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An Incremental-Learning-by-Navigation Approach to
Vision-Based Autonomous Land Vehicle Guidance in

Indoor Environments Using Vertical Line Information and
Multiweighted Generalized Hough Transform Technique

Guan-Yu Chen and Wen-Hsiang Tsai

Abstract—An incremental-learning-by-navigation approach to vision-
based autonomous land vehicle (ALV) guidance in indoor environments
is proposed. The approach consists of three stages: initial learning,
navigation, and model updating. In the initial learning stage, the ALV
is driven manually, and environment images and other status data are
recorded automatically. Then, an off-line procedure is performed to build
an initial environment model. In the navigation stage, the ALV moves
along the learned environment automatically, locates itself by model
matching, and records necessary information for model updating. In the
model updating stage, an off-line procedure is performed to refine the
learned model. A more precise model is obtained after each navigation-
and-update iteration. Used environment features are vertical straight
lines in camera views. A multiweighted generalized Hough transform is
proposed for model matching. A real ALV was used as the testbed, and
successful navigation experiments show the feasibility of the proposed
approach.

Index Terms—Autonomous land vehicle, guidance, incremental learn-
ing, model matching, navigation, weighted generalized Hough transform.

I. INTRODUCTION

A. Motivation

Because of the fast development of computer vision techniques,
vision-based guidance of autonomous land vehicles (ALV’s) has been
intensively studied in the recent years, and model-based methods
are often used in practical experiments. However, the establishment
of environment models is really a time-consuming work. It is thus
desired to design a process for automatic modeling of navigation
environments. With this process, it is not necessary to measure the
environment manually. Instead, just drive the ALV manually once
along the desired path, and all jobs about initial model learning will
be automatically accomplished without human involvement.

However, certain problems arise when a fully automatic model
establishing process is performed. The noise of image processing
and the shake of the ALV will reduce the accuracy of the obtained
model. Since the noise coming from image processing will not appear
at the same place in each navigation cycle and the error caused by
ALV shaking may be eliminated by averaging several observations,
it is possible that more training using multiple navigation data will
reduce the inaccuracy. This means that after initial model learning,
we could utilize the information recorded in each navigation cycle
to update the original coarse model, and hopefully a more reliable
refined model could be obtained after several navigation trainings.
This leads to our study of “incremental-learning-by-navigation” for
ALV guidance in indoor environments.

B. Survey of Related Studies

A lot of successful ALV systems have been established for various
purposes. For environment learning, the autonomous mobile robot
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HERMIES developed by Saussureet al. [1] includes a successful
learning system in which the robot, placed in an arbitrary initial lo-
cation without any prior specification of its environment, successively
discovers and navigates around some obstacles, searches for a desired
target, and performs a learned sequence of manipulations on the
control panel device. Another system developed by Onoguchiet al.
[2] is a visual navigation robot working in a nuclear power plant. The
operation of this system is divided into two stages. In the first stage,
a multi-information local map describing information necessary for
self-location measurement is created interactively from stereo images
collected during remote-controlled navigations. The second stage is
autonomous navigation. Lebégue and Aggarwal [3], [4] developed
an integrated system to generate architectural CAD models using a
mobile robot. The system consists of a segment detector, a tracker and
a CAD modeler optimized for environments with prominent three-
dimensional (3-D) orientations. Nashashibiet al. [5] proposed an
approach to build a rough geometric model for a 3-D terrain using a
laser range finder. They also gave algorithms to build snapshot models
with planar faces from range data, and to perform 3-D data fusion
between these snapshot models, in order to build incrementally a
reliable 3-D model [6]. Ishiguroet al. [7] also presented a strategy for
establishing models of an unknown environment by a mobile robot.
In their implementation, panoramic sensing was used to perceive the
structure of the environment.

In Ku and Tsai [8], a model-based navigation was proposed. The
corridor contour is used to match the model and the input pattern
are extracted from video camera images. So, the global location
of the ALV can be known. In Chang and Tsai [9], a vision-based
collision avoidance method is proposed for ALV navigation. The
corridor contour of a building is used as the model, and laser markers
and cameras are used to detect corridor contours and obstacles. A
new guidance approach by model matching was proposed in Cheng
and Tsai [10]. Two laser light sources were employed to reduce the
time for computing vertical positions by triangulation. A matching
scheme using distance weight correlation is also proposed. In Su
and Tsai [11], model-based navigation and collision avoidance in
building corridors and elevators was proposed. The multiple corner
position information was matched with the model to locate the ALV
accurately. Pan and Tsai [12] proposed an integrated approach to
automatic model learning and path generation for vision-based ALV
guidance in building corridors.

C. Overview of Proposed Approach

The goal of ALV learning and guidance of this study is to equip the
ALV with the capabilities to explore the environment with its sensors,
construct an appropriate model of the environment, and navigate
smoothly and safely in the learned environment.

The proposed approach, incremental-learning-by-navigation for
ALV guidance in indoor environments, consists roughly of three
stages. The first stage is initial learning, in which the ALV is driven
manually along a path decided by the driver and the environment im-
ages captured by the camera and the control status data are recorded.
Then, a certain off-line procedure is performed to construct the initial
model. This is accomplished by calculating the relation between the
ALV and the environment features observed in each learning cycle,
and matching the features with the partially learned model. The
second stage is to allow the ALV to navigate automatically alone
the desired path. And the third stage is to update the learned model
with the information collected in the previous navigation. The second
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Fig. 1. Illustration of the proposed “incremental-learning-by-navigation”
approach.

and the third stages, namely, ALV navigation and model updating,
may be repeated several times in order to obtain a more reliable
model. The relation of these three stages is illustrated in Fig. 1.

The second stage, the navigation task, can also be roughly divided
into three phases. The first phase is to calculate the relation between
the ALV and the environment features observed in the image taken in
the current cycle. The second phase is to perform a model matching
scheme so that the ALV can locate itself accurately. The third phase
is to drive the vehicle toward a favorable direction by a control
strategy. The detailed procedure of navigation will be described
later.

Selecting stable environment features and developing effective
methods to extract these features are the most important keys to
success of model-based ALV guidance, especially to the model
learning and update works. In this study, we extract all vertical line
features in each environment image with no care about what the
lines really represent. One reason for using vertical lines as features
is that they can be treated as points in the top view; this facilitates
the use of many well-developed point matching techniques to locate
the ALV. Another reason is that vertical lines can be extracted more
easily and stably by many image processing techniques; this leads to
the use of less image processing time which is necessary for a real-
time navigation system. Compared with other approaches, our method
has the advantages of improving the initial learning result constantly
in every navigation session. Most existing approaches have no such
incremental learning capability.

The remainder of this paper is organized as follows. In Section II,
the proposed method to extract environment features for model
learning and ALV guidance is described. In Section III, the proposed
“incremental-learning-by-navigation” approach is described in detail.
In Section IV, employed image processing techniques and some
experimental results are presented. Finally, the conclusion of this
paper is given in Section V.

II. EXTRACTION ENVIRONMENT FEATURES

FOR MODEL LEARNING AND ALV GUIDANCE

A. Coordinate Systems and Transformations

In the proposed ALV guidance process, the following four co-
ordinate systems are used to describe the vehicle location and the
navigation environment.

Fig. 2. The four coordinate systems ICS, CCS, VCS, and GCS.

1) The vehicle coordinate system (VCS): denoted asx–y–z. The
origin V of the VCS is chosen to be at the middle point of
the line segment which connects the two contact points of the
two front wheels with the ground. Thex-axis andy-axis are on
the ground and parallel to the short and the long sides of the
vehicle body, respectively. Thez-axis is vertical to the ground.

2) The camera coordinate system (CCS): denoted asu–v–w. The
camera is associated with the camera coordinate system whose
origin C is attached to the camera lens center. Thev-axis is
coincident with the optical axis and theu–w plane is parallel
to the image plane.

3) The image coordinate system (ICS): denoted asu–w. The
image plane of the image coordinate system is coincident with
the u–w plane of the CCS and its originI is the image plane
center.

4) The global coordinate system (GCS): denoted asx0–y0–z0. The
origin G of the global coordinate system is located at a certain
fixed position. Thex0-axis andy0-axis are defined to lie on the
ground.

Fig. 2 shows these coordinate systems. Since the origins of the
ICS, CCS, and VCS are attached to some points on the ALV, the
ICS, CCS, and VCS are moving with the vehicle during navigation.
On the contrary, the GCS is fixed and is defined to be coincident
with the VCS when the ALV is at the starting position in the initial
model learning stage.

The transformations between these four coordinate systems can be
found in [13] and [16]. Note that since the ALV always navigates
on the ground, the relation between the two two-dimensional (2-
D) coordinate systemsx–y andx0–y0 is sufficient to determine the
position and orientation of the vehicle. In other words, the translation
vector (x0

p; y
0

p) and the rotation angle! of the ALV in the x0–y0

coordinate system as shown in Fig. 3 determine the position and the
direction of the vehicle in the GCS, respectively. The transformation
between the GCS and the VCS can be written as

(x0 y0 1 ) = (x y 1 )

�

cos ! sin ! 0
� sin ! cos ! 0

0 0 1

1 0 0
0 1 0
x0

p y0

p 1
: (1)

In the following sections, the combination of the vehicle position
and direction is referred to thevehicle locationand is denoted by a
triple (xp; yp; !).
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Fig. 3. The relation between VCS and GCS.

B. Ideas of Locating and Matching Vertical Line
Features for ALV Guidance

In this study, the term “vertical lines” are defined to be the ones
which are parallel to thez0-axis of the GCS. Vertical lines may be
the edges of walls, windows, doors, bulletin boards, paintings on
the walls, and so on. Vertical line features provide abundant 3-D
information and may be collected to serve as the basic elements of
the environment model. For simplicity, we only utilize those vertical
lines which appear nearly parallel to thew-axis of the ICS in the
captured images. This simplifies the work of searching vertical lines
in the image and also speeds up the image processing procedure.
However, this requires that the swing angle be nearly zero, i.e., the
w-axis must be nearly parallel to thez0-axis, and that the tilt angle
be small (approximately within the limit of�3�). This requirement
must be satisfied when the camera is installed.

With no depth information, a single image is insufficient for
locating a vertical line in the GCS without any heuristic. However,
if a point on a certain vertical line is known to be on a known plane,
the location of the line may be uniquely decided. In our study, the
intersection point of a vertical line with the base line of the corridor is
used to locate the vertical line, since this intersection point is known
to be on the ground. The job of finding the intersection point can be
easily done by simple image processing techniques.

The equations for calculating the VCS coordinates of a point
located on a known plane, e.g., on the ground, are derived in [14]
and [16]. By the way, if the vehicle location,(xp0; yp0; !), is known,
the GCS coordinates of the vertical lines can also be obtained by (1).
In our approach, a rough estimation of the vehicle location is first
obtained by the use of the information of the odometer, which gives
the navigation distance during a cycle, as well as the photo-encoder,
which feeds back the turn angle of the front wheels. Then by matching
the collected vertical line features with those in the learned model, the
error in the rough estimation of the vehicle location can be corrected,
and so safe ALV guidance is feasible.

C. Multiweighted Generalized Hough Transform

As mentioned in the previous section, a vertical line can be viewed
as a point from a top-view. As a result, the learned model, which is
a collection of some vertical line features, can be treated as a set of
points, or a point pattern. Thus, the ALV location problem may be
solved by a point matching scheme. Our approach to point matching is
based on a modification of the distance-weighted generalized Hough
transform (DWGHT) proposed by Jeng and Tsai [15]. The DWGHT
is useful for inexact matching of point patterns and may be employed
to detect or locate object shapes with noisy or distorted boundaries
caused by image sensing or preprocessing, so it is suitable for our
application since our feature patterns, the vertical lines, are often
distorted by erroneous image processing or by the shake of the ALV.

Fig. 4. A view of the navigation environment. The further line segment looks
shorter in the captured images, while the nearer one looks longer. Both line
segments are of the same length actually.

Fig. 5. Illustration of position estimation error due to the little variation of
the tilt angle.

The basic idea of the DWGHT is to replace the unity increment
value used in the cell value incrementation stage of the conventional
generalized Hough transform proposed by Ballard [17] with distance-
weighted increment values. The distance-weighted (DW) cell value
incrementation strategy for the DWGHT for a certain cellC in the
Hough counting space can be describe as follows:

for each pointP at (xe; ye) in the input point pattern,

for each scale~S;

for each orientation~�; and

for each displacement vector(r; �)

compute(x; y) = (xe; ye) + (r cos �; r sin �)

for each cellNC at location(x0

; y
0)

in the neighborhoodNH of cell C at (x; y);

setH x
0

; y
0

; ~S; ~� = H x
0

; y
0

; ~S; ~� +W (d) (2)

where d is the Euclidean distance betweenC and NC, i.e., d =

(x0 � x)2 + (y0 � y)2, and the distance-weighted functionW (d)

is

W (d) =
1

1 + d2
: (3)

However, in the DWGHT, each point in the point pattern has the
same importance, and the weight only depends on the distance of the
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(a) (b)

Fig. 6. Illustration of the multiweighted generalized Hough transform: (a) original positions of template patternL and input patternN and (b) positions of
template patternL and input patternN after rotating the input pattern with a certain rotation angle
0 and with respect to the originO.

matched point pairs, but not on the importance of the point itself.
In our approach, we propose the use of a multiweighted generalized
Hough transform (MWGHT), in which each point is attached with
an additional weight, called theconfidence weight.

There are two reasons to add this new weight. First, during the
learning-by-navigation process, the confidence of a feature point
should be increased if the corresponding vertical line appears at
an identical position again in the next image because multiple
occurrences of a vertical line indicate that the vertical line feature is
reliable. Second, it is found that the errors of the feature points coming
from locations far from the vehicle are relatively larger than those
of the feature points near the vehicle. Two examples can illustrate
this fact. First, as shown in Fig. 4, the two segments are of the
same length actually, but in the perspective image, the further line
segment looks shorter while the nearer one looks longer. As a result,
image processing errors in pixel length may cause relatively larger
errors in the estimations of the positions of further points. Second,
Fig. 5 shows the errors caused by the variations of the tilt angle. Two
sources of variations of the tilt angle values are shakes of the ALV
and imprecise camera calibration results. Let the errors caused by the
variations of a tilt angle at a short distance and at a long distance be
p andq, respectively. Also, let the distance between a further point
Pf and the camera bes, and that between a nearer pointPn and the
camera ber. If the variation of the tilt angle is�, then since� is
small, the errors caused by the variation of the tilt angle forPf and
Pn, respectively, can be written as

p = r�; q = s�: (4)

Sincer < s, we havep < q. The conclusion is that the error due
to the variation of the tilt angle is directly proportional to the distance
between the point and the camera (or the ALV).

The above discussions show the need of a confidence weight
for each feature point. In the rest of this section, an algorithm
for the proposed MWGHT will be presented. The algorithms for
assigning and updating the confidence weights will be described in
Section III-C.
Algorithm 1: Multiweighted Generalized Hough Transform

Input: An input point patternN and a template point patternL.
Output: The displacement vector(xt; yt; 
) which transformsN

to L through a translation(xt; yt) and a rotation
.

Steps

Step 1.Set up a 3-D Hough counting spaceH(xt; yt; 
) including
the maximum reasonable displacement, and set all values of the cells

in H to zero.
Step 2. Increase the values of the cells inH according to the

following cell value incrementation strategy:

for each rotation angle
;

for each pointPi with location(xp; yp) and

confidence weightWp in template patternN;

for each pointQj with location(xq; yq)and

confidence weightWq in input patternL;

compute(x; y) = (xp; yp)

� (xq cos 
 � yq sin 
; xq sin 
 + yq cos 
) (5)

for each cellNC with location(x0; y0; 
) in the

neighborhoodNH of the cellC at (x; y; 
);

setH(x0; y0; 
) = H(x0; y0; 
)

+Wp �Wq �
1

1 + d1=D0

(6)

whereD0 is a pre-selected constant, andd1 is the Euclidean distance
betweenC andNC, i.e.,

d1 = (x0
� x)2 + (y0

� y)2: (7)

Step 3.Find out the location of the cell with the maximum value
in H.

Step 4. Exit with the corresponding displacement vector
(xt; yt; 
) as the output.

An example may be used to illustrate how Algorithm 1 works.
A template patternL and an input patternN are given, and what
desired is the displacement vector(xt; yt; 
) which transformsN
to L through a translation(xt; yt) and a rotation
. The original
positions of the template pattern, represented in black dots, and the
input pattern, represented in white dots, are shown in Fig. 6(a). The
positions ofN andL after rotatingN with a certain rotation angle

0 and with respect to the originO are shown in Fig. 6(b). For a
point Pi in L and a pointQj in N, e.g.,P5 andQ5, the values ofx
andy in (5) compose the translation vector fromQj to Pi, as shown
in Fig. 6(b). The value of the cellC (x; y; 
0) is increased by the
incrementWp � Wq. And the value of the neighborhood cellNC
(x+1; y; 
0) is increased by the incrementWp �Wq �1=(1+1=D0)
because the distance fromC to NC is 1. For other neighborhood
cells, the increment value can be calculated from (6). For other
rotation angles, and for each point pair, similar operations are applied.
Finally, a maximum value search is performed for the whole Hough
cell space, and the displacement vector(xt; yt; 
) corresponding to
the cell with maximum cell value is the desired output.
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The time complexity of Step 2 isO(nrnNnLm
2), wherenr is the

number of candidate rotation angles,nN is the number of points in
the input patternN, nL is the number of points in the template pattern
L, andm is the size of the neighborhoodNH. The time complexity
of Step 3 isO(nrnxny), wherenr � nx � ny is the dimension of
the Hough cell space. The space complexity of the entire algorithm
is O(nrnxny).

Due to the limitation of computer memory space and speed, a
hierarchical version of the MWGHT is used in our implementation.
In the MWGHT, the constantD0 scales the distance weight function
and should be chosen carefully. IfD0 is too small, the weight function
will drop sharply while the distance gets larger. As a result, the effect
of the distance weight is eliminated. IfD0 is too large, the value of the
distance weight function always approaches to one, and consequently
the value in each cell is nearly the same and the real maximum cell
value is no longer distinguishable. In our experiments, the value of
D0 was set to be 15 cm.

III. STRATEGIES FORMODEL LEARNING AND ALV GUIDANCE

As mentioned in Section I-C, the proposed incremental-learning-
by-navigation approach consists roughly of three stages. In
Section III-A, an algorithm for establishing the initial learned model
will be described first. In Section III-B, the proposed approach to
guiding the ALV will be described next. And in Section III-C, the
algorithm for updating the learned model will be illustrated finally.

A. Construction of Initial Model

The goal of the first stage of the proposed approach is to construct
the initial model. The works for establishing the initial model are
accomplished by the following algorithm.

Algorithm 2: Construction of Initial Model

Step 1: Perform camera calibration.
Step 2: Drive the ALV manually to the starting location, and set

up the GCS of the current model by the position and
orientation of the ALV.

Step 3: Start the ALV.
Step 4: Take an image of the environment using the camera.
Step 5: Record the counter of the odometer and the turn angles of

the front wheels.
Step 6: Manually drive the ALV with a certain distance and an

appropriate turn angle.
Step 7: If the ALV reaches the goal, go to Step 8 to perform

off-line processing; else, go to Step 4 for the next cycle.
Step 8: Perform image processing to find the local vertical line

features in the image taken in each cycle.
Step 9: Compute the VCS and the GCS coordinates of the local

features to form a local model.
Step 10: If the first cycle is processed, add the local model to an

empty model to form a global model, and go to Step 16;
otherwise, go to Step 11.

Step 11: Extract desired feature points from the learned global
model with a certain window in the VCS to form an
extracted model.

Step 12: Perform the MWGHT to match the local model with the
extracted model.

Step 13: Compute the actual slant angle and position of the ALV
using the result of the previous matching.

Step 14: Re-compute the more precise GCS coordinates of the local
features according to the actual slant angle and position of
the ALV computed in the last step.

Step 15: For each local feature pointp in the local model, check if
there exists in the learned global model any feature point

Fig. 7. The vehicle location before and after the ALV moves a distanceS

forward.

Fig. 8. Illustration of adjustment of the front wheels in a path.

in the neighborhood of pointp. If there exists none, add the
pointp to the learned global model; otherwise, compute the
weighted centroid of pointp and those points in the learned
global model within the neighborhood ofp, and add the
resulting centroid point to the global model (the detailed
computation process is described in Section III-C).

Step 16: Go to Step 9 if there exists a subsequent cycle; otherwise,
stop.

In Step 9, the estimated position and orientation of the ALV is used to
calculate the rough GCS position of the feature points. In our system,
the estimated position and orientation of the ALV can be obtained by
using the information of the feedback sensors, namely, the odometer
and the photo-encoder on the front wheels. In general, when the ALV
move from a known position, the new position of the ALV can be
estimated by using the moving distanceS and the turn angle of the
front wheels. The equations to calculate the estimated ALV location
are derived as follows. They can be also found in [12]. As shown in
Fig. 7, the vehicle is located at A. After moving a distanceS forward,
the vehicle will be new location B, which is the desired estimated
ALV location. The relative location of B with respect to A is denoted
by a vectorT. The rotation radiusR can be written as

R =
d

sin �
(8)

whered is the distance between the front wheels and the rear wheels,
and� is the turn angle of the front wheels. And the angle
 can be
determined as


 =
S

R
: (9)

So, the length of vectorT can be solved to be

jjTjj = R 2(1� cos 
) (10)

and the direction of vectorT is

u =
�

2
� � �




2
: (11)

The VCS coordinates of location B with respect to location A can
thus be computed by

xB = jjTjj cos u

yB = kTk sin u: (12)
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(a) (b)

Fig. 9. Two examples of image processing results: (a) image with plain floor and (b) image with pieces of paper on the floor.

After the front wheel location of the ALV is determined, the rear
wheel location(~xb; ~yb) of the ALV can also be determined to be

~xb =xB + d sin 


~yb = yB � d cos 
: (13)

Since the GCS coordinates of location A are known, and the VCS
coordinates of location B with respect to location A can be obtained
from (12). The GCS coordinates of location B can be calculated by
coordinate system transformations. Thus the desired estimated ALV
location is obtained.

As mentioned previously, the time complexity of the MWGHT is
proportional to the size of the data set, i.e., the number of points in
the input pattern and the template pattern. As a result, the number
of vertical lines in a feature pattern must be controlled within a
reasonable range. Fortunately, in the indoor navigation environment,
this number is usually not large. In order to achieve the goal of real-
time navigation, the processing time of the MWGHT must be reduced.
This work can be done by extracting just the feature points near the
current ALV position from the learned global model, instead of using
the full set of the model. Feature points which are impossible to
appear in the camera view, e.g., the points which are far away from
or behind the ALV, are of no help in the matching process. Such
feature points should be discarded to speed up the matching. In our
approach, a certain window in the VCS are used to extract the desired
points from the learned global model (see Step 11).

The positions of the feature points in the local model are derived
from the estimated ALV location. After performing the MWGHT,
the displacement from the local model to the learned global model
is obtained. Note this displacement is also the displacement from the
estimated vehicle location to the actual one. As a result, the actual
vehicle location(xp; yp; !) can be obtained by

xp = x̂p + xt; yp = ŷp + yt; ! = !̂ � 
 (14)

where(x̂p; ŷp; !̂) is the estimated vehicle location, and(xt; yt; 
)
is the displacement vector.

B. Steps of Navigation Cycle

Basically, an ALV navigation process includes the tasks of grab-
bing and processing images, locating the ALV, making guidance
decisions, and executing steering control procedures. The proposed
navigation process is described by the following algorithm.

Algorithm 3: ALV Navigation Process

Step 1: Read the learned global model and the planned path.
Step 2: Take an image of the environment using the camera and

compute the initial position and orientation of the static
ALV.

Step 3: Start the ALV.
Step 4: Take an image of the environment using the camera.
Step 5: Perform image processing to find the local vertical line

features.
Step 6: Compute the VCS and the GCS coordinates of the local

features to form a local model.
Step 7: Extract desired feature points from the learned global

model with a certain window in the VCS to form an
extracted model.

Step 8: Perform the MWGHT to match the local model with the
extracted model.

Step 9: Compute the actual slant angle and position of the ALV
using the result of the previous matching.

Step 10: Re-compute the more precise GCS coordinates of the local
features to refine the local model according to the actual
slant angle and position of the ALV computed in the last
step. Store the coordinates and the confidence weights of
the local features for updating the model (see Algorithm
4 described later).

Step 11: Determine the turn angle of the front wheels to guide the
ALV close to the extracted path portion and turn the front
wheels of the ALV (the details are illustrated later).

Step 12: If the ALV reaches the goal of the desired path, then stop;
else, go to Step 4.

The scheme for adjusting the driving wheel direction� in this
study is based on the wheel adjustment strategy described in [12].
The basic idea is to search a turn angle of the front wheels to drive
the ALV as close to the desired path as possible. As shown in Fig. 8,
given a reasonable moving distanceS and a fixed turn angle of the
front wheels, the location of the ALV can be estimated, as discussed
in Section III-A. Given a pathP , either a straight line or a circular
segment, defineDF

P (�) as the distance from the midpoint of the ALV
front wheels to the given pathP after the ALV traverses a certain
distanceS with the turn angle�, whereS may be assigned to be the
average navigation distance during a cycle. Also, defineDB

P (�) as
the distance from the midpoint of the ALV back wheels to the given
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(a)

(b)

Fig. 10. The prototype ALV used in the experiments: (a) external view and
(b) system structure.

pathP . Finally, define measureLP to be

LP = DF

P (�) +DB

P (�): (15)

To find the turn angle of the front wheel to drive the ALV as close
to the path as possible, an exhaustive search is performed to find the
angle that produces the minimal value ofLP , and the obtained angle
is used as the turn angle for safe navigation.

C. Strategies for Updating the Learned Model

The proposed algorithm for updating the learned model after a
navigation training is described as follows.
Algorithm 4: Strategies for Updating the Learned Global Model:

Step 1: For each local feature pointp recorded in the navigation
session, check if there exists in the learned global model
any feature point in the neighborhood of pointp. If
there exists none, add the pointp to the learned global

(a) (b)

Fig. 11. An example of learned global models: (a) initial learned model and
(b) refined model after five iterations of incremental-learning-by-navigation.
The crosses represent real vertical lines and the spots are noise. Note the
removal of some noise points.

model; otherwise, compute the weighted centroid of point
p and those points in the learned global model within the
neighborhood ofp, and add the resulting centroid point to
the global model.

Step 2: Normalize the confidence weights of the feature points in
the learned model.

Step 3: Discard those feature points whose normalized confidence
weights are smaller than a certain threshold valueTs.

Step 4: Adjust the confidence weight of the primary point, defined
to be the feature point nearest to the origin of the GCS,
to be the maximum of all the confidence weights.

In Step 1, the size of the neighborhood can be arbitrarily chosen.
Choosing a large size of the neighborhood would cause the combi-
nation of two distinct feature points. Choosing a small size of the
neighborhood would leave unmerged a group of feature points which
come from inexact computation results of a single feature point (i.e.,
a single vertical line in the environment). However, the choice of
the neighborhood size does not affect the result of the MWGHT too
much. A reason is that, in the MWGHT, several close feature points
with small confidence weights are equivalent to a feature point at the
position of their centroid and with a large confidence weight.

When a new feature point is added into the model, the initial
confidence weight attached to this new feature pointPk is assigned
by the following equation:

WP =
1

1 + (x2
V CS

+ y2
V CS

)=Cd
(16)

wherexV CS and yV CS are thex and y coordinates ofPk in the
VCS, respectively, andCd is a predefined constant. The coordinates
(xC ; yC) and the confidence weightWC of the weighted centroid of
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Fig. 12. Illustration of the top view of a navigation session. The black
squares mark the trace of the ALV, the gray line within the black-square trace
is the planned path, and the little black spots are extracted feature points. Note
the closeness of the ALV trace to the planned path.

a group of points is calculated as follows:

xC =
WP � xP

WP

; yC =
WP � yP

WP

; WC = WP (17)

where (xP ; yP ) andWP are the coordinates and the confidence
weight of a pointPi in the group, respectively. In Step 2, the
normalized confidence weight̂WP of a feature pointPi is calculated
by the following equation:

ŴP = m �

WP

WP

(18)

whereWP is the original confidence weight ofPi, andm is the
number of feature points in the learned global model.

Note that the average value of the normalized confidence weights
is always one. The normalized confidence weight of a stable feature
point will get larger and larger during the learning-by-navigation
iterations, while the weight of a noise feature point will get smaller
and smaller. When the normalized confidence weight of a feature
point gets lower than a certain threshold, the feature point is regarded
as noise. Such a kind of feature point contributes nothing in the
matching scheme, and thus may be removed from the learned model
(see Step 3). After a sufficient number of learning-by-navigation
iterations, only stable feature points are left in the learned global

model and all noise points will be removed. Consequently, the goal
to establish a stable and practical model for the guidance of the ALV
may be achieved.

The primary point mentioned in Step 4 is chosen to be the one
closest to the origin. It is also the nearest feature point to the starting
location of the ALV in each navigation session. It plays an important
role in determining the initial location of the ALV. In real navigation
trainings, the primary point can usually be found in just one or
two cycles in the whole navigation session. It contrasts with other
feature points which might appear in four or more captured images
in the navigation cycles. As discussed in the previous section, fewer
occurrences result in smaller confidence weights. Thus, in order to
emphasize the importance of the primary point, it is assigned with
the maximum confidence weight in Step 4.

IV. EXPERIMENTAL RESULTS

The image processing work of our system can be divided into
three steps. The first step is to find vertical edges. In the second step,
the Hough transform is performed to detect vertical lines using the
edge points. To speed up the system, only nearly vertical lines are
searched. The third step is to find the cross points of the detected
vertical lines and the base lines of corridors. Then the cross points
are used to locate our vertical line features, as discussed in Section II.
Two examples of image processing results is shown in Fig. 9.

The external view of the prototype of the ALV is shown in
Fig. 10(a). The ALV is computer-controlled with a modular archi-
tecture, as shown in Fig. 10(b), including four major components,
namely, a vision system, a central processor PC, a motor control
system, and a dc power system. The vision system consists of one
camera, a TV monitor, and a TARGA+ image frame grabber. The
central processor PC is an IBM PC/AT compatible personal computer
with an Intel 80 486 CPU, 4 MB of main memory, one floppy disk
driver, a 850 MB hard disk, and a TFT display. The motor control
system consists of a main control board with an Intel 8085 controller,
a motor driver, and two motors.

The ALV learning and navigation experiments were performed in
a building corridor in National Chiao Tung University. By using the
proposed approach, many successful navigation sessions have been
conducted. The navigation speed of the vehicle is about 30 cm/s.
The computation time of a navigation cycle ranges approximately
from 1.5 s to 3.5 s for different images. Fig. 11 shows an example
of learned global models. Fig. 11(a) is the initial learned model, and
Fig. 11(b) is the refined model after five iterations of learning-by-
navigation. There are totally 39 and 22 feature points in Fig. 11(a)
and (b), respectively. The crosses and the spots in Fig. 11 represent
the feature points whose normalized confidence weights are larger and
less than 1.0, respectively. Thus, the crosses are real vertical lines, and
the spots might be noise. By observing Fig. 11, we can find that some
noise points were eliminated during the incremental learning process.
This shows the effectiveness of our approach. Fig. 12 shows the trace
of the ALV in one navigation session. In the figure, the black squares
represent the trace of the ALV, the little black spots represent the
vertical line features, and the gray straight line represents the planned
path. Note the closeness of the ALV trace to the planned path.

V. CONCLUSION

An incremental-learning-by-navigation approach has been pro-
posed for ALV learning and navigation in indoor corridors. Computer
vision techniques have been proposed to locate an ALV by the use
of the vertical line features in a corridor. The approach is reliable be-
cause of the robustness of the proposed MWGHT matching scheme. It
is also flexible because the learned environment model can be updated
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after each navigation session. Each navigation session becomes a
training to the ALV; even a coarse initial learned model can be refined
to be a more precise one after several passes of navigation. The
proposed approach has been implemented on a prototype ALV and
successful navigation sessions in real time confirm the effectiveness
of the approach.
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Requirements Specification and Analysis of Digital
Systems Using Fuzzy and Marked Petri Nets

Victor R. L. Shen and Feipei Lai

Abstract—Fuzzy information often appears in the system requirements.
Fuzzy Petri nets (FPN) are Petri nets in which certain fuzzy truth-values
are assigned to its transitions. In this paper, we show how the FPN model
can be used for formal specification and verification of digital systems.
The consistent FPN model is actually a state machine, from which we
can obtain a consistent marked Petri net (MPN) model. Based on the
consistent MPN model, the hardware prototype at register transfer level
can be easily induced by using the optimization rules. Finally, main results
are presented in the form of three theorems and are supported by some
experiments.

Index Terms—Formal analysis, knowledge base, Petri nets, require-
ments specification.

I. INTRODUCTION

In developing a top-down design, we usually start from the system
level and keep on breaking the design process down until we reach a
level where the design can be constructed with standard off-the-shelf
parts or can be synthesized with synthesis tools. Consequently, the
requirements specification plays a central role among the hardware
development stages. However, the real world is not linearly quadratic
and many situations can not be modeled accurately by simple
mathematical equations. Fuzzy information often appears in the
system requirements. Especially, how to make a decision among
numerous requirement clauses thus becomes a hard part as reasoning
a large scale knowledge base. Meanwhile, the problem of how to
deal with the uncertain, inexact, and vague nature of information has
received much attention during the last decade [1]. Furthermore, many
researchers are interested in theexecutable specificationor high-level
synthesisnowadays [14], [19].

The Algorithmic State Machine (ASM) chart was developed by
Osborne in 1973 [15]. Since then it has been widely applied to express
the abstract algorithm and to support the conversion of the algorithm
into hardware. But, it does not provide a straightforward way to deal
with the fuzzy information and to solve some hardware problems like
deadlocksand hazards.This motivates us to propose an attractive
alternative to solve the problems.

A knowledge-based approach to implementing a digital system
contains the following advantages [7].

1) The programming paradigm easily supports data-driven com-
putation. The subproblem ordering task can be conveniently
cast in a data-driven approach.

2) Production rules naturally represent the design knowledge
adopted.

3) A knowledge base is easily extended as compared to manipu-
lating procedural code.
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