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Abstract. The complexity in planning and control of robot compliance tasks mainly results from
simultaneous control of both position and force and inevitable contact with environments. It is quite
difficult to achieve accurate modeling of the interaction between the robot and the environment during
contact. In addition, the interaction with the environment varies even for compliance tasks of the same
kind. To deal with these phenomena, in this paper, we propose a reinforcement learning and robust
control scheme for robot compliance tasks. A reinforcement learning mechanism is used to tackle
variations among compliance tasks of the same kind. A robust compliance controller that guarantees
system stability in the presence of modeling uncertainties and external disturbances is used to execute
control commands sent from the reinforcement learning mechanism. Simulations based on deburring
compliance tasks demonstrate the effectiveness of the proposed scheme.
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1. Introduction

Compared with robot tasks involving position control, planning and control of
robot compliance tasks are much more complicated [15, 22]. In addition to simul-
taneous control of both position and force in compliance task execution, another
major reason for the complexity is that contact with environments is inevitable. It
is by no means an easy task to model the interaction between the robot and the
environment during contact. Furthermore, compliance tasks of the same kind may
even evoke different interactions with the environment. For instance, burrs vary in
size and distribution on various target objects in deburring compliance tasks [13].
These hinder the planning of compliance tasks and the development of compliance
control strategies for task execution.

Among previous studies in this area, Mason formalized constraints describing
the relationship between manipulators and task geometries [22]. Lozano-Perez et
al. extended the concept described in [22] to the synthesis of compliant motion
strategies from geometric descriptions of assembly operations [18]. Related stud-
ies include automatic compliance control strategy generation for generic assembly
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operation [28], automatic task-frame-trajectory generation for varying task frames
[8], on-line estimation of unknown task frames based on position and force mea-
surement data [30], among others. The formulation in [22] also leads to simple
control strategy specification using hybrid control, in which position and force are
controlled along different degrees of freedom [23]. A famous compliance control
scheme, the impedance control, deals with control of dynamic interactions between
manipulators and environments as wholes instead of controlling position and force
individually [12]. Extensions from hybrid control and impedance control include
hybrid impedance control for dealing with different types of environments [1],
the parallel approach to force/position control for tackling conflicting situations
when both position and force control are exerted in the same direction [7], gen-
eralized impedance control for providing robustness to unknown environmental
stiffnesses [17], among others. Studies have also been devoted to stability analysis
and implementation of the hybrid and impedance control schemes [14, 19, 20, 27].

Another methodology for compliance task execution is human control strat-
egy emulation, which arises from human excellence at performing compliance
tasks [24]. Since humans can perform delicate manipulations while remaining un-
aware of detailed motion planning and control strategies, one approach to acquiring
human skill uses direct recording. Neural networks, fuzzy systems, or statistical
models are used to extract human strategies and store them implicitly in the neural
networks, in the fuzzy rules, or in the statistical models [4, 16, 29]. This avoids
the necessity for direct compliance task modeling, and transfers human skill at
performing compliance tasks via teaching and measurement data processing. Fol-
lowing this concept, Hirzinger and Landzettel proposed a system based on hybrid
control for compliance task teaching [11]. Asada et al. presented a series of re-
search results that concerned human skill transfers based on using various methods,
such as learning approaches and signal processing, and various compliance control
schemes, such as hybrid control and impedance control [2–4].

From past studies, we found that it is quite difficult to achieve accurate, auto-
matic modeling for compliance task planning. The stability and implementation
issues also remain as challenges for hybrid control and impedance control. Human
skill transfer is limited by incompatibilities between humans and robot manipula-
tors, since they are basically different mechanisms with different control strategies
and sensory abilities [4, 21, 24]. Accordingly, in this paper, we propose a reinforce-
ment learning and robust control scheme for robot compliance tasks. A reinforce-
ment learning mechanism is used to deal with variations among compliance tasks
of the same kind. The reinforcement learning mechanism can adapt to compliance
tasks via an on-line learning process, and generalize existing control commands
to tackle tasks not previously encountered. A robust compliance controller that
guarantees system stability in the presence of modeling uncertainties and external
disturbances is used to execute control commands sent from the reinforcement
learning mechanism. Thus, the complexity in planning and control of robot compli-
ance tasks is shared by a learning mechanism for command generation at a higher

JI1443TZ.tex; 22/09/1998; 14:16; p.2



REINFORCEMENT LEARNING AND ROBUST ROBOT COMPLIANCE CONTROL 167

level, and a robust controller for command execution at a lower level. The rest of
this paper is organized as follows. System configuration and implementation of
the proposed reinforcement learning and robust control scheme are described in
Section 2. In Section 3, simulations of deburring compliance tasks are reported
to demonstrate the effectiveness of the proposed scheme. Finally, conclusions are
given in Section 4.

2. Proposed Scheme

The system organization of the proposed scheme is as shown in Figure 1. The
reinforcement learning mechanism generates commandsCd for an input compli-
ance task according to evaluation of the difference between the current state and
the task objective that must be achieved. Task objectives can be, for instance, to
reach desired hole locations for peg-in-hole tasks. In turn, the robust compliance
controller modulates the commands sent from the reinforcement learning mecha-
nism and generates torques to move the robot manipulator for task execution in
the presence of modeling uncertainties and external disturbances. The positions,
velocities, and forces induced during interactions between the robot manipulator
and the environment are fed back to the reinforcement learning mechanism and
the robust compliance controller. System structures of the two major modules
in the proposed scheme, the reinforcement learning mechanism and the robust
compliance controller, are as shown in Figure 2, and are discussed below.

2.1. REINFORCEMENT LEARNING MECHANISM

As mentioned above, learning mechanisms are used to tackle variations present
in compliance tasks of the same kind. There are three basic classes of learning
paradigms: supervised learning, reinforcement learning, and unsupervised learning
[10, 26]. Supervised learning is performed under the supervision of an external
teacher. Reinforcement learning involves the use of a critic that evolves through
a trial-and-error process. Unsupervised learning is performed in a self-organized
manner in that no external teacher or critic is required to guide synaptic changes
in the network. We adopted the reinforcement learning as the learning mechanism

Figure 1. System organization of the proposed reinforcement learning and robust control
scheme.
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Figure 2. (a) The reinforcement learning mechanism. (b) The robust compliance controller.

for the proposed scheme, because in addition to environmental uncertainties and
variations in most compliance tasks, the complexity of the combined dynamics of
the robot controller, the robot manipulator, and the environment makes it difficult
to obtain accurate feedback information concerning how the system should adjust
its parameters to improve performance.

Figure 2(a) shows the structure of the reinforcement learning mechanism, which
executes two main functions: performance evaluation and learning. The reinforce-
ment learning mechanism first evaluates system performance using a scalar per-
formance index, called a reinforcement signalr, which indicates the closeness of
the system performance to the task objective. Because this reinforcement signalr

is only a scalar used as a critic, it does not carry information concerning how the
system should modify its parameters to improve its performance; by contrast, the
performance measurement used for supervised learning is usually a vector defined
in terms of desired responses by means of a known error criterion, and can be used
for system parameter adjustment directly. Thus, the learning in the reinforcement
learning mechanism needs to search for directional information by probing the
environment through the combined use of trial and error and delayed reward [5, 9].

The reinforcement signalr is usually defined as a unimodal function with a
maximal value, indicating the fulfillment of the task objective. We take the debur-
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Figure 3. The deburring compliance task.

ring task shown in Figure 3 as an example. The task objective is to remove the burrs
from the desired surface. We then define an error functionE as

E = 1

2
(x − xd)

2, (1)

wherex is the current grinding tool position andxd is the position of the desired
surface. Thus, the reinforcement signalr can be chosen as

r = −E. (2)

This choice ofr has an upper bound at zero, and the task objective is fulfilled when
r reaches zero.

In the next stage, the learning process is used to generate commandsCd that
cause the reinforcement signalr to approach its maximum. Before the derivation,
we first describe a simplified deburring process for the deburring task shown in
Figure 3 [4, 13]. When the grinding tool is removing a burr, the speed of burr
removal ẋ increases as the product of the contact forceF and the rotary speed
of the grinding toolωr increases, but decreases as the grinding tool’s velocity
in the Y direction ẏ increases. And the increase in the contact forceF and the
grinding tool’s velocity in theY direction ẏ both decrease the rotary speed of the
grinding toolωr . This simplified deburring process is formalized in the following
two equations:

ẋ = KFωFωr −Kxyẏ, (3)

ω̇r = −KFF −Kωyẏ, (4)

whereKFω, Kxy, KF , andKωy are parameters related to burr characteristics.
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To deal with the deburring task, the commandCd is specified as the desired
force that pushes the grinding tool to deburr, and defined as a function ofωr, x,
andẏ:

Cd = Wωωr +Wxx +Wyẏ, (5)

whereWω, Wx , andWy are adjustment weights. The commandCd is sent to the
robust compliance controller, which in turn generates torques to move the robot
manipulator for deburring. System performance is then evaluated, and desired com-
mandsCd to increase the reinforcement signalr are obtained by adjusting the
weights,Wω, Wx , andWy , via the learning process described below:

Wω(k + 1) = Wω(k)+ ηω ∂r
∂Cd

ωr, (6)

Wx(k + 1) = Wx(k)+ ηx ∂r
∂Cd

x, (7)

Wy(k + 1) = Wy(k)+ ηy ∂r
∂Cd

ẏ, (8)

wherek is the time step, andηω, ηx, andηy the learning rates. Because a con-
cise form of the combined inverse dynamic model of the robust compliance con-
troller, the robot manipulator, and the environment is not available,∂r/∂Cd in
Equations (6)–(8) cannot be obtained directly, and it is approximated by

∂r

∂Cd
≈ r(k)− r(k − 1)

Cd(k)− Cd(k − 1)
. (9)

By applying the learning process described in Equations (6)–(8) repeatedly, the
reinforcement signalr will approach its maximum gradually. Note that in Equa-
tions (6)–(8), only one scalar signalr is used to adjust three weight parameters,
Wω, Wx, andWy. Therefore, learning of these three weights may create conflicts.
This is a characteristic of reinforcement learning, and can be resolved by using
proper learning rates,ηω, ηx , andηy.

2.2. ROBUST COMPLIANCE CONTROLLER

The robust compliance controller is used to execute commands sent from the re-
inforcement learning mechanism, and it is designed to achieve system stability
in the presence of modeling uncertainties and external disturbances. Figure 2(b)
shows the block diagram of the robust compliance controller, which consists of
two modules: the estimator and the sliding mode impedance controller. The slid-
ing mode impedance controller is basically an impedance controller implemented
using a sliding mode control concept [20]; impedance control is used because it is
a unified approach to handling free and constrained motions; sliding mode control
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is used because of its robustness to environmental uncertainties. The sliding mode
impedance controller accepts position commands and yields forces imposed upon
the environment. The purpose of the estimator is to provide proper desired positions
that cause the controller to generate desired contact forces for task execution.

The robust compliance controller functions as follows. As Figure 2(b) shows,
input commandsCd are sent from the reinforcement learning mechanism; when
the motion is in free space, i.e.,Cd is a position command, the estimator executes
no operation, and just allowsCd to pass directly to the sliding mode impedance
controller as desired positionsxd; when the motion is in constrained space, i.e.,
Cd is in the form of desired force commands, the estimator first estimates the
environmental parameters, and then derives the desired positionsxd accordingly.
The desired positionsxd are sent to the sliding mode impedance controller, which
in turn generates torquesτ to move the robot manipulator to impose the desired
contact forces specified byCd on the environment.

A. The Estimator

Again, we take the deburring task in Figure 3 as an example. The desired surface to
reach after deburring is specified as being parallel to theY axis. The environment,
i.e., the desired surface with burrs, is modeled as a spring with stiffnessKe, which
may vary at different places on the surface. The surface is approximated by lines
defined asax+by+c = 0 for planar cases, wherea, b, andc are parameters varying
along with the surface curvature. The contact forceFe can then be derived as

Fe = Fn+ Ff (10)

with

Fn = Ke
ax + by + c√
a2+ b2

, (11)

Ff = ρFn, (12)

whereFn andFf are, respectively, the forces normal and tangential to the line
defined byax + by + c = 0, andρ is the friction coefficient. The function,Ef ,
that specifies the error betweenFe and a desired contact force,Fd, is defined as

Ef = 1

2

(‖Fd‖ − ‖Fe‖
)2
. (13)

To tackle this deburring task, the estimator employs a learning process to derive the
desired positionxd that causesFe to approachFd. SinceFd is generated when the
deburring tool pushes upon the environment to a certain depth, it can be formulated
as a function of a location in the environment:

Fd = Kxx +Kyy +Kc (14)

whereKx, Ky , andKc are adjustment parameters. Thus, the learning process be-
comes one of finding properKx, Ky , andKc that causex to approach some desired
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xd corresponding to the desiredFd. It is straightforward to use the gradient descent
method and the error functionEf in Equation (13) to updateKx,Ky,Kc, x, andy
in Equation (14) in a recursive manner, such thatFe gradually converges toFd, and
x = xd is realized. Simultaneously, this learning process also implicitly identifies
the environmental stiffness parameterKe that defines the relationship betweenxd

andFd.

B. The Sliding Mode Impedance Controller

Using the desired positionxd provided by the estimator, the sliding mode im-
pedance controller generates torques to move the robot manipulator to push upon
the environment with the desired contact forceFd. The basic concept of sliding
mode control is to force system states toward a sliding surface in the presence of
modeling uncertainties and external disturbances [20, 25]. Once system states are
on the sliding surface, the states will then slide along the surface toward the desired
states. Because an impedance controller is used, we select the sliding surfaces(t)

to

s(t) = Mẋ + B(x − xd)+K
∫ t

0

(
x(σ )− xd

)
dσ, (15)

where the impedance parameter matrices,M,B, andK, are set positive definite,
and they determine the convergence speed for states on the sliding surface. This
sliding surfaces(t) leads tox = xd, whens ≡ 0, as demonstrated in Theorem 1.

THEOREM 1. Given the sliding surfaces(t) defined in Equation(15)withM,B,
andK positive definite matrices, ifs converges to zero,x will approach the desired
positionxd.

The proof of this theorem is given in Appendix A. The control law for this
sliding mode impedance controller can be derived as follows. We first choose a
Lyapunov functionL as

L = 1

2
sTs. (16)

Obviously,L > 0 andL = 0, whens = 0. By differentiatingL, we obtain

L̇ = sTṡ = sT[Mẍ + Bẋ +K(x − xd)
]
. (17)

And by incorporating the robot dynamics into Equation (17),L̇ becomes

L̇ = sT
[
MJq̈ +MJ̇ q̇ + BJ q̇ +K(x − xd)

]
= sT[MJH−1(τ + J TF +Du− V −G

)+MJ̇ q̇ + BJ q̇ +K(x − xd)
]

(18)

with the robot dynamic equation formulated as

H(q)q̈ + V (q, q̇)+G(q) = τ + J T(q)F +Du, (19)
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whereH(q) is the inertial matrix,V (q, q̇) is the centrifugal and Coriolis term
vector,G(q) is the gravity term vector,J (q) is the Jacobian matrix,τ is the joint
torque vector, andDu stands for uncertainties and disturbances. By making the
control law

u = W1‖MJH−1‖Dumax
s

‖s‖ , W1 > 1, (20)

τ = V +G− J TF −HJ−1M−1[MJ̇ q̇ + BJ q̇ +K(x − xd)+ u
]
, (21)

it can be shown that

L̇ = sT
(− u+MJH−1Du

)
< 0, (22)

whereDumax in Equation (20) is the upper bound onDu. Thus, with this control
law, L will approach zero under bounded uncertainties and disturbances; then,
s → 0, andx → xd according to Theorem 1. Note that chattering may result
from control discontinuity in Equation (20), and saturation functions can be used
to replaces/‖s‖ in Equation (20) to smooth control inputs [25].

3. Simulation

To demonstrate the effectiveness of the proposed scheme, simulations were per-
formed using a two-joint planar robot manipulator to execute the deburring com-
pliance task shown in Figure 3. The dynamic equations for this two-joint robot
manipulator are as follows:

τ1 = H11θ̈1+H12θ̈2−Hθ̇2
2 − 2Hθ̇1θ̇2+G1, (23)

τ2 = H21θ̈1+H22θ̈2+Hθ̇2
1 +G2, (24)

where

H11 = m1L
2
1+ I1+m2

[
l21 + L2

2+ 2l1L2 cos(θ2)
]+ I2, (25)

H22 = m2L
2
2+ I2, (26)

H12 = m2l1L2 cos(θ2)+m2L
2
2+ I2, (27)

H21 = H12, (28)

H = m2l1L2 sin(θ2), (29)

G1 = m1L1g cos(θ1)+m2g
[
L2 cos(θ1+ θ2)+ l1 cos(θ1)

]
, (30)

G2 = m2L2g cos(θ1+ θ2) (31)

with m1 = 2.815 kg,m2 = 1.640 kg,l1 = 0.30 m, l2 = 0.32 m,L1 = 0.15 m,
L2 = 0.16 m, andI1 = I2 = 0.0234 kgm2. The effects of gravity were ignored in
the simulations. Modeling uncertainties and external disturbancesDu acting on the
robot manipulator were unknown, but were bounded, and formalized in a function
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Figure 4. Simulation results using the proposed scheme: (a) position response, (b) position
error plot.
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Figure 4. (Continued) (c) commandCd, and (d) force response.
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involving sin and cos functions, withDumax= 0.4 N. The deburring process, burr
characteristics, and the designs of the reinforcement learning mechanism and the
robust compliance controller for deburring were as all described in Section 2. In all
simulations, the environmental stiffness,Ke ∈ [8000,10000] (N/m), varied along
with burr distribution, and the parameters describing burr characteristics,KFω ∈
[0.008,0.012] (m/(N · rad)),Kxy ∈ [0.9,1.1], KF ∈ [0.9,1.1] (rad/(N· s2)) and
Kωy ∈ [0.9,1.1] (rad/m· s), also varied at different places on the surface.

In the first set of simulations, we used the proposed scheme to perform de-
burring. The simulation results are as shown in Figure 4. As Figure 4(a) shows,
the grinding tool was moved from an initial location[0.3,0.0] (m) in free space
and contacted the burrs beyond the linex = 0.4 m, where the desired surface
to reach was located. In Figure 4(a), the surface before deburring is indicated by
dashed lines, and that after deburring by solid lines. Figure 4(b) shows the position
errors between the surface after deburring and the desired surface; the errors were
quite small with an average deviation of 0.29 mm in theX direction. Figure 4(b)
shows a few points with larger errors, which occurred at locations where burr
characteristics or burr surfaces varied abruptly. Figure 4(c) shows the commands
Cd generated by the reinforcement learning mechanism, and Figure 4(d), the resul-
tant force responses produced when the robust compliance controller executed the
commandsCd to move the robot manipulator in contact with the environment. The
closeness of the trajectories in Figures 4(c) and (d) demonstrates that the robust
compliance controller successfully imposed the desired contact forces specified by
the commandsCd on the environment. To investigate the influence of initial weight
selection on the reinforcement learning mechanism in command generation, i.e.,
the selection ofWω, Wx , andWy in Equation (5), we also performed simulations
using different sets of initial weights. Results similar to those in Figure 4 were
obtained, and we deemed that initial weight selection did not greatly affect the
performance of the reinforcement learning mechanism.

In the second set of simulations, we replaced the sliding mode impedance con-
troller in the robust compliance controller of the proposed scheme with an im-
pedance controller, and still used the estimator in the robust compliance controller
to transform commandsCd from the reinforcement learning mechanism into de-
sired positionsxd. The purpose was to investigate the difference between the sliding
mode impedance controller and the impedance controller. The same deburring task
(with the same burr characteristics and distributions) used in the first set of simu-
lations was used here, and the same impedance parameter matrices,M, B, andK,
used in the sliding mode impedance controller were used in the impedance con-
troller. The simulation results are as shown in Figure 5. As shown in Figure 5(b),
the position errors between the surface after deburring and the desired surface
oscillated and were larger than those in Figure 4(b), having an average deviation
of 0.89 mm in theX direction. Figures 5(c) and (d) show the commandsCd and
the resultant force responses. Figure 5(d) shows oscillations in the force responses
similar to those in the position responses, indicating that the impedance controller
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Figure 5. Simulation results using the proposed scheme with the sliding mode impedance
controller replaced by an impedance controller: (a) position response, (b) position error plot.
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Figure 5. (Continued) (c) commandCd, and (d) force response.
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did not respond well to uncertainties and disturbances. Judging by the position and
force responses in Figures 4 and 5, we deemed that the sliding mode impedance
controller performed better than the impedance controller in dealing with uncer-
tainties and disturbances. One point to note here is that the command trajectories
(Cd) in Figures 4(c) and 5(c) are not exactly the same, although they do have
similar shapes. This is because different compliance controllers were used, leading
to different performances, thus, the reinforcement learning mechanism adaptively
responded with different commands, although the same deburring task was tackled.

In the third set of simulations, we used the robust compliance controller alone
to perform the deburring task. The purpose was to further investigate the impor-
tance of the reinforcement learning mechanism in the proposed scheme. Since the
reinforcement learning mechanism was not included for command generation, the
estimator in the robust compliance controller was in fact not in use, and fixed po-
sition commands were sent directly to the sliding mode impedance controller. The
simulation results show that the surface after deburring was in general irregular, and
the position errors between the surface after deburring and the desired surface were
much larger than those in Figure 4, indicating that fixed position commands were
not appropriate for varying burr characteristics and surfaces. Thus, we deemed that
the reinforcement learning mechanism did provide proper commands correspond-
ing to task variations for the robust compliance controller to follow; otherwise the
robust compliance controller might have faced too wide environmental variations.

4. Conclusion

In this paper, we have proposed a reinforcement learning and robust control scheme
for robot compliance tasks. Due to variations present in compliance tasks of the
same kind, the reinforcement learning mechanism is used to provide corresponding
varying commands. The robust compliance controller is then used to execute the
commands in the presence of modeling uncertainties and external disturbances.
The cooperation of the reinforcement learning mechanism and the robust com-
pliance controller in the proposed scheme successfully tackled the complexity of
planning and controlling compliance tasks. The deburring compliance task was
used as a case study, and the simulation results demonstrate the effectiveness of the
proposed scheme. Nevertheless, it is quite straightforward to apply the proposed
scheme to different kinds of compliance tasks. In future works, we will verify the
proposed scheme with experimentation.

Appendix A. Proof of Theorem 1

THEOREM 1. Given the sliding surfaces(t) defined as

s(t) = Mẋ + B(x − xd)+K
∫ t

0

(
x(σ )− xd

)
dσ (A1)
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withM,B, andK positive definite matrices, ifs converges to zero,x will approach
the desired positionxd.

Proof.By employing the control law defined in Equations (20) and (21),s(t) is
bounded and will converge to zero, as shown in Section 2.2. Letsu be the upper
bound ons(t), i.e.,‖s(t)‖ 6 su, ∀t , and define

y = [y1, y2]T, with y1 =
∫ t

0

(
x(σ )− xd

)
dσ,

andy2 = ẏ1 = x − xd. We then have

ẏ2 = −M−1By2−M−1Ky1 + s (A2)

and

ẏ = Ay + Cs (A3)

with

A =
[

0 1
−K
M
−B
M

]
(A4)

and

C =
[

0
1

]
. (A5)

And, y(t) can be solved as

y(t) = eAty(0) +
∫ t

0
eA(t−τ)Cs(τ) dτ. (A6)

BecauseM, B, andK are positive definite, leading toA in Equation (A4) expo-
nentially stable, the first term eAty(0) in Equation (A6) will converge to zero as
t →∞. By using the Lebesgue dominated convergence theorem [6] and‖s(t)‖ 6
su, ∀t , we can show that the second term

∫ t
0 eA(t−τ)Cs(τ) dτ will also converge to

zero. Thus,y(t) will approach zero, andx(t) will approachxd. 2
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