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An Incremental-Learning-by-Navigation Approach to HERMIES developed by Saussuet al. [1] includes a successful
Vision-Based Autonomous Land Vehicle Guidance in learning system in which the robot, placed in an arbitrary initial lo-
Indoor Environments Using Vertical Line Information and cation without any prior specification of its environment, successively

Multiweighted Generalized Hough Transform Technique discovers and navigates around some obstacles, searches for a desired
target, and performs a learned sequence of manipulations on the
Guan-Yu Chen and Wen-Hsiang Tsai control panel device. Another system developed by Onogetchi.
[2] is a visual navigation robot working in a nuclear power plant. The
operation of this system is divided into two stages. In the first stage,
Abstract—An incremental-learning-by-navigation approach to vision- g multi-information local map describing information necessary for
based autonomous land vehicle (ALV) guidance in indoor environments gqf |5cation measurement is created interactively from stereo images
is proposed. The approach consists of three stages: initial learning, . L .
navigation, and model updating. In the initial learning stage, the ALy collected during remote-controlled navigations. The second stage is
is driven manually, and environment images and other status data are autonomous navigation. Légue and Aggarwal [3], [4] developed
recorded automatically. Then, an off-line procedure is performed to build an integrated system to generate architectural CAD models using a
an initial environment model. In the navigation stage, the ALV moves mgpjle robot. The system consists of a segment detector, a tracker and

along the learned environment automatically, locates itself by model N . . .
matching, and records necessary information for model updating. In the a CAD modeler optimized for environments with prominent three

model updating stage, an off-line procedure is performed to refine the dimensional (3-D) orientations. Nashashiti al. [5] proposed an
learned model. A more precise model is obtained after each navigation- approach to build a rough geometric model for a 3-D terrain using a
and-update iteration. Used environment features are vertical straight |aser range finder. They also gave algorithms to build snapshot models
lines in camera views. A n_"lult|we|ghted generalized Hough transform is with planar faces from range data, and to perform 3-D data fusion
proposed for model matching. A real ALV was used as the testbed, and . R
successful navigation experiments show the feasibility of the proposed P&fween these snapshot models, in order to build incrementally a
approach. reliable 3-D model [6]. Ishiguret al. [7] also presented a strategy for
establishing models of an unknown environment by a mobile robot.
In their implementation, panoramic sensing was used to perceive the
structure of the environment.
In Ku and Tsai [8], a model-based navigation was proposed. The
I. INTRODUCTION corridor contour is used to match the model and the input pattern
o are extracted from video camera images. So, the global location
A. Motivation of the ALV can be known. In Chang and Tsai [9], a vision-based
Because of the fast development of computer vision techniques)lision avoidance method is proposed for ALV navigation. The
vision-based guidance of autonomous land vehicles (ALV’s) has beeorridor contour of a building is used as the model, and laser markers
intensively studied in the recent years, and model-based methadisl cameras are used to detect corridor contours and obstacles. A
are often used in practical experiments. However, the establishmeaw guidance approach by model matching was proposed in Cheng
of environment models is really a time-consuming work. It is thuand Tsai [10]. Two laser light sources were employed to reduce the
desired to design a process for automatic modeling of navigatitme for computing vertical positions by triangulation. A matching
environments. With this process, it is not necessary to measure itheme using distance weight correlation is also proposed. In Su
environment manually. Instead, just drive the ALV manually oncand Tsai [11], model-based navigation and collision avoidance in
along the desired path, and all jobs about initial model learning willuilding corridors and elevators was proposed. The multiple corner
be automatically accomplished without human involvement. position information was matched with the model to locate the ALV
However, certain problems arise when a fully automatic modaktcurately. Pan and Tsai [12] proposed an integrated approach to
establishing process is performed. The noise of image processingomatic model learning and path generation for vision-based ALV
and the shake of the ALV will reduce the accuracy of the obtaingglidance in building corridors.
model. Since the noise coming from image processing will not appear
at the same place in each navigation cycle and the error causedcb
ALV shaking may be eliminated by averaging several observations,
it is possible that more training using multiple navigation data will The goal of ALV learning and guidance of this study is to equip the
reduce the inaccuracy. This means that after initial model learnirfy with the capabilities to explore the environment with its sensors,
we could utilize the information recorded in each navigation cyckonstruct an appropriate model of the environment, and navigate
to update the original coarse model, and hopefully a more reliasignoothly and safely in the learned environment.
refined model could be obtained after several navigation trainings.The proposed approach, incremental-learning-by-navigation for
This leads to our study of “incremental-learning-by-navigation” fofLV guidance in indoor environments, consists roughly of three

Index Terms—Autonomous land vehicle, guidance, incremental learn-
ing, model matching, navigation, weighted generalized Hough transform.

Yoverview of Proposed Approach

ALV guidance in indoor environments. stages. The first stage is initial learning, in which the ALV is driven
manually along a path decided by the driver and the environment im-
B. Survey of Related Studies ages captured by the camera and the control status data are recorded.

A lot of successful ALV systems have been established for varioh&en, a certain off-line procedure is performed to construct the initial

purposes. For environment learning, the autonomous mobile robgpdel. This is accomplished by calculating the relation between the
ALV and the environment features observed in each learning cycle,
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Fig. 1. lllustration of the proposed “incremental-learning-by-navigation”
approach. Fig. 2. The four coordinate systems ICS, CCS, VCS, and GCS.

and the third stages, namely, ALV navigation and model updating,1)
may be repeated several times in order to obtain a more reliable
model. The relation of these three stages is illustrated in Fig. 1.

The second stage, the navigation task, can also be roughly divided
into three phases. The first phase is to calculate the relation between
the ALV and the environment features observed in the image taken in
the current cycle. The second phase is to perform a model matchin@)
scheme so that the ALV can locate itself accurately. The third phase
is to drive the vehicle toward a favorable direction by a control
strategy. The detailed procedure of navigation will be described
later.

Selecting stable environment features and developing effective3)
methods to extract these features are the most important keys to
success of model-based ALV guidance, especially to the model
learning and update works. In this study, we extract all vertical line
features in each environment image with no care about what the4)
lines really represent. One reason for using vertical lines as features
is that they can be treated as points in the top view; this facilitates
the use of many well-developed point matching techniques to locate

The vehicle coordinate system (VCS): denoted:-ag—. The
origin V' of the VCS is chosen to be at the middle point of
the line segment which connects the two contact points of the
two front wheels with the ground. Theaxis andy-axis are on

the ground and parallel to the short and the long sides of the
vehicle body, respectively. Theaxis is vertical to the ground.
The camera coordinate system (CCS): denoteg-asw. The
camera is associated with the camera coordinate system whose
origin C' is attached to the camera lens center. Thexis is
coincident with the optical axis and the-w plane is parallel

to the image plane.

The image coordinate system (ICS): denoteduas. The
image plane of the image coordinate system is coincident with
the u—w plane of the CCS and its origih is the image plane
center.

The global coordinate system (GCS): denoted’ag’—:'. The
origin & of the global coordinate system is located at a certain
fixed position. The:'-axis andy’-axis are defined to lie on the
ground.

the ALV. Another reason is that vertical lines can be extracted morefig. 2 shows these coordinate systems. Since the origins of the

easily and stably by many image processing techniques; this lead$dg, CCS, and VCS are attached to some points on the ALV, the
the use of less image processing time which is necessary for a regls, CCS, and VCS are moving with the vehicle during navigation.
time navigation system. Compared with other approaches, our methogl the contrary, the GCS is fixed and is defined to be coincident
has the advantages of improving the initial learning result constan{lifth the VCS when the ALV is at the starting position in the initial
in every navigation session. Most existing approaches have no sw§del learning stage.
incremental learning capability. The transformations between these four coordinate systems can be
The remainder of this paper is organized as follows. In Section ¥yund in [13] and [16]. Note that since the ALV always navigates
the proposed method to extract environment features for mog@g| the ground, the relation between the two two-dimensional (2-
learning and ALV guidance is described. In Section lll, the proposem coordinate systems—y and z'—y’' is sufficient to determine the
“incremental-learning-by-navigation” approach is described in detagosition and orientation of the vehicle. In other words, the translation
In Section IV, employed image processing techniques and somgtor («, y,) and the rotation angle of the ALV in the a'—y’
experimental results are presented. Finally, the conclusion of thisordinate system as shown in Fig. 3 determine the position and the
paper is given in Section V. direction of the vehicle in the GCS, respectively. The transformation
between the GCS and the VCS can be written as

Il. EXTRACTION ENVIRONMENT FEATURES (@ ¥y 1)=(xz y 1)
FOR MODEL LEARNING AND ALV GUIDANCE cosw snw 0171 0 0
—sinw cosw O0|]0 1 O 1)
A. Coordinate Systems and Transformations 0 0 1] |z, w 1

In the proposed ALV guidance process, the following four co- In the following sections, the combination of the vehicle position
ordinate systems are used to describe the vehicle location and &he direction is referred to theehicle locationand is denoted by a
navigation environment. triple (xp, yp, w).



742 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 28, NO. 5, OCTOBER 1998

Fig. 3. The relation between VCS and GCS.

B. Ideas of Locating and Matching Vertical Line
Features for ALV Guidance

In this study, the termVertical lines are defined to be the ones
which are parallel to the’-axis of the GCS. Vertical lines may be
the edges of walls, windows, doors, bulletin boards, paintings on
the walls, and so on. Vertical line features provide abundant 34ig. 4. A view of the navigation environment. The further line segment looks
information and may be collected to serve as the basic element§6?rter in the captured images, while the nearer one looks longer. Both line

. . . o . __segments are of the same length actually.
the environment model. For simplicity, we only utilize those vertical
lines which appear nearly parallel to theaxis of the ICS in the
captured images. This simplifies the work of searching vertical lines
in the image and also speeds up the image processing procedure./~
However, this requires that the swing angle be nearly zero, i.e., the
w-axis must be nearly parallel to thé-axis, and that the tilt angle
be small (approximately within the limit a£3°). This requirement
must be satisfied when the camera is installed. -

With no depth information, a single image is insufficient for e
locating a vertical line in the GCS without any heuristic. However,
if a point on a certain vertical line is known to be on a known plane, =Pl g b
the location of the line may be uniquely decided. In our study, the
intersection point of a vertical line with the base line of the corridor i5ig. 5. lllustration of position estimation error due to the little variation of

. . . L . L the tilt angle.
used to locate the vertical line, since this intersection point is known
to be on the ground. The job of finding the intersection point can be
easily done by simple image processing techniques. The basic idea of the DWGHT is to replace the unity increment

The equations for calculating the VCS coordinates of a poighlue used in the cell value incrementation stage of the conventional
located on a known plane, e.g., on the ground, are derived in [Ifdneralized Hough transform proposed by Ballard [17] with distance-
and [16]. By the way, if the vehicle locatiofy;,", y,', w), is known, weighted increment values. The distance-weighted (DW) cell value
the GCS coordinates of the vertical lines can also be obtained by (hkrementation strategy for the DWGHT for a certain @&liin the

In our approach, a rough estimation Of the Vehicle |Ocati0n iS flrﬂough Counting Space can be describe as follows:
obtained by the use of the information of the odometer, which gives

the navigation distance during a cycle, as well as the photo-encoder,  for each point? at (z.. y.) in the input point pattern,
which feeds back the turn angle of the front wheels. Then by matching
the collected vertical line features with those in the learned model, the . o
error in the rough estimation of the vehicle location can be corrected, ~ for each orientatior®. and

for each scales,

and so safe ALV guidance is feasible. for each displacement vector, 6)
compute(, y) = (e, ye) + (r cos 8, r sin 9)
C. Multiweighted Generalized Hough Transform for each cellVC' at location(z', y')
As mentioned in the previous section, a vertical line can be viewed in the neighborhood H of cell C' at (z, y),

as a point from a top-view. As a result, the learned model, which is
a collection of some vertical line features, can be treated as a set of
points, or a point pattern. Thus, the ALV location problem may be
solved by a point matching scheme. Our approach to point matching¥gere d is the Euclidean distance betweéhand NC|, ie., d =
based on a modification of the distance-weighted generalized Hougli=' — 2)* + (y' — y)*, and the distance-weighted functidfi(d)
transform (DWGHT) proposed by Jeng and Tsai [15]. The DWGHi

is useful for inexact matching of point patterns and may be employed 1

to detect or locate object shapes with noisy or distorted boundaries W(d) = Tra
caused by image sensing or preprocessing, so it is suitable for our

application since our feature patterns, the vertical lines, are oftenHowever, in the DWGHT, each point in the point pattern has the
distorted by erroneous image processing or by the shake of the Aldame importance, and the weight only depends on the distance of the

SetH(:L'l. y', S, (:)) = H(:v', y', S, (:)) + W(d) 2

®)
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Fig. 6. lllustration of the multiweighted generalized Hough transform: (a) original positions of template gataeh input patternV and (b) positions of
template patterr. and input patternV after rotating the input pattern with a certain rotation angjeand with respect to the origi®.

matched point pairs, but not on the importance of the point itseli H to zero.
In our approach, we propose the use of a multiweighted generalized®step 2. Increase the values of the cells H according to the
Hough transform (MWGHT), in which each point is attached witfiollowing cell value incrementation strategy:
an additional weight, called theonfidence weight )

There are two reasons to add this new weight. First, during the ~ for €ach rotation angle,
learning-by-navigation process, the confidence of a feature point for each point; with location (x,, y,) and
should be increased if the corresponding vertical line appears at confidence weightV, in template patteriN,
an identical position again in the next image because multiple
occurrences of a vertical line indicate that the vertical line feature is
reliable. Second, itis found that the errors of the feature points coming confidence weightV; in input patternL,
from locations far from the vehicle are relatively larger than those computéz, y) = (2, ¥p)
of the feature points near the vehicle. Two examples can illustrate
this fact. First, as shown in Fig. 4, the two segments are of the
same length actually, but in the perspective image, the further line

for each point; with location(z,, y,)and

— (x4 cOs ¥ — yq sin 7, x4 sin v + y, cos ) (5)

for each cellNC with location (', y', %) in the

segment looks shorter while the nearer one looks longer. As a result, neighborhoodV H of the cellC' at (z, y, 7).

image processing errors in pixel length may cause relatively larger setH(z2', v, v) = H(', v, 7)

errors in the estimations of the positions of further points. Second, 1

Fig. 5 shows the errors caused by the variations of the tilt angle. Two +Wp - W m ©)

sources of variations of the tilt angle values are shakes of the ALV
and imprecise camera calibration results. Let the errors caused bywhere D is a pre-selected constant, andis the Euclidean distance
variations of a tilt angle at a short distance and at a long distance igfweenC' and NC, i.e.,

p andq, respectively. Also, let the distance between a further point _ - 5 - 3

P; and the camera be and that between a nearer poit and the di= /(@ — 2P+ —y)* Q)
camera ber. If the variation of the _t'lt_ angle ig, Fhen sinced is Step 3.Find out the location of the cell with the maximum value
small, the errors caused by the variation of the tilt anglé’foand in H.

P,, respectively, can be written as

Step 4. Exit with the corresponding displacement vector
(74, ye, v) as the output.
p=rt, q=sb. (4) An example may be used to illustrate how Algorithm 1 works.
A template patterr. and an input patteriN are given, and what
Sincer < s, we haVep < q. The conclusion is that the error dUedesired is the disp|acement vectot;, v, 7) which transformsN
to the variation of the tilt angle is directly proportional to the distancg 1, through a translatiorfz,, y,) and a rotationy. The original
between the point and the camera (or the ALV). positions of the template pattern, represented in black dots, and the
The above discussions show the need of a confidence weighfut pattern, represented in white dots, are shown in Fig. 6(a). The
for each feature point. In the rest of this section, an algorithigpsitions of N and L after rotatingN with a certain rotation angle
for the proposed MWGHT will be presented. The algorithms for; and with respect to the origify are shown in Fig. 6(b). For a
assigning and updating the confidence weights will be describedgBint P, in L and a pointQ; in N, e.g.,Ps andQs, the values ofr
Section IlI-C. andy in (5) compose the translation vector fray to P, as shown
Algorithm 1: Multiweighted Generalized Hough Transform in Fig. 6(b). The value of the cell’ (i, y, 7o) is increased by the
Input: An input point patterriN and a template point patteii.  incrementi, - W,. And the value of the neighborhood celiC
Output: The displacement vect@r:, y¢, v) which transformsN (1, y, ~,) is increased by the increme¥t, - W, - 1/(1+1/D)
to L through a translatiotiz,, y;) and a rotationy. because the distance froffi to NC is 1. For other neighborhood
cells, the increment value can be calculated from (6). For other
rotation angles, and for each point pair, similar operations are applied.
Steps Finally, a maximum value search is performed for the whole Hough
Step 1.Set up a 3-D Hough counting spak¥ ¢, y¢, ) including cell space, and the displacement vedter, y«, ) corresponding to
the maximum reasonable displacement, and set all values of the ctiks cell with maximum cell value is the desired output.
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The time complexity of Step 2 ©(n,nxnr,m?), wheren,. is the
number of candidate rotation anglesy is the number of points in
the input patteriN, ny, is the number of points in the template pattern
L, andm is the size of the neighborhoad #. The time complexity

of Step 3 isO(nrnzny), wheren, X ny X ny is the dimension of R

the Hough cell space. The space complexity of the entire algorithm

is O(n,ynany). \\\
Due to the limitation of computer memory space and speed, a I

hierarchical version of the MWGHT is used in our implementation.
In the MWGHT, the constanb, scales the distance weight function
and should be chosen carefully i, is too small, the weight function Fig. 7. The vehicle location before and after the ALV moves a distahce
will drop sharply while the distance gets larger. As a result, the effeigrward.
of the distance weight is eliminated.lf, is too large, the value of the
distance weight function always approaches to one, and consequently
the value in each cell is nearly the same and the real maximum cell
value is no longer distinguishable. In our experiments, the value of

Dy was set to be 15 cm.

Ill. STRATEGIES FORMODEL LEARNING AND ALV G UIDANCE

As mentioned in Section I-C, the proposed incremental-learning_—
S . ig. 8.
by-navigation approach consists roughly of three stages. s
Section IlI-A, an algorithm for establishing the initial learned model

lllustration of adjustment of the front wheels in a path.

will be described first. In Section IlI-B, the proposed approach to in the neighborhood of point. If there exists none, add the
guiding the ALV will be described next. And in Section IlI-C, the pointp to the learned global model; otherwise, compute the
algorithm for updating the learned model will be illustrated finally. weighted centroid of point and those points in the learned
global model within the neighborhood ¢f and add the
A. Construction of Initial Model resulting centroid point to the global model (the detailed

The goal of the first stage of the proposed approach is to construct _ computation process is described in Section '”_'C)' _
the initial model. The works for establishing the initial model are>tep 16: Gto to Step 9 if there exists a subsequent cycle; otherwise,
stop.

accomplished by the following algorithm.
Algorithm 2: Construction of Initial Model In Step 9, the estimated position and orientation of the ALV is used to

Step 1: Perform camera calibration. calcula_te the roug_h_GCS posi_tion o_f the feature points. In our _system,
Step 2: Drive the ALV manually to the starting location, and se{hg estlma_ted p05|_t|on and orientation of the ALV can be obtained by
up the GCS of the current model by the position angsing the information of the feedback sensors, namely, the odometer
orientation of the ALV. and the photo-encoder on the front wheels. In general, when the ALV
Step 3: Start the ALV. move from a known position, the new position of the ALV can be
estimated by using the moving distan§eand the turn angle of the
f&;nt wheels. The equations to calculate the estimated ALV location
the front wheels. are derived as follows. They can be also found in [12]. As shown in

Step 6: Manually drive the ALV with a certain distance and ar’:ig' 7, the vehicle is located a,t A. After mov!ng adista@:&arward,
appropriate turn angle the vehicle will be new location B, which is the desired estimated

Step 7: If the ALV reaches the goal, go to Step 8 to performA‘LV location. The relativ_e Iocati_on of B with re;pect to A is denoted
off-line processing: else, go to Step 4 for the next cycle.by a vectorT. The rotation radiug? can be written as

Step 4: Take an image of the environment using the camera.
Step 5: Record the counter of the odometer and the turn angles

Step 8: Perform image processing to find the local vertical line R= d ®)
features in the image taken in each cycle. " sin 6

Step 9: Compute the VCS and the GCS coordinates of the loc@lhered is the distance between the front wheels and the rear wheels,
features to form a local model. andsé is the turn angle of the front wheels. And the anglean be

Step 10: If the first cycle is processed, add the local model t0 a§atermined as
empty model to form a global model, and go to Step 16;

X S

otherwise, go to Step 11. V=g 9
Step 11: Extract desired feature points from the learned global ’

model with a certain window in the VCS to form an S0 the length of vectdT' can be solved to be

extracted model. _ IIT|| = R/2(1 — cos 7) (10)
Step 12: Perform the MWGHT to match the local model with the

extracted model. and the direction of vecto is
Step 13: Compute the actual slant angle and position of the ALV u=l _s_1 (11)

using the result of the previous matching. 2 2°

Step 14: Re-compute the more precise GCS coordinates of the localThe VCS coordinates of location B with respect to location A can
features according to the actual slant angle and position fus be computed by

the ALV computed in the last step.
Step 15: For each local feature poiptin the local model, check if zi =|[T|| cos u
there exists in the learned global model any feature point ys =||T|| sin u. (12)
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Fig. 9. Two examples of image processing results: (a) image with plain floor and (b) image with pieces of paper on the floor.

After the front wheel location of the ALV is determined, the rear Algorithm 3: ALV Navigation Process
wheel location(is, §;) of the ALV can also be determined to be  step 1: Read the learned global model and the planned path.
Step 2: Take an image of the environment using the camera and

N compute the initial position and orientation of the static
U =yn — d cos 7. (13) ALV

Tp =xp +dsin v

Since the GCS coordinates of location A are known, and the VCSStep 3: Start the. ALV. . .
coordinates of location B with respect to location A can be obtainedStep 4: Take an image of the environment using the camera.
from (12). The GCS coordinates of location B can be calculated byStep 5: Perform image processing to find the local vertical line

coordinate system transformations. Thus the desired estimated ALV features.

location is obtained. Step 6: Compute the VCS and the GCS coordinates of the local
As mentioned previously, the time complexity of the MWGHT is features to form a local model.

proportional to the size of the data set, i.e., the number of points inStep 7: Extract desired feature points from the learned global

the input pattern and the template pattern. As a result, the number model with a certain window in the VCS to form an

of vertical lines in a feature pattern must be controlled within a extracted model.

reasonable range. Fortunately, in the indoor navigation environmenttep 8: Perform the MWGHT to match the local model with the

this number is usually not large. In order to achieve the goal of real- extracted model.

time navigation, the processing time of the MWGHT must be reduced Step 9: Compute the actual slant angle and position of the ALV

This work can be done by extracting just the feature points near the using the result of the previous matching.

current ALV position from the learned global model, instead of usingtep 10: Re-compute the more precise GCS coordinates of the local

the full set of the model. Feature points which are impossible to features to refine the local model according to the actual

appear in the camera view, e.g., the points which are far away from slant angle and position of the ALV computed in the last

or behind the ALV, are of no help in the matching process. Such step. Store the coordinates and the confidence weights of

feature points should be discarded to speed up the matching. In our the local features for updating the model (see Algorithm

approach, a certain window in the VCS are used to extract the desired 4 described later).

points from the learned global model (see Step 11). Step 11: Determine the turn angle of the front wheels to guide the
The positions of the feature points in the local model are derived ALV close to the extracted path portion and turn the front

from the estimated ALV location. After performing the MWGHT, wheels of the ALV (the details are illustrated later).

the displacement from the local model to the learned global modeltep 12: If the ALV reaches the goal of the desired path, then stop;

is obtained. Note this displacement is also the displacement from the else, go to Step 4.

estimated vehicle location to the actual one. As a result, the actu

alrhe scheme for adjusting the driving wheel directiorin thi
vehicle location(z,. y,.. =) can be obtained by e scheme for adjusting the driving wheel directibrin this

study is based on the wheel adjustment strategy described in [12].
Tp=Fp+ T, Yp=Tpty, w=D—7 (14) The basic idea is to search a turn angle of the front wheels to drive
the ALV as close to the desired path as possible. As shown in Fig. 8,
given a reasonable moving distan§eand a fixed turn angle of the
front wheels, the location of the ALV can be estimated, as discussed
in Section Ill-A. Given a pathP, either a straight line or a circular
B. Steps of Navigation Cycle segment, defin@®% (6) as the distance from the midpoint of the ALV
Basically, an ALV navigation process includes the tasks of grafront wheels to the given patl? after the ALV traverses a certain
bing and processing images, locating the ALV, making guidanckstanceS with the turn angle5, whereS may be assigned to be the
decisions, and executing steering control procedures. The propoaedrage navigation distance during a cycle. Also, defif&(s) as
navigation process is described by the following algorithm. the distance from the midpoint of the ALV back wheels to the given

where(&,, §,, &) is the estimated vehicle location, aqeé;, v, v)
is the displacement vector.
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Fig. 11. An example of learned global models: (a) initial learned model and

@) (b) refined model after five iterations of incremental-learning-by-navigation.

The crosses represent real vertical lines and the spots are noise. Note the

removal of some noise points.
Rear Wheels Front Wheels

CCD Vision
System
(TARGA+)

model; otherwise, compute the weighted centroid of point

l p and those points in the learned global model within the
v neighborhood of), and add the resulting centroid point to
] ] Motor the global model.
N Command System Step 2: Normalize the confidence weights of the feature points in
— PC486-25 Stafus th_e learned model. _ _ _
< 32"&%"% Odometer | oo Step 3: Discard those feature points whose normalized confidence
Interface Odomater weights are smaller than a certain threshold valle
Counter Step 4: Adjust the confidence weight of the primary point, defined
to be the feature point nearest to the origin of the GCS,
(b) to be the maximum of all the confidence weights.
Fig. 10. The prototype ALV used in the experiments: (a) external view and In Step 1, the size of the neighborhood can be arbitrarily chosen.
(b) system structure. Choosing a large size of the neighborhood would cause the combi-

nation of two distinct feature points. Choosing a small size of the
neighborhood would leave unmerged a group of feature points which
come from inexact computation results of a single feature point (i.e.,
a single vertical line in the environment). However, the choice of
the neighborhood size does not affect the result of the MWGHT too

' . h. A is that, in the MWGHT, I cl feat int
To find the turn angle of the front wheel to drive the ALV as closénuc reason 1S fhat, in the several close fealure points

- . ) ) ith small confidence weights are equivalent to a feature point at the
to the path as possible, an exhaustive search is performed to flnd\é\fa 9 q b

. . Sition of their centroid and with a large confidence weight.
angle that produces the minimal valuelof, and the obtained angle When a new feature point is added into the model, the initial
is used as the turn angle for safe navigation. '

confidence weight attached to this new feature péintis assigned
by the following equation:

path P. Finally, define measuré  to be

Lp = Dp(8)+ DE(5). (15)

C. Strategies for Updating the Learned Model

The proposed algorithm for updating the learned model after a
navigation training is described as follows. Wp, =
Algorithm 4: Strategies for Updating the Learned Global Model:

Step 1: For each local feature point recorded in the navigation
session, check if there exists in the learned global modehere x5 and yv s are thex andy coordinates ofP; in the
any feature point in the neighborhood of poipt If VCS, respectively, and’y is a predefined constant. The coordinates
there exists none, add the pointto the learned global (z¢, yc) and the confidence weight'« of the weighted centroid of

1
L+ (a3 o5 + ¥ es)/Ca

(16)
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model and all noise points will be removed. Consequently, the goal
to establish a stable and practical model for the guidance of the ALV
may be achieved.

The primary point mentioned in Step 4 is chosen to be the one
closest to the origin. It is also the nearest feature point to the starting
location of the ALV in each navigation session. It plays an important
role in determining the initial location of the ALV. In real navigation
trainings, the primary point can usually be found in just one or
two cycles in the whole navigation session. It contrasts with other
feature points which might appear in four or more captured images
in the navigation cycles. As discussed in the previous section, fewer
occurrences result in smaller confidence weights. Thus, in order to
. emphasize the importance of the primary point, it is assigned with
' the maximum confidence weight in Step 4.

IV. EXPERIMENTAL RESULTS

The image processing work of our system can be divided into
three steps. The first step is to find vertical edges. In the second step,
the Hough transform is performed to detect vertical lines using the
edge points. To speed up the system, only nearly vertical lines are
searched. The third step is to find the cross points of the detected
vertical lines and the base lines of corridors. Then the cross points
are used to locate our vertical line features, as discussed in Section II.
Two examples of image processing results is shown in Fig. 9.

The external view of the prototype of the ALV is shown in
Fig. 10(a). The ALV is computer-controlled with a modular archi-
| tecture, as shown in Fig. 10(b), including four major components,
| namely, a vision system, a central processor PC, a motor control
system, and a dc power system. The vision system consists of one
camera, a TV monitor, and a TARGA+ image frame grabber. The
Fig. 12. lllustration of the top view of a navigation session. The blackantral processor PC is an IBM PC/AT compatible personal computer

squares mark the trace of the ALV, the gray line within the black-square trace, . .

is the planned path, and the little black spots are extracted feature points. l\}’éﬂleh an Intel 80486 CPQ, 4 MB of main memory, one floppy disk

the closeness of the ALV trace to the planned path. driver, a 850 MB hard disk, and a TFT display. The motor control
system consists of a main control board with an Intel 8085 controller,

a motor driver, and two motors.

- —

a group of points is calculated as follows: The ALV learning and navigation experiments were performed in
a building corridor in National Chiao Tung University. By using the
Zwﬁ' - zp, ZWH yp, proposed approach, many successful navigation sessions have been
o= yo= ————— We = ZWR- (17) conducted. The navigation speed of the vehicle is about 30 cm/s.
> W, > W, The computation time of a navigation cycle ranges approximately

from 1.5 s to 3.5 s for different images. Fig. 11 shows an example
8f learned global models. Fig. 11(a) is the initial learned model, and
Fig. 11(b) is the refined model after five iterations of learning-by-
navigation. There are totally 39 and 22 feature points in Fig. 11(a)
and (b), respectively. The crosses and the spots in Fig. 11 represent
the feature points whose normalized confidence weights are larger and
} less than 1.0, respectively. Thus, the crosses are real vertical lines, and
"T/"'Pz- =m- We, (18) the spots might be noise. By observing Fig. 11, we can find that some
ZWPZ. noise points were eliminated during the incremental learning process.
This shows the effectiveness of our approach. Fig. 12 shows the trace
where W, is the original confidence weight oF;, andm is the of the ALV in one navigation session. !n the figure, the black squares
: S represent the trace of the ALV, the little black spots represent the
number of feature points in the learned global model. : . . .
. . ._vertical line features, and the gray straight line represents the planned
Note that the average value of the normalized confidence weights
. : ) : path. Note the closeness of the ALV trace to the planned path.
is always one. The normalized confidence weight of a stable feature
point will get larger and larger during the learning-by-navigation
iterations, while the weight of a noise feature point will get smaller V. CONCLUSION
and smaller. When the normalized confidence weight of a featureAn incremental-learning-by-navigation approach has been pro-
point gets lower than a certain threshold, the feature point is regardssked for ALV learning and navigation in indoor corridors. Computer
as noise. Such a kind of feature point contributes nothing in thésion techniques have been proposed to locate an ALV by the use
matching scheme, and thus may be removed from the learned masfethe vertical line features in a corridor. The approach is reliable be-
(see Step 3). After a sufficient number of learning-by-navigatiotause of the robustness of the proposed MWGHT matching scheme. It
iterations, only stable feature points are left in the learned globialalso flexible because the learned environment model can be updated

where (zp,, yp,) and Wp, are the coordinates and the confidenc
weight of a pointP; in the group, respectively. In Step 2, the
normalized confidence WeighAYH of a feature point’; is calculated
by the following equation:
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after each navigation session. Each navigation session becomes aRequirements Specification and Analysis of Digital
training to the ALV; even a coarse initial learned model can be refined Systems Using Fuzzy and Marked Petri Nets
to be a more precise one after several passes of navigation. The

proposed approach has been implemented on a prototype ALV and Victor R. L. Shen and Feipei Lai
successful navigation sessions in real time confirm the effectiveness

of the approach.
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