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Magnetically Charged Black Holes In Induced Gravity

W. B. Daií,  W. F. Kao2, and Shang-Yung Wang’
ëDepartment of Physics, Tsing Hua University, Hsin Chu, Taiwan 300, R.O. C.

21nstitute  of Physics, Chao Tung University, Hsin Chu, Taiwan 300, R.O.C.

(Received April 23, 1998)

It is shown that the regular SO3  non-abelian spherically symmetric monopole
solution does not exist in an induced Einstein-Yang-Mills-Higgs model. It is also shown
that Higgs scalar hair cannot exist in the presence of a black hole event horizon in this
model. The corresponding global behavior of the gauge field is analyzed in a black hole
background. In particular, it is shown that a non-trivial non-abelian monopole solution
exists only if the radius of the event horizon is smaller than the characteristic radius of
the classical monopole.

PACS. 04.70.B~  ~ Classical black holes.
PACS. 11.15.-q  - Gauge field theories.
PACS. 11.15.E~ - Spontaneous breaking of gauge symmetries.
PACS. 14.80.H~  - Magnetic monopoles.

I. Introduction

There has been much research activity on the classical behavior of a non-abelian monopole
in a static and spherically symmetric curved space [1,2,3,4].  Note that it was first shown
by ët Hooft and Polyakov [5], motivated by the singular solution with a Dirac  string in the
abelian  U1 gauge theory [6], that a regular spherically symmetric monopole solution does
exist in a non-abelian SO3  gauge theory with a Higgs potential that exhibits spontaneously
symmetry breaking (SSB).

It is also known that the monopole configuration exists only when the associated
second homotopy group is nontrivial, i.e. j&(M) # 0. Here M 3 G/ëH  denotes the Higgs
vacuum configuration associated with the symmetry breaking pattern 6 -+ 7-t [7]. There
is, however, no general rule that can guarantee the regularity and stability of the classical
monopole solution in a model independent version. As a result, there has been considerable
interest in the study of the non-abelian monopole in various models of interest.

Note that the monopole solution has also been found for similar models in curved
space-time [1,2,3]. Moreover, the physical behavior of a monopole solution in the presence
of a black hole background has also been a focus of related studies [l, 2,3,4]. It is known that
the no-hair theorem is a widely-believed conjecture in black hole physics [8]. Evidence also
indicates that only three kinds of physical quantities: the electric charge Q, the gravitational
mass M and the angular momentum J, can be detected outside the event horizon of a black
hole [9]. Hence a consistency check of the no-hair theorem for any model of interest is thus
an important and routine program.
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Induced gravity model has also been a focus of research interests following the in-
troductory work by Zee [lo]. It was shown that induced gravity may have important
implications in inflationary universe [ll]. Note that gravitational constant and cosmologi-
cal constant are in fact dynamical variables in the induced gravity model [la]. Hence it was
raised as a research problem to study the behavior of the Higgs scalar field in the presence
of the classical black hole [2,4,13].  Existence and stability of monopole solution has also
been studied in the induced Einstein-Yang-Mills-Higgs (EYMH) models [4,13].

In this paper we will present a more complete analysis of the existence and properties
of non-abelian monopole in an 5í0s  induced EYMH model. We will show that regular
spherically symmetric monopole solution does not exist in this model. It will also be shown
that no-hair theorem also applies to the Higgs scalar field in this model. There exists,
however, black hole solution with non-trivial gauge configuration that differs from the well-
known Reissner-Nordstrom solution under certain constraint, in particular TH > l/en, on
the coupling constants. Here rH denotes the radius of the event horizon while l/(ev) is the
characteristic radius of the classical monopole configuration. Note that e will denote the
gauge coupling constant. We will discuss these results in this paper.

This paper will be organized as follows: (i) in section 2, we will present a brief review
on the derivation of the field equations; (ii) In section 3, we will show that regular spherically
symmetric monopole solution does not exist in this model; (iii) a no-hair theorem and the
global behavior of the magnetically charged black hole solution will be studied in section 4;
(iv) some concluding remarks will be drawn in section V; (v) finally, in the appendix, we
will verify the conservation of the generalized energy momentum tensor.

II. The action and field equations

The Einstein-Yang-Mills-Higgs model with real SOS triplet scalar field is given by
the following action:

Here R is the scalar curvature and E denotes some dimensionless coupling constant of order
one. Moreover, the Higgs scalar field c$ì,  with a,b,. . . = 1,2,3 denoting the SOs gauge
indices, is the real triplet scalar field. Note that the gauge covariant  derivative Dpg!P of 4”
and the curvature tensor F;v of the gauge field A: are

Fa = d
P”

Aî - 6’CL ”
A" + et,bcAb A””  P P Y)

respectively with e denoting the dimensionless gauge coupling constant. Furthermore, we
will also assume the well-known Higgs potential V(C#Iî)  = +(c$’ - v~)~.  Here $2 s @C#P
denotes the squared-norm of the scalar field. Note also that the action (1) exhibits global
scale invariance in the limit zr = 0 since all coupling constants are dimensionless (except U)
by construction.

The Euler-Lagrange equations of motion can be obtained from varying action (1)
with respect to gPV, AZ and 4î.  After some algebra, one has:
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D"F;" = et,bc$bDV$f, (5)

and

Here G,, = ig,”R -- R,, is the Einstein tensor while Tp,, is the energy momentum tensor
associated with the scalar field C$ and the gauge field A; given by the following expression:

Tw = W'-%@= t F;p - gLLv
[
aF~~Faputaopq~~~~t~(d)].

Moreover, IpV can be thought of as the ëgeneralized energy momentum tensorí which has
to be divergentless, Dîlpy = 0, due to the Bianchi Identity DPG,, = 0. Proof for the
conservation of the generalized energy momentum tensor will be given in the Appendix.
For simplicity in notation, we have written both gauge covariant derivatives and tensorial
covariant derivatives uniquely with the same notation as D,Ti. Here T; denotes physical
fields with gauge index a and some space-time tensor indices ~1. To be more specific,
DaF$, = &F$ - l&FXay - I'~,F~,tt,b,A~F~,,  is the correct covariant derivative of F;V
which is covariant with the cooperation of the gauge connection A; and the affine connection

IL
Indeed, the correct details of the covariant derivatives can be read off directly from

any field equations since all field equations are covariant by construction.
For latter convenience, we will write @ = v@ with @ denoting the unitnorm scalar

field such that @@ = 1. Note that @ is in fact the gauge-phase part of the Higgs field.
Therefore, one has

$=Dp@=O,

D,@D,$=+$=D~D,$= =o

from successively differentiating the identity JaJa = 1.
Hence one can write Eq. (6) as

(8)

(9)

Moreover, one has

from multiply Eq.(lO)  with 8. Note that one has used the identity (9).
Note that the trace of Equation (4) gives:
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-R =
( )

6 + ; fa,,iY, + $D,P, + f V(P)D,#Dp@ +  4 - 19 .

Therefore one has

(12)

(13)

Finally, equations (lo), (12) and (13) give

D,D~@ + $PD~J~D~~J~  + sapp~fip = 0. (14)

Therefore, the field equations can be written, in terms of the new variables 9 and @ as

G,, =  2  -$Q&Y - g,A$MP+4  t +,A, - gPvDpdPq)
{ [ 1 (15)+?$3 + Tj) +

(17)

Here

represent the energy momentum tensor associated with the gauge field A;, norm of the

scalar field v and the phase content of the scalar field @ respectively.
In this paper, we will focus on the implications of the induced gravity model in a

static and spherically symmetric pseudo-Riemannian space with the metric given by:

dr2
ds2 = -B2(r)C(T)dt2  + -

C(T)
+ r2(d02  + sin2 8~~). (22)

Note that non-vanishing Einstein tensor can be shown to be
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2CB’
Gii=-;+;+F+~,

Ggg=GG__=!?+Cí+~+~+Cî,
r 2

(24)

(25)

in an orthonormal frame. Here the prime denotes differentiation with respect to the argu-
ment T. We will also adopt the spherically symmetric ët Hooft-Polyakov ansatz for gauge
field and Higgs field. It is given by

(is” = cp(f-)P, (26)

A?=6 ,.1-w(r)+jt all
er ’ (27)

A; = 0, (28)

in Cartesian coordinates. After some algebra, one can show that equations (15-18) become

C’ = f (1 - C) - rp, (29)

B’  = Z(/J - r), (30)

1 = 0,

once the gauge ansatz and Higgs ansatz are substituted. Here

,=c{3+ ($+$)4 +5 [(2+3P+f-4}

+f $+-$
[ (

(1 - w212  + qv>
2e2r4 )I 7

r=c [3V (g+g+; 1 -,(,+-$  1 $2 1+i g+-$I ( (1 - w2j2 + qp>
2e2r4 )I 7

(31)

(32)

(33)

(34)
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are the generalized energy density and the generalized radial pressure measured with respect
to the orthonormal frame. Note that the Higgs equation (32) is independent of the gauge
field. This is a very unique result due to the induced coupling @R. It will be used to show
that (i) regular monopole solution does not exist, (ii) no hair theorem does apply to the
norm of the Higgs scalar p.

III. Non-existence of regular monopoles

In this section, we will show that regular monopole solutions to the system of Eqs. (29-
32) does not exist due to special coupling in the induced gravity model. Note that the most
general boundary conditions of various field variables at the origin (r = 0) can be argued
to be:

C(0) = 1, ~(0) = 0, w(0) = 1, B(0) finite. (35)

Note the argument leading to the non-existence of regular solution to be shown in a moment
remains valid as one relaxes the boundary condition on ~(0) to be finite at T = 0. Therefore,
one can expand these fields as

p(r)  = k,r + . . .

W ( T )  =  1 - k,T2 + ...

c(T) = 1 - kc? + . . .

B ( T )  =  &j - kg? + ...

near the origin. Here k,, k,, kc, kg and Bu 3 B(0) are constants to be fit
equations. Moreover, m,n are both positive integers which can be shown
inequality m,n >_ 2.

(36)

(37)

(38)

(39)

with the field
to satisfy the

On the other hand, asymptotic flatness and regularity of various physical quantities
will also impose on these fields the following boundary conditions:

C(m) = B(m) = 1, W(oo)  = 0, $+o) = 2, (40)

at spatial infinity.
In order to show the non-existence theorem, one needs to show a few Lemmas. First

of all, one will show that 9 is a monotonically increasing function if v < ëu  or monotonically
decreasing function if 9 > V.

This can be proved by showing that q has no maxima for p > u and no minima for
C+I  < w. Indeed, Eq. (32) shows that

XV2 $92 - v2
ìí  =  2(1 t  6 4  15í~ (41)
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at local extremum of QZJ.  Let ru be the point such that @(TO) = 0. It follows that QZJ”  > 0 at
r. if 9 > D. This means that 9 is a local minima if q > u at TO. Similar argument leads to
the statement that v is a maxima if v < v at ro. This proves the statement stated above.
As a result, p has to be a monotonic function because p --+ v at spatial infinity. Hence one
proves that 9 will monotonically approach v as T increases no matter what its initial value
is.

Note that one can derive

xv2 O3J2(1+6E)  o
drBr2(y2  - vî)  = BCr2yíyl,=, (42)

from multiplying both sides of Eq. (32) by y and integrating over T. Here one has dropped
the vanishing boundary term BCr2#~l,,u  as the boundary condition C(0) = 0 demands.
Equation (42) indicates that the left hand side of equation (42) is positive definite if ë3  > v.
On the other hand the right hand side of equation (42) is negative definite since 9’ < 0
everywhere due to the Lemma just proved. Hence there is a contradiction here. Similar
argument show that contradiction also appears if p < w. Hence there does not exist
non-trivial solution to v that satisfies different boundary conditions at the origin and the
spatial infinity. Hence the only consistent solution of is the constant v. Note that p = v
will make 4 singular at r = 0. Therefore, one reaches the conclusion that regular ët Hooft-
Polyakov monopole solution does not exist in this induced EYMH model. Note that the
9 = v monopole solution has been discussed in great details in reference [13].  Our analysis
provides a complete proof that trivial Higgs solution is the only possible regular spherically
symmetric monopole field configuration this induced system can admit. We will also show
that Higgs hair can not exist if a black hole event horizon exists shortly in the following
chapter.

IV. Magnetically charged black holes

A black hole is characterized by the event horizon. In the presence of the event
horizon, we consider solutions of Eqs. (29)-(32) in the region T E [r~,co),  where TH is the
radius of the (outermost) horizon. The boundary conditions at T = TH are

c(rH)  =  0, c'(rH)  2 0, (43)
and the functions q, #, w, wí and B are assumed to be finite [14]. At infinity the asymptotic
flatness conditions (40) must be satisfied.

We will show that no-hair theorem is true for the cp field such that Higgs field has to
be frozen at its global minima 42 = v2. Indeed, one has

xV2
+ 2(1 t 66)

(1 t ;)(p - v)~] = BCr2pí(p  - v)lrîH

from multiplying Eq. (32) by (p - )v and integrating with respect to T from the event
horizon rH (where C(TH) = 0) to spatial infinity, Note that properly dropping boundary
terms after appropriate integration by parts are required to derive equation (44).
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It is known that B and 9’ are both finite as required by the regularity of these field
variables. Hence the right hand side of above equation vanishes because (i) C(TH) = 0 at
the lower bound TH and (ii) 9 -+ ëu  at spatial infinity. Therefore equation (44) shows that
P(T)  = v for all T > TH because the integrand on the left hand side of the equation (44) are
all positive. This proves the no-hair theorem for the Higgs field in this model.

Similarly, one can derive, from multiplying Eq. (31) by w and integrating from the
TH to infinity,

cwt2 + $(C2Y2T2  + w2 - 1) I = BCwíwlrH (45)

after proper integration by part. Note that the right-hand side of above equation vanishes
by similar argument due to the boundary conditions. If (c?v~T~  - 1) 2 0 for all T 2 TH,

or equivalently TH > l/(ew), one has W( T) = 0 for all T > TH. Note that l/(ev) is the
characteristic radius of the classical monopole. Hence the constraint TH > l/(ev) indicates
that the event horizon of a non-trivial w monopole black hole solution does fall inside the
characteristic size of a monopole configuration. Equivalently, it is a black hole in a monopole

PI.
Hence a black hole with a horizon TH 2 l/(ev)  will demand that w = 0 which can be

shown to give the Reissner-Nordstrom black hole solution. Indeed, when 9 = u and w = 0,
the field equations can be solved to give:

c =  1 - & +  2cu:e2T2’ (4s)

B = 1, (47)

which is exactly the Reissner-Nordstrom solution. Here m is the ADM mass of the black hole
and the constraint m 2 e is required to prevent the exposure of the naked singularity.

Note that the field equation can be reduced to

C’  = i(l - C) - ;

Bw12B’  = -
tx ’

[

cw12 +  (I- w2)2 + w2

2x2 1 ,
(49)

(BCwí)’  = $(w2 + x2 - I),

Here we have written x = eíur,C  = C(x), B = B(x) and w = w(x) for sim-plicity. Hence
the condition for a non-trivial w black hole solution becomes XH < 1. We will hence work
on the case where XH < 1. Note also that the prime denotes differentiation with respect
to the argument x. One notes that equations (48850) are similar to that of the gravity
minimally coupled to the SZJ2 gauge field and the Higgs field system in the limit of infinite
Higgs self-coupling constant studied by Aichelburg and Bizon [4],  and our numerical results
are in agreement with theirs.
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We will show two lemmas [4] that control the behavior of w under the influence of the
field equation in certain domain. Lemma one states that w is a monotonically decreasing
(increasing) function of 2 if w > l(w 5 -1). Lemma two states that w monotonically
approaches 0 in the range x 2 1.

Since the field equations are invariant under w --+ -w, one can assume W(XH) > 0
without any loss of generality. Note that, at local extrema such that wí(xe)  = 0, equation

(50) b ecomes

cm”  = qw2 + xi - 1).
Xzl (51)

If w 2 1 one has wî > 0 at the local extrema for all 50 > 0. This means that W(Q) is a
local minima. Similarly, if w < -1, one can show that w(xe) is a local maxima. Therefore
the boundary condition of the variable w at spatial infinity, w(co) -+ 0, will rule out the
existence of local extrerna for w in the region ]w] > 1. Hence any physical solution of w
has to be a monotonically decreasing (increasing) function in z as long as the field value of
w remains in the domain w > l(w 2 -1). This proves Lemma one.

On the other hand, sign (wî) = sign (20)  at these extremum (where ~ë(20)  = 0
throughout the whole region ~0 2 1. This means that local extrema is a local minima
(maxima) if w > O(w < 0). Hence one proves Lemma two that states: w monotonically
approaches 0 in the range x 2 1.

Note that, at the event horizon of a black hole where x = XH, equation (50) reads

Cíw’  = ìI(w”  + XL - 1)
4

(5ë4

since c(XH) = 0. Hence W(XH) > 1 will imply Wí(XH)  > 0. Note that we have used the
fact the Cí(ZH)  > 0 since C is assumed to be positive definite for all x > XH. Recall that
W(ZH)  2 1 implies that w is a monotonically decreasing function such that Wí(Z)  < 0 for
all x according to Lemma one. Therefore we have a contradiction here. Hence one has the
conclusion that W(XH) < 1. Note that similar argument also holds if w < 0 .

Note that one can also show that Wí(XH)  < 0 following similar argument. Indeed,
if Wí(XH)  2 0 one should have We t x& - 1 > 0. Furthermore, there must exist at
least a local maxima of w somewhere since w will have to turn its direction in order t o
approach zero at spatial infinity. Note also that w has to attain this maxima before it
reaches the region w > 1. Otherwise w will keep increasing once it reaches the region w 1 1
according to Lemma one. Hence there must exist a local maxima of w at x0 E (XH, 1) such
that 1 > w(xu) > W(XH).  Note that one has ZU(XO)~  t xi - 1 < 0 at the local  maxima
according to equation (51). Hence one has a contradictory result x& > xi since one has (i)
+H)2 t XL - 1 > 0 and (ii) w(xe) > W(XH) as a local maxima. Hence one reaches the
conclusion that (i) W(ZH) < 1 and (ii) Wí(XH)  < 0.

Note that Wí(2H)  < 0 and a E W(xH)  > 0 indicate that

l-u2>& (53)

following Eq. (52). There ore,f the necessary condition for the existence of a non-trivial w
non-abelian black hole is



702 MAGNETICALLY CHARGED BLACK HOLES IN INDUCED GRAVITY VOL. 36

XH < 1, (54)

in agreement with our previous result. Moreover, one has

Cí(xH)  = L _ ë12;xf)2 u2 L o

XH H =H
(55)

from Eq. (48). Equivalently, one has

a4 - 2(1 - L&)Cz” - 2(X& + 1 5 0 (56)

which admits real solution for a only if

XL - 2(1 - E) > 0. (57)

Hence one has (i) XH > dm if l/2 < E < 1; (ii) magnetically charged black hole can
not exist if 0 < c 2 l/2; (iii) there is no constraint at all for E 2 1.

Finally, one notes that the inequalities (53) and (56) saturate for extremal black hole
such that cí(ZH)  = 0. Hence one has

XH = \/2(1 - c) (58)

if l/2 < c < 1.
In summary, one has shown that (a) w can be an oscillatory function in the domain

x E (XH,l);  (b) w has to approach 0 monotonically in the domain x 2 1; (c) w(XH)  < 1;
(d) Wí(XH)  < 0; (d) 1 > XH 2 Jm if l/2 < E < 1; (e) magnetically charged black
hole can not exist if 0 < E 5 l/2; (iii) there is no constraint at all for t > 1. Note that these
constraints will be very helpful for setting correct initial conditions for numerical solutions.
Note that equations (48-50) can be reduced to

c’  = i(l - C) - ;
[
cd2 + (1 - w2j2 + w22x

1
7

cw”  + clwl  +
cwt3
--& + ;(I - w2 - x2) = 0

(59)

(60)

after eliminating B(z). Note that C(x) and W(X) can be expanded as

c(X) = c(x - XH) + o((x - xH)2) + * * *,

w ( x )  =  a  t  b(x - X H )  t o((a: - XH)2)  t ***

near XH. Therefore one has, from recurrence relation,

(61)

(62)

(63)
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b=- -J&(1-  a2 - &),
H

with a confined by

Note that 2~ = dm and a = dm for extremal black holes. Note that similar
stable solutions has been solved numerically in reference [13].

V. Conclusion

We have shown that regular 5í0s  non-abelian spherically symmetric monopole solu-
tion does not exist in an induced Einstein-Yang-Mills-Higgs model. Hence one turns our
attention to charged black hole solutions. It is then also shown that Higgs scalar hair can
not exist in the presence of a black hole event horizon in this model. It is also shown
that existence of a non-trivial monopole-charged black hole solution in the induced EYMH
model imposes a number of constraints on the field parameters t, W(XH),Wí(XH)  as well
as the location of the event horizon XH. In particular, it is shown that non-trivial non-
abelian monopole-charged black hole solution exists only if the radius of the event horizon
is smaller than the characteristic radius of the classical monopole, i.e., TH < l/(ev). We
have also analyzed the global behavior of nontrivial w such that large distance behavior of
w is available without solving the field equation directly. These analysis may be helpful for
related studies. One would like to emphasize again that our analysis is valid only under
the assumption of the spherically symmetric ansatz adopted throughout this paper.
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Appendix

We will show that the generalized energy momentum tensor is indeed a conserved quantity
here. In fact, Dë7Pu  = 0 can be shown to give

with help of the identity [Dp, Dv]d"p = R,,d"p which follows from the definition of the
curvature tensor, and the Bianchi identity for F,ì,, i.e., DpFfp + D,F$ + D,F,", = 0.

Moreover, Eq. (11) and Eq. (15) gives
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Comparing with Eq. (66), one has

2d,pDî$=D,cji”  + cpD,@D,Dî@  = 0, (68)

Indeed, one notes that above equation is exactly Eq. (18). Hence one proves the claim
Dîlpv  = 0
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