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Abstract. In this paper, the issues of contact friction compensation for constrained robots are
presented. The proposed design consists of two loops. The inner loop is for the inverse dynamics
control which linearizes the system by canceling nonlinear dynamics, while the outer loop is for
friction compensation. Although various models of friction have been proposed in many engineer-
ing applications, frictional force can be modeled by the Coulomb friction plus the viscous force.
Based on such a model, an on-line genetic algorithm is proposed to learn the friction coefficients for
friction model. The friction compensation control input is also implemented in terms of the friction
coefficients to cancel the effect of unknown friction. By the guidance of the fitness function, the
genetic learning algorithm searches for the best-fit value in a way like the natural surviving laws.
Simulation results demonstrate that the proposed on-line genetic algorithm can achieve good friction
compensation even under the conditions of measurement noise and system uncertainty. Moreover,
the proposed control scheme is also found to be feasible for friction compensation of friction model
with Stribeck effect and position-dependent friction model.
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1. Introduction

In recent years, robots have been used to undertake many tasks in automatic fac-
tories. These tasks, depending on the interaction between the robot and the envi-
ronment, can be classified into contact and non-contact tasks [1]. In performing the
non-contact tasks, the robot moves freely in space and requires a position control
only [1]. However, in general, control of both the positon and the contact force
are simultaneously needed to carry out the contact tasks [1–4]. The position/force
control of a robot has been studied by many researchers. For instance, a general
review can be found in [4].

When the robot is executing a constrained motion, of which the contacted sur-
face is rigid, the movement normal to the surface is apparantly inhibited. This
implies that the total independent coordinates can be reduced to benefit the control
designs. A modified computed-torque control scheme [5] was proposed to decou-
ple the constrained robot dynamics into a set of linear subsystems via coordinate
reduction and inverse dynamics technique, which results in a global tracking of
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position and contact force for frictionless contact surface. The results of [5] have
been extended to the study of constrained robot motion on a frictional surface
[6]. However, the control design of [6] relies on the known exact modeling of the
frictional force to fit the requirement of inverse dynamics technique.

For the compensation of unknown contact friction, the high gain control design
is commonly used to guarantee the practical stability of robot motion if the bound
of the frictional force is provided [7]. Adaptive friction compensation schemes
have been proposed to compensate friction in a variety of mechanisms [8, 9].
However, the results were obtained only for the system linearization, which might
not be effective for the original nonlinear dynamics. Nonlinear scheme for friction
compensation was shown [10] to provide better system performance than linear
approach, even if the contact friction is not exactly cancelled. In general, the con-
tact friction is unknown and hard to measure. Fuzzy neural theory has recently
been applied to study such an issue [11]. However, it is restricted for learning the
Coulomb friction [11].

Contact friction force varies together with applied normal force, relative veloci-
ties, surface conditions and so on [12]. Experiments conducted for identifying fric-
tion force are off-line in nature and time-consuming. The friction model composed
of the Coulomb friction plus the viscous force is adaquate for many engineering
applications [12]. Two friction coefficients are required to fully describe the friction
force in such a model. In this paper, we will use this model and focus on the study
of the contact friction compensation for constrained manipulators.

By emulating the best-to-survive evolution laws of nature genetics, genetic
algorithms (GAs) are global searching algorithms capable of rapidly locating sub-
optimal solutions for difficult problems [13–15]. Basically, GA consists of three
fundamental operators: reproduction, crossover, and mutation [14]. Given a solu-
tion space to be searched, each possible solution is encoded as a finite-length string
first. The genetic algorithm then randomly searches for the solution in such a dis-
cretized space repeatedly via the three operators which are guided by a prescribed
fitness function aimed to preserve the best among the survivals. Genetic algorithm
prevails over conventional optimum schemes, especially in complex, multimodal,
and noisy situations since it poses no requirement on the derivatives of the cost
functions. Moreover, GAs are more efficient than other random search algorithms
for their capability of accumulating the useful information during the process of
search. Since the robot system is highly nonlinear and the friction force is known
to be discontinuous at the zero velocity, in this paper genetic algorithm is applied
to compensate friction for constrained manipulators.

The paper is organized as follows. In Section 2, brief review of equations of mo-
tion for constrained robot manipulators as well as the genetic algorithm are given.
It is followed by the design of two-loop friction compensator. An example study
of two-link planar robot interacting with rough surface is presented in Section 4
to demonstrate the effectiveness of the design. To summarize the main results a
conclusion is given in Section 5.
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2. Preliminaries

2.1. DYNAMICAL EQUATIONS FOR CONSTRAINED MANIPULATORS

The dynamical equation of ann-joint constrained manipulator, in terms of the joint
variables, can be written as (e.g., [3])

M(q)q̈ +H(q, q̇) = τ + J Tf, (1)

whereq, q̇, q̈ denote then×1 joint position, velocity, acceleration vectors, respec-
tively; M(q) is then×n symmetric inertia matrix;H(q, q̇) contains the centripetal,
Coriolis and gravitational forces;τ is the joint control torque;J (q) is the system’s
Jacobian matrix; andf is the reaction force vector at the end effector. In this paper,
we assumeM(q) is nonsingular in the workspace.

Since both position and force commands are generally given relative to the
end effector, it is natural to express the constrained robot dynamics in Cartesian
coordinates. LetX ∈ Rn denote the position vector of the end effector in Carte-
sian coordinates. By a diffeomorphic coordinate transformation, the dynamical
equations for constrained manipulator can then be obtained as (e.g., [3])

M(X)Ẍ +H(Ẋ,X) = T + f, (2)

where

M(X) := (J T
)−1

MJ−1; H(Ẋ,X) := (J T
)−1

H − (J T
)−1
J̇ J−1Ẋ;

T = (J T)−1
τ.

Moreover,M(X) is nonsingular sinceM(q) is nonsingular and the transformation
is diffeomorphic.

For constrained robot motion, the force command generally lies along the nor-
mal direction of the constraint surface. Without loss of generality, assume the last
component ofX is along that direction. The position vector can then be expressed
asX = [ξ 0]T, with ξ ∈ Rn−1. Since we consider the issue of sliding friction
compensation only, for simplicity,ξ is assumed to contain purely the sliding vector.
The contact force is expressed asf = [ft fn]T with ft ∈ Rn−1 and fn ∈ R.
Physically,ft andfn denote the frictional force and the normal force, respectively.
Thus,M(X), H(Ẋ,X) andT can be expressed as

M(ξ) =
[
Mt(ξ) Mu(ξ)

Mn(ξ) Mv(ξ)

]
, H(ξ̇ , ξ) =

(
Ht(ξ̇ , ξ)

Hn(ξ̇ , ξ)

)
, T =

(
Tt
Tn

)
, (3)

whereMt(·) ∈ R(n−1)×(n−1), Mn(·) ∈ R1×(n−1), Ht(·, ·) ∈ Rn−1, Hn(·, ·) ∈ R,
Tt ∈ Rn−1 andTn ∈ R. Equation (2) can be rewritten as

Mt(ξ)ξ̈ +Ht(ξ̇ , ξ) = Tt + ft (4)

and

Mn(ξ)ξ̈ +Hn(ξ̇ , ξ) = Tn + fn. (5)
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Figure 1. Three operations of GAs: (a) reproduction, (b) crossover, (c) mutation.

Note that the differential Equation (4) describes the free motions on the contacted
surface, while Equation (5) can be used to calculate the normal contact force. These
equations will be employed in Section 3 to derive the control laws.

2.2. GENETIC ALGORITHMS

In control applications, calculus-based optimization schemes are often employed to
seek for the optimal control gains to meet the performance requirements. However,
those designs presume the cost functions to be smooth enough. Thus, they might
not be applicable to noisy and discontinuous cases. Besides, most of these schemes
obtain only the local optima but not the global ones. These drawbacks magnify
themselves when the functions are multimodal, discontinuous, or noisy. To solve
such problems, random search algorithms have received much attentions for being
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immune to those shortcomings. As discussed in [13], pure random search only pro-
vides a lower bound for performance since none of the accumulating information is
used to guide its search. However, genetic algorithm leads to better results because
of its highly guided search and high efficiency.

GAs are global optimization techniques overwhelming the conventional search
techniques, especially, when the search space is complicated because of its big
size. They simulate the nature evolution which preserves the best among the sur-
vivors via a systematic information exchange guided by probabilistic decisions.
In a simple genetic algorithm, the solution structure is required to be coded as
binary strings. First, random selection of a population of the coded numbers, called
the initial population, is initiated. To demonstrate the methodology, an example
of initial population with four members, denoted as P1, P2, P3, P4, is shown in
Figure 1(a). Genetic algorithm then proceeds iteratively with three consecutive
operations: reproduction, crossover, and mutation. Reproduction is a process in
which individual strings are copied according to their fitness function values. It
means that a string with higher fitness value has higher probability of contributing
one or more offsprings in the next generation. The crossover operator then proceeds
in two steps: (i) strings are mated randomly; and (ii) mated string couples cross over
with crossing site selected randomly. For instance, assume that (P1, P3) and (P1,
P4) are selected as mating couples with the crossing site occurring at bit positions 2
and 9, as shown in Figure 1(b). The last operator “mutation” is usually performed
on a bit-by-bit basis with small occurring probability. For instance, assume that
bit 5 in P4 is mutated. The final result after the crossover and the mutation process
is shown in Figure 1(c). New generations go through the three operations again and
again until the best-fit solution is found. As discussed in [14], by such an approach,
GAs have yielded good results in many practical problems.

3. Controller Designs

In the following, we consider the tracking problem for constrained manipulators
moving on a frictional surface. The design consists of two loops. The inner loop is
the modified computed-torque control which, linearizing the system by feedback,
achieves global stability in tracking the position and the force for frictionless cases.
Denote byξd, f

d
n the desired motion on the constrained surface and the desired

normal contact force, respectively. Lete be the position error, i.e.,e = ξ − ξd.
According to [5], a modified computed-torque control law for system (4)–(5) can
be selected as

Tt = Mt(ξ)
(
ξ̈d− gvė − gee

)+Ht(ξ, ξ̇ )+ u (6)

and

Tn = Mn(ξ)
(
ξ̈d− gvė − gee

)+Hn(ξ, ξ̇)− f d
n , (7)

wheregv, ge ∈ R(n−1)×(n−1) denote two diagonal gain matrices withgv, ge > 0.
Here,u is the extra applied control input for friction compensation which will

JINT1443.tex; 1/10/1998; 16:33; p.5



336 D.-C. LIAW AND J.-T. HUANG

be designed in Section 3.2 below. Equations (4), (5) in Section 2.1 can now be
rewritten as

Mt(ξ)
(
ë + gvė + gee

) = u+ ft (8)

and

Mn(ξ)
(
ë + gvė + gee

) = fn − f d
n . (9)

SinceMt(ξ) is nonsigular in the task space andgv, ge > 0, it is obvious that
e → 0 andfn → f d

n ast → ∞ whenft = 0 and the extra control inputu = 0
[5]. However, when frictionft 6= 0, the extra control forceu will be required
to cancel the effect offt . As presented in [6], high tracking performance can be
achieved if the friction is exactly cancelled. However, the frictionft is generally
unknown and is known to be dependent on normal force, sliding velocities, surface
conditions and so on. Therefore, on-line identification of friction is required for
friction cancellation. In the following, model-based friction compensators will be
installed via an on-line genetic learning algorithm for friction compensation. In
Section 3.1, the friction models adopted in the study will be briefly reviewed. It is
followed by the control algorithm design for friction compensation.

3.1. FRICTION MODELS

It is known that friction occurs at the contacted surface between two mechanical
bodies and always opposes to the relative motion. When a robot is carrying out
motion on some constrained surface, contact friction may degrade the tracking
performance if it is not properly compensated. To understand friction phenomena
is a very important issue.

Friction usually occurs in two forms: the static and the dynamic frictions. Using
the above defined notations, we can characterize the static and dynamic frictions
as follows. First, the static friction is generally characterized by some maximum
value, denoted asfmax, under which the static state remains, i.e., (e.g., [7])

f it =
{
ui, |ui | < fmax

sgn(ui)fmax, |ui | > fmax
whenξ̇ i = 0, (10)

wherefmax is some constant positive scalar,ξ̇ i denotes theith component of the
sliding velocityξ̇ , f it andui denote theith components of the friction vector and
the tangential applied force, respectively. The dynamic friction is more compli-
cated and has been differently modeled for various applications [12]. Typically, the
dynamic friction can be described as

f it = −sgn
(
ξ̇ i
)
fslide, (11)

wherefslide represents the magnitude off it . Note that, in general,fslide is not a
constant and is unknown. However, in many engineering applications,fslide can
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Figure 2. Friction models: (a) Coulomb+ viscous, (b) Stribeck effect in region A.

be modeled as the Coulomb friction plus a viscous force [12], as depicted in Fig-
ure 2(a). It is known that the Coulomb friction is proportional to the normal force
applied to the contact surface, while the viscous force is proportional to the relative
velocity of the two bodies. The friction along theξ̇i direction can then be written
as

fslide= µfn + σ ξ̇i, (12)

whereµ and σ denote the coefficients of Coulomb friction and viscous force,
respectively. Recently, an additional friction phenomenon, the so-called “Stribeck
effect”, was discovered near the zero velocity [12]. The dynamic friction including
the Stribeck curve labeled as A in Figure 2(b), can then be modeled as in [12]

f it = −sgn(ξ̇i)
{
µf in + σ ξ̇ i + c1e

−(ξ̇ i/c2)c3}, (13)

wherec1, c2, c3 are positive constants. The overall friction function can then be
obtained as depicted in Figure 2(b).

In this paper, however, the friction force is assumed to be characterized by
Equation (12) and the Stribeck effect is considered as a disturbance. Under such
assumption, a best pair of (µ, σ ), as in Equation (12), is to be learned for friction
compensation. If bothµ andσ are exactly estimated, the position and the force
errors can then be driven to zero because of exact cancellation of friction. The
goal of the next section is to design such a control algorithm via genetic algorithm
approach.
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3.2. GENETIC LEARNING ALGORITHM DESIGNS FOR FRICTION

COMPENSATION

In the following, we assume the friction is composed of the Coulomb friction and
the viscous force only. As discussed above, it can be determined by the two coef-
ficients:µ andσ . A genetic-based on-line friction compensator design is proposed
in this section to effectively cancel the sliding friction. Here are the details.

From Equations (8), (9), we have

Mt

(
ξ(k)

)(
ë(k)+ gvė(k)+ gee(k)

) = u(k)+ ft(k) (14)

and

Mn

(
ξ(k)

)(
ë(k)+ gvė(k)+ gee(k)

) = fn(k)− f d
n (k), (15)

wherek denotes thekth sampling time.
Note that the right-hand sides of Equations (14), (15) are the applied forces,

while the left-hand sides are the consequences of the applied forces in terms of
the kinematic variables. The friction forceft on the right-hand side is generally
unknown and hard to estimate. On the other hand, the kinematics is usually mea-
surable or calculable via suitable sensors. It is clear from Equation (14) that the
left-hand side of Equation (14) can provide the information of the difference be-
tween the extra control inputu(k) and the functionft(k). Thus, we can transform
the friction compensation problem into the friction tracking problem.

In real applications, the accelerationξ̈ is not easy to measure. A first-order
approximation can be adopted to calculate the acceleration as

ξ̈ (k) = (ξ̇ (k)− ξ̇ (k − 1)
)
/1t, (16)

where1t denotes the sampling period. At the beginning of each sampling time,
the friction compensation forceu(k) := µefn(k) + σeξ̇(k) is generated and fed
into the robot dynamics, whereµe andσe are randomly assigned. The fitness value
with respect to current value of(µe, σe) is evaluated to create next generation of
(µe, σe). Two errors, the tangential force errorEt(k) := ‖u(k) − ft (k)‖ and the
normal force errorEn(k) := ‖fn(k)−f d

n (k)‖ are adopted for calculating the fitness
function values in this proposed compensator design. As discussed above, they can
be approximated by

Et(k) ≈
∥∥Mt(k)

((
ξ̇ (k + 1)− ξ̇ (k))/1t − ξ̈d(k + 1)+ gvė(k + 1)+

+ gee(k + 1)
)∥∥, (17)

and

En(k) ≈
∥∥Mn(k)

((
ξ̇ (k + 1)− ξ̇ (k))/1t − ξ̈ (k + 1)+ gvė(k + 1)+

+ gee(k + 1)
)∥∥. (18)

It should be noted thatEt(k) is approximated by Equation (17) with the kinetic
variables measured at the begining of the(k + 1)th sampling time, i.e., the end of
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Figure 3. Schematic diagram of the closed loop system.

the kth sampling time. On the other hand,En(k) can be exactly calculated when
fn(k) is measured. In other cases, the right-hand side of Equation (17) is a good
replica. Intuitively, onlyEt(k) is required for justifying the fitness of the estimated
pair (µe, σe). However, uncertainties arising from the calculation of Equation (17),
friction modeling and many others always exist in real applications. Therefore,
En(k) is accompanied as an auxilliary information for the evaluation of the fitness.

Based on these approximations, a properly defined fitness function can then be
calculated for the guide of searching process in the genetic algorithms. The fitness
function is chosen for this application is

F(k) = 0.5 exp
(−Et(k)/δ1

)(
1+ exp

(−En(k)/δ2
))
, (19)

whereδ1, δ2 are constants to be selected for applications.
The whole schematic diagram of our controller is depicted in Figure 3. As

discussed previously, the inner-loop computed torque control is used to render
the constrained robot dynamics into two orthogonal subsystems as given in Equa-
tions (4), (5). The outer loop, the friction compensator installed with an on-line
genetic learning algorithm, is used to learn the friction coefficients for canceling
the friction force. Detailed implementation of the learning algorithms is presented
as follows.

To be processed by the GAs, firstly, the estimated parameters:(µe, σe) must be
coded as finite-length binary strings. AssumeNµ bits are forµe andNσ bits forσe.
Then, there will be totally 2Nµ+Nσ pairs in the search space, denoted as�. Initially,
N pairs of(µe, σe) in�, called the initial population, are randomly generated. Then
each pair of(µe, σe) in the initial population is assigned a particular sampling inter-
val, during which the estimated pair will be tested to justify its fitness sequentially.
As stated previously, this is accomplished by injecting a corresponding compensa-
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tion forceu(k) into the robot system in the beginning of thekth sampling interval,
and evaluating its fitness value defined in Equation (19) at the end of that sampling
interval. AfterN sampling intervals, the testing for the whole initial population
will be completed. The next generation will then be produced by performing three
consecutive operators: reproduction, crossover, and mutation. Though randomly
reproduced, however, as discussed in Section 2, individuals with higher fitness
values will have a bigger chance to be selected as parents to generate their own
offsprings in the next generation. Therefore, through iterative uses of the genetic
operators, new generations with higher fitness values are produced consequently
until the near-optimal solution is found.

DenoteN the population size. It will clearly consume aboutN1t seconds for
each iteration of the whole process. Therefore, assume that there areNgen genera-
tions for a complete learning. The learning period, denoted asTl (sec), can then be
estimated as

Tl(sec) = NNgen1t. (20)

It is noted that the learning rate is proportional to the sampling time. So, higher
sampling rate is preferred to provide quick convergence.

4. Numerical Examples

In this section, to demonstrate the validity of our design, a two-joint constrained
robot system is used for simulation, as depicted in Figure 4. The dynamical equa-
tions for such a system can be found in [3]. Parameters of the manipulator and the
control algorithms are given in Tables I and II. Initial conditions of the manipulator
are given in Table III. It is known that the inverse dynamics based control methods
are quite sensitive to the choice of sampling time [16]. Therefore, the high sampling
rate and also high gains, as given in [6], are selected for our simulation as shown
in Tables II and III.

The position of the end effector in Cartesian coordinates (x1, x2), as can be
easily checked in Figure 4, is related to the joint position as follows:

x1 = l1sin(q1)+ l2sin(q1+ q2), (21)

x2 = l1cos(q1)+ l2cos(q1+ q2), (22)

Table I. Parameters of the manipulator

Link 1 Link 2 Unit

Arm length L 0.5 0.4 m

Mass M 3 2 kg
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Figure 4. A two-arm robot system.

Table II. Parameters of the controller

gv 50

ge 50

1t 2 ms

δ1 1.0

δ2 0.01

Population size 100

Crossover probability 0.98

Mutation probality 0.002

Generations 50

Table III. Initial condition of the manipulator

Link’s angular position q1 = 0, q2 = −π/3
Link’s angular velocity q̇1 = 0, q̇2 = 0

End effector position x1 = −0.346 m, x2 = l = 0.7 m

where the constraintx2 = l must be satisfied. Clearly, when the end effector is in
contact with the surface,x1 denotes the free motion direction, while alongx2 is the
force control direction. The robot is commanded to make sinusoidal movements
along thex1 direction as described by

x1 = −0.346cos(0.5t), (23)

exerting, at the same time, a constant 10Nt force along thex2 direction onto the
surface, i.e.,

Td = 10Nt. (24)
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It can be expected thatfmax in Equation (10) may also be learned with GAs.
However, since it learns only at the zero velocity, i.e., at the peak of the sinusoidal
movement, the cycle time of learning may be prolonged unendurablly. For simplic-
ity, therefore,fmax is assumed to be exactly known in our simulation. In order to
predict its effectiveness and robustness in possible real applications, the following
five cases are simulated.

Case 1. No Measurement Noise

The desired dynamic friction coefficients are selected asµ = 0.5 andσ = 2.0
in this case. A compact set inR2 must be given within which the GAs search for
the pair(µe, σe) closest to the actual one. Since the robot may be damaged by the
normal reaction force due to a large over-compensating force, such a compact set
can not be arbitrarily assigned. Moreover, too large a search space may prolong
the cycle time of the learning and even degrade its performance. Therefore, in the
numerical study, we choose� ∼= [0,3] ∩ [0,3] in the[µ, σ ] space for the search.

The typical transient responses of the positionx1 and the forcefn, without
and with the learning algorithms being actuated, are shown in Figures 5 and 6,
respectively. In Figure 5, the dash lines denote the desired trajectories, while the
solid lines are the actual trajectories. Without friction compensation, as can be seen
in Figure 5, the friction force causes considerable deviations from the position com-
mand and chattering behavior of the force response during velocity reversal. While
the normal forces mostly oscillate around the desired one with small amplitudes
during the learning process, as can be seen in Figure 6(b). The best-fit value of each
generation and the fitness function values v.s. generations are depicted in Figure 7.
As can be seen in Figure 7(a), despite the random walks in the first few genera-
tions do not follow the actual ones, however, the best-fit values quickly converge
to the actual ones after about three generations. The cycle time of the learning
for a sampling of 2 ms, as can be easily obtained from Equation (20), is about
0.6 second. It is noted that, the fitness function, as depicted in Figure 7(b), does not
always follow the changes of the best-fit values in Figure 7(a) simultaneously. This
is mainly due to that the fitness function is evaluated via indirect information of
the error signals between the estimated data and the actual ones. Nevertheless, the
relative grades within each generation are still very informative and, hence, guides
the search efficiently.

Case 2. With Measurement Noise

Since the measurement noises always occur in real systems, we add random noises
with zero-mean and amplitudes up to 0.1%, 0.5%, and 0.1% tox1, ẋ1, fn, respec-
tively. The learning results are shown in Figure 8. Our design is quite robust to
small measurement errors. If the noises infn increased up to 1%, learning ofσ
will fail. However, the main contributor of the friction force, i.e., the Coulomb
friction force, can still be learned correctly.

JINT1443.tex; 1/10/1998; 16:33; p.12



CONTACT FRICTION COMPENSATION FOR ROBOTS 343

Figure 5. Trajectories without friction compensation.

Figure 6. Trajectories during GAs learning.
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Figure 7. Learning results under perfect circumstances.

Figure 8. Learning results under small white noises.
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Case 3. Friction Models with Stribeck Effect

To predict the effect caused by friction modeling uncertainty, the Stribeck effect
exhibited at the low velocity, as depicted in Figure 2(b), is treated as the actual
friction model. The model in Equation (12) is adopted to compensate it. We choose
c1 = 1, c2 = 0.01, c3 = 1 in Equation (13), which are quite typical, as suggested
in [12]. The results are shown in Figure 9. Around the zero velocities, as genera-
tions no. 1–5 and 25–35 in Figure 9(a), the disturbance caused by Stribeck effect
renders the searching forσ losing directions. However, both friction coefficients
can be learned exactly in a later time. This implies that a small uncertainty in
the friction modeling such as the Stribeck effect does not affect the final learning
results. If a large deviation from the adopted friction model occurs in real appli-
cations, large errors of tracking might occur. Even worse, the system might go
unstable if without additional force control loop. However, it will not be addressed
in this paper.

Case 4. With System Uncertainty

When imperfect cancellation of the nonlinear dynamics occurs in the inner loop
of our control design, it can be expected that the residual terms may degrade the
performance of the learning. To estimate such an effect, with 1% uncertainty of the
termH(ξ, ξ̇) in Equation (3) is added to Equations (6), (7) for numerical study.
The learning results are shown in Figure 10. As depicted in Figure 10(a), small
uncertainty in nonlinear cancellation does not affect the final learning of the actual
friction coefficients.

Case 5. Position-Dependent Friction Force

It is known that the friction force could be position-dependent [12]. Therefore, a
five-percent amplitude of sinusoidal variations in bothµ andσ are added to the
target friction model for the numerical study and the GAs are applied to learn these
coefficients. The results are shown in Figure 11. The value ofµ can still be learned
correctly while the learning ofσ has totally lost its way. The tracking error, of
friction, however, is not significant for the minor role of the viscous term in the
total friction. The learning performance is, therefore, regarded as satisfactory.

Finally, during our simulation, we found that small variations in the converging
rates and even small deviations from the true coefficients may exist among various
experiments. This is mainly owing to the probability-based nature of the genetic
algorithm. We also found that no tunings of control parameters are required for
learning different friction coefficients [15]. To highlight these, a final simulation
with the same numerical values as our first one, except now thatµ ranges from 0.1
to 1.0 with step size 0.1 andσ ranges from 0.2 to 2.0 with step size 0.2 took place.
The results, of five repetitive runs, for each friction model are given in Table IV. It
can be seen that, without tuning of the control parameters, accurate estimation of
both friction coefficients can still be easily achieved for quite a large variation of
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Figure 9. Learning results under friction model uncertainty.

Figure 10. Learning results under imperfect cancellation.
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Figure 11. Learning results with position-dependent variations inµ andσ .

Table IV. Results of five repetitive learnings

Friction coefficients run 1 run 2 run 3 run 4 run 5

1µ 1σ 1µ 1σ 1µ 1σ 1µ 1σ 1µ 1σ

µ = 0.1, σ = 0.2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.011 0.000 0.000

µ = 0.2, σ = 0.4 0.000 0.000 0.000 0.085 0.000 0.000 0.000 0.082 0.000 0.000

µ = 0.3, σ = 0.6 0.000 0.004 0.000 0.008 0.000 0.000 0.000 0.068 0.000 0.011

µ = 0.4, σ = 0.8 0.000 0.003 0.006 0.105 0.000 0.088 0.000 0.020 0.000 0.019

µ = 0.5, σ = 1.0 0.000 0.005 0.000 0.007 0.000 0.002 0.000 0.002 0.000 0.006

µ = 0.6, σ = 1.2 0.000 0.000 0.000 0.000 0.000 0.028 0.000 0.000 0.000 0.023

µ = 0.7, σ = 1.4 0.000 0.000 0.000 0.002 0.000 0.002 0.000 0.000 0.000 0.002

µ = 0.8, σ = 1.6 0.000 0.001 0.003 0.058 0.000 0.000 0.000 0.020 0.000 0.000

µ = 0.9, σ = 1.8 0.000 0.009 0.000 0.000 0.000 0.018 0.000 0.001 0.000 0.003

µ = 1.0, σ = 2.0 0.000 0.000 0.000 0.001 0.000 0.005 0.000 0.001 0.000 0.001
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the actual friction coefficients. The deviations shown in Table IV, denoted as1µ

and1σ , are defined as

1µ =
50∑

gen=41

|µ̃e(gen)− µ|
10.0

and 1σ =
50∑

gen=41

|σ̃e(gen)− σ |
10.0

,

respectively. Here,̃µe(·) andσ̃e(·) represent the best estimation in each generation.
The deviations thus defined are believed to faithfully reflect the steady-state errors
for each test run. Though it seldom occurs, the estimation ofσ yields poor accuracy
with error up to about twenty percent of the actual ones as can be seen in Table IV.
We notice that the viscous force only contributes less than six percent of the to-
tal friction in the above simulation. The tracking performance is, therefore, quite
acceptable. However, if a higher accuracy is required, a startover of the learning
process is suggested to find the actual ones.

5. Concluding Remarks

In this paper, a genetically-based on-line learning compensator is proposed for
estimating the two friction coefficients which characterize the friction model for
the contact surface. Simulations demonstrate that both coefficients can be quickly
and accurately learned within a few seconds. No tuning is required in learning
various coefficients over certain ranges. Both position and force trajectories are
found to be tracking the desired values after the friction coefficients have been
exactly learned.

As shown in simulations, the proposed on-line genetic algorithm design could
achieve good friction compensation even under the conditions of measurement
noise and system uncertainty. Moreover, from numerical simulations, the proposed
control scheme is also found to be feasible for friction compensation of friction
model with Stribeck effect and position-dependent friction model.
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