10) and (14)], the radial grid interval should be less
than the horizontal grid interval. Thus, we should use

Dr < RD/ �28�

Table 2. Speed-up factors achieved by the FFT method for com-
puting AH

i as compared to the termwise method

D/ ´ Dk Factor

0.25° ´ 0.25° 23.48
0.30° ´ 0.30° 20.08
0.40° ´ 0.40° 13.49
0.50° ´ 0.50° 12.69
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4.3 Interpolating high-degree accelerations

To achieve a consistent accuracy with that of the
numerical integrator DVDQ (see Sect. 5.1), we used
the Newton-Gregory forward polynomial (Gerald and
Wheatley 1994) for interpolating AH

i from the gridded
values. Given (n� 1) equispaced data points
�xi; fi�; i � 0; . . . ; n, at an arbitrary x the interpolated
value from the nth degree Newton-Gregory forward
polynomial is (Gerald and Wheatley 1994)
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It can be shown that the error of Pn�x� is (Shampine and
Gordon 1975)

E�x� � �s��sÿ 1��sÿ 2� � � � �sÿ n�
�n� 1�! hn�1f �n�1��n� �32�

where n is in the smallest interval that contains
�x0; x1; . . . ; xn�. If x happens to be any of the knots xi,
then s will be an integer between 0 and n, thus making
E�x� � 0 in Eq. (32). That is, the gridded values will be
exactly reproduced. Given the position �r;/; k� of a
satellite at any epoch, we ®rst search for a cube that
contains the grids of AH

i and whose size is consistent
with the speci®ed polynomial degrees. Then, the three-
dimensional interpolation is broken into three successive
one-dimensional interpolations using the Newton-Greg-
ory polynomial in the radial, and latitudinal and
longitudinal directions (the result is independent of the
order of interpolations). This successive method is
frequently used in multidimensional interpolations, e.g.
the polynomial interpolation in two dimensions de-
scribed in Press et al. (1989). In theory, the three
successive one-dimensional interpolations are not inde-
pendent and a ``rigorous'' three-dimensional interpolat-
ion should use an interpolant with three variables.

To study the error of interpolation, we ®rst form ®ve
grids of AH

i using the following parameters:

Orbit: altitude � 170 km, eccentricity � 0:0007;

inclination � 60�;Gravity field: model � EGM96;

Nmax � 360; S � 50 �33�
The orbital parameters in Eq. (33) have been used by
Balmino and Barriot (1990). The radial range as
computed from the degree-50 gravity ®eld is about
30 km. The ®ve grid types in Table 3 di�er by their grid
intervals. The choice of Dr;D/;Dk follows the criteria in
Eqs. (27) and (28). The product of the number of layers

and Dr must be greater than the radial range. In fact, for
the ®ve grid types, grid intervals in r are much smaller
than grid intervals in /. For example, 5 km of Dr is much
smaller than 0:25� of D/ which is equivalent to 28 km
along meridian. Since the radial range of a low orbiter is
short, a small Dr will not yield a large number of layers
that requires a large computer memory. Thus, we can use
a small Dr and a low polynomial degree to carry out an
accurate interpolation along the r direction and to reduce
the computer time for interpolation. In this paper, the
one-dimensional interpolations in the r direction will
always use a polynomial degree which is equal to the
number of layers minus 1, and the polynomial degrees
mentioned below refer only to interpolations in the /; k
directions. The required memory space for the ®ve grid
types should not pose any di�culty for an average
computer. For example, the memory capacity of an
average workstation can easily be expanded to 516
Megabytes using the virtual memory on a hard disk.
Figure 2 shows that RMS relative errors of the interpo-
lated AH

i using the ®ve grid types. The comparisons were
made at a global 10� � 10� grid (total 648 data points)
where the exact accelerations from termwise computa-
tions and the interpolated accelerations are available. In
general, the higher the polynomial degree, the smaller the
error. However, in most cases interpolations with
polynomial degrees higher than 30 will result in numer-
ical instability. The relative accuracies of the interpolat-
ions with grid types 3 and 4 can hardly be better than
10ÿ4, even with a polynomial degree of 29. Furthermore,
the CPU time for interpolation increases quadratically
with the polynomial degree.

5 Case-study: fast trajectory integration for a low orbiter

5.1 The numerical integrator DVDQ and the true orbit

In this section, the proposed algorithm will be applied to
integrating the trajectory of a low orbiter with the
parameters speci®ed in Eq. (33). We used DVDQ
developed by Krogh (1969) as numerical integrator.
DVDQ allows variable orders/step size in the integration
according to error tolerances. Detailed formulae used in
DVDQ can be found in Krogh (1974). Error analyses
associated with DVDQ can be found in Shampine and
Gordon (1975). The rectangular formulation is used to
describe the equations of motion. Figure 3 shows the
di�erences between the analytically computed orbit and
the numerical integrated orbit in the two-body motion.

Table 3. Grid type and required memory space of computer

Grid type D/ ´ Dk Dr
(km)

No. of layers Required
memory
(Mega-
byte)

1 0.25° ´ 0.25° 5 7 166.467
2 0.30° ´ 0.30° 5 7 115.647
3 0.40° ´ 0.40° 5 7 65.100
4 0.50° ´ 0.50° 5 7 41.685
5 0.30° ´ 0.30° 8 5 82.605
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In this case the maximum errors in position and velocity
are 3:3� 10ÿ5 m and 3:8� 10ÿ8 m/s, respectively, which,
considering the magnitudes of position and velocity,

have reached the limits of double-precision arithmetic
(about 14 e�ective digits). This shows that DVDQ is a
highly reliable integrator.

For comparisons, a 3-day ``true'' orbit was integrated
using the conventional algorithm, which uses termwise
computations to get the accelerations up to degree Nmax.
The integration was carried out on a SUN SPARC5
machine and consumed 158.4 CPU h. Even on a fast, 64-
bit-based DEC3000 machine, the integration took 55.2
CPU h. This proves that orbit integration with a high-
degree gravity ®eld is indeed a time-consuming compu-
tation. By comparison, the time needed for forming the
grids for grid type 1 is 4415 CPU seconds (on SPARC
5), which is about 0.76% of the time for integrating the
3-day orbit.

5.2 Result of the proposed algorithm

Various ``approximate'' 3-day orbits were then comput-
ed with the high-degree accelerations interpolated from

Fig. 2. RMS relative errors of the interpolated accelerations using the
®ve grid types (see Table 3) for the radial component (top), the
latitudinal component (middle) and the longitudinal component
(bottom)

Fig. 3. The di�erences in position (top) and velocity (bottom) between
the analytical orbit and the numerically integrated orbit for the low
orbiter in the two-body motion
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the ®ve sets of gridded values in Table 3. For each grid
type, various polynomial degrees were used. In the
integrations we also employed the predict-pseudo correct
algorithm (GTDS 1976). On average the predict-pseudo
correct algorithm speeds up the orbit integrations by a
factor of 1.82. Figure 4 shows the speed-up factors
achieved by the new algorithm as compared to the
conventional algorithm. The speed-up factors are gov-
erned by grid interval and polynomial degree. For a
given polynomial degree, the speed-up factor decreases
as the grid interval increases; for a given grid type, the
speed-up factor decreases as the polynomial degree
increases. The maximum errors of the ``approximate''
orbits, obtained by comparing with the 3-day ``true''
orbit, are given in Table 4. All maximum errors occur at
the ends of the 3-day orbits. In general, the maximum
errors decrease as the polynomial degree increases. For
grid types 1, 2, 3, and 5, the maximum errors in position
and velocity are of the order of 10ÿ4m and 10ÿ7 m/s if
the used polynomial degrees exceed 9, 11, 29, and 11,
respectively. For grid type 4, a very high polynomial
degree such as 29 will cause numerical instability and
very large errors in position and velocity.

When choosing a grid type, factors such as computer
memory, speed-up factor, and the permissible error
must be considered. For example, if one has no problem

in computer memory and allows maximum errors of
about 10ÿ4m and 10ÿ7m/s in position and velocity, one
can use grid type 1 with a polynomial degree of 9 to
achieve a speed-up factor of 145. Note that the maxi-
mum errors of 10ÿ4m and 10ÿ7m/s were adopted by
Balmino and Barriot (1990) in their experiments on a

Table 4. Maximum errors in position and velocity of the approximate 3-day orbits (note: in each grid type, the ®rst column is position error
in m and the second column is velocity error in m/s)

Degree Grid type 1 Grid type 2 Grid type 3 Grid type 4 Grid type 5

7 1.87e)3 2.14e)6 4.46e)3 4.96e)6 8.88e)2 1.03e)4 2.52e)1 2.98e)4 3.83e)3 4.20e)6
9 2.82e)4 3.19e)7 1.41e)3 1.57e)6 4.38e)2 5.10e)5 4.89e)1 5.76e)4 1.33e)3 1.47e)6
11 3.64e)4 4.29e)7 2.26e)4 2.59e)7 2.15e)2 2.50e)5 2.46e)1 2.88e)4 5.21e)4 5.87e)7
13 1.00e)4 1.17e)7 3.67e)4 4.25e)7 1.28e)2 1.50e)5 7.31e)2 8.18e)5 7.49e)4 8.79e)7
15 3.33e)4 3.94e)7 4.65e)4 5.51e)7 6.64e)3 6.91e)6 1.06e)1 1.22e)4 6.18e)4 7.33e)7
17 1.59e)4 1.86e)7 2.41e)4 2.87e)7 4.15e)3 4.90e)6 1.36e)1 1.58e)4 5.25e)4 6.25e)7
19 2.93e)4 3.45e)7 5.59e)4 6.64e)7 2.98e)3 3.54e)6 2.91e)1 3.36e)4 4.67e)4 5.56e)7
29 2.61e)4 3.09e)7 3.07e)4 3.63e)7 6.02e)4 7.16e)7 1.96e+1 2.32e)2 9.14e)4 1.08e)6

Fig. 4. Speed-up factors achieved by the new algorithm with di�erent
grid types and polynomial degrees

Fig. 5. The di�erences in position (top) and velocity (bottom) between
the forward- and then backward-integrated orbits, the integrations use
the new algorithm with grid type 1 and a polynomial degree of 9
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gradiometer mission. For this particular choice, the
di�erences in position and velocity between the for-
ward- and then backward-integrated 3-day orbits are
computed and are plotted in Figure 5. With maximum
di�erences of 3:1� 10ÿ5m and 3:7� 10ÿ8 m/s in posi-
tion and velocity, Figure 5 also demonstrates that both
the numerical integrator DVDQ and the new algorithm
are highly stable.

6 Conclusion

The proposed algorithm for orbit integration has been
proved realistic for a case involving a low orbiter at an
altitude of 170 km. On an average workstation, the
computer time for integrating a 3-day orbit with a
degree-360 gravity ®eld can now be reduced to less than
one CPU hour. When using single-precision arithmetic,
the proposed algorithm may be used in Encke's method
of orbit integration with a non-singular formulation of
equations of motion to achieve the same level of
accuracy as achieved by using the double-precision
arithmetic. The proposed algorithm can also be used to
compute the high-degree components of the six second-
derivatives of the perturbing potential which are needed
for integrating the variational equations (GTDS 1976,
pp. 4±15). In such a case the required memory capacity
will double that required for the acceleration compo-
nents discussed in this work. Furthermore, for a highly
eccentric orbit, the algorithm is still applicable, but will
require more computer memory to store the grids that
span a relatively large radial range. All programs
described in this paper are freely available at the
anonymous ftp site: gps.cv.nctu.edu.tw/pub/data/
fast orbit
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