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Potential-Based Modeling of Three-Dimensional
Workspace for Obstacle Avoidance

Jen-Hui ChuangMember, IEEE

Abstract—A potential-based model of three-dimensional (3- mentioned in [4], a potential field should have the following
D) workspace is proposed in this paper for ensuring obstacle attributes.

avoidance in path planning. It is assumed that the workspace . .
boundary is uniformly distributed with generalized charges. The 1) The magnitude of potential should be unbounded near

potential due to a point charge is inversely proportional to the obstacle boundaries and should decrease with range.
distance to the power of an integer, the order of the potential (This property captures the basic requirement of col-
function. It is shown that such potential functions and their lision avoidance.)

gradients due to polyhedral surfaces can be derived analytically, 2) The potential should have a spherical symmetry far away
and thus can facilitate efficient collision avoidance. Intuitively, the

potential fields and their effects on object paths should be spa- from the. obstac;le.
tially continuous and smooth. The continuity and differentiability 3) The equipotential surface near an obstacle should have
properties of a particular potential function are investigated. In a shape similar to that of the obstacle surface.

theory, by minimizing the repulsion between object and obstacles,  4) The potential, its gradient and their effects on paths must
the approach completely eliminates the possibility of a collision be spatially continuous.

between them if the dynamics of the moving object is ignored. ] . o . . .

A potential function which is a cubic function of the distance
between a point object and the obstacles is used in [5] for
moving a point object in the two-dimensional (2-D) space.
The potential function ranges from zero at some maximum
I. INTRODUCTION distance to a maximum value<fc) at zero distance. In [6],

N planning a path of a robot, a repulsive potential functiolp€@! Planning similar to that discussed in [4] is done using an
I is usually used to keep a safe distance between the roBH{flClm potential function Whlch is & function of the shortest
and obstacles. A collision-free path of a robot can be ofiStance between the moving object and the obstacles. The
tained by adjusting its configuration to minimize the potenti@tential function is described by
experienced by the robot. In general, a potential function 5
used to model the workspace can be a scalar function of the U(r) = A(l - i) (2)
distances between the boundary points of the robot and those T T
of obstacles. The gradient of such a scalar function can be used ) . ] .
as a repulsive force between the robot and obstacles, makiiigrer is the shortest distance amg is the effective range.
potential-based methods simple. (For a survey of related wofk§arly, the cubic function mentioned in [5] does not have the
please see also [1] and [2].) An artificial repulsive potentié'lrSt (unbounded) attribute. Furthermore, at the locations where

whose value is determined by the Yukawa function [3] arifje shortest distance corresponds to multiple obstacle points,
whose isopotential contours are modifieellipses is used in the gradient of the potential function will be undefined (the

[4] for local planning of linked line segments. The potentiat@Me problem exists for the potential function used in [6]).

Index Terms—Obstacle avoidance, potential fields, shape mod-
eling, 3-D workspace.

from an obstacle is given by _ Harmonic functions Which do not _exhibit_ local _minim_um_
in the free space are used in [7] to find object trajectories in
—aK the configuration space. Since the potential along an obstacle
UK) = A (1) of nonzero extent is finite, the only obstacle structure for

which collision avoidance can be guaranteed is a point itself

h h do-di . d h i v al (see Section IV for more detailed discussion). For each given
where the pseudo-distanéeis made to change linearly a Ongsource/goal pair in the configuration space, an iterative method

the z-axis and is used to specify each contour. Ideally, %S used to generate a discrete regular sampling of a potential

field on a grid numerically such that following the gradient
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distance map, upon a discrete representation of the free
—— ] space is not necessary.

It is not hard to see that the potential field established in [5]
is not obtained by superposing the potential due to individual
boundary point directly. Thus, whether each boundary point
is contributing to the potential field in an independent and
identical fashion is out of the question. In fact, since the
@ (b) definition of the pseudo-distance depends on the orientation
Fig. 1. The equipotential contours of the potential functions specified by (6f the coordinate system, the potential field is not rotational
(1) and (b) (4), due to a rectangle. invariant except for circularly symmetric obstacles, e.qg., disks,
in the 2-D space.
computed first, thus limiting its application to a point robot. In [11], an algorithm is developed to compute a safe
This algorithm is later generalized to star-shaped sets [9]. and smooth object path by minimizing the potential function
Boundary equations of polytopes are used in [10] to credtgcally for obstacle avoidance, while the gross robot movement
an artificial potential function. Let is subject to the constraints derived from the topology of the
g(z) <0 5 e R" 3) path givena priori. Since the pote_ntial is min?mized for the
obstacle avoidance purpose only, its local minima do not cause
be the set of linear inequalities describing a convex regioa.problem in the path planning (see Appendix).
Assuming there areN boundary polytopes, the potential The main contribution of this paper is the development of an

function is defined as analytic potential for a polyhedron enabling efficient collision
_ 1 4 avoidance in three-dimensional (3-D) space. The Newtonian
p(z) = 6+ f(z) (4) potential due to a uniform source distributed on the boundary

of a polyhedron can be obtained analytically using the results
of [12]. However, since the potential function is finite for

a point located on a surface thus modeled, the Newtonian

Z gi(@) + gi(x)| (5) potential can not be used to ensure obstacle avoidance in

the 3-D space. In this paper, higher-order potential functions,

is zero inside the region and grows linearly as the distangglled generalized potential functions, which decay faster

from the region increases. with distance than the Newtonian potential are proposed

It is easy to see that the potential functions described in (@ ensuring obstacle avoidance of an object trajectory in
and (4) do not have the attribute of spherical symmetry. Fgfe 3-D space. In is shown in Section Il that the potential
example, the equipotential contour of (2) due to a rectangignctions due to a uniform source distributed on the boundary
never converges to a circular shape in far field in the sense thata polyhedron can be derived in closed form. Intuitively,
the difference between the maximum and minimum distancgfse functions are continuous and smooth. Such properties
from points on any contour to the centroid of the rectangle & a potential function are studied in depth in Section IIl.
always equal to the length difference between two neighboriggction IV shows that obstacle avoidance can be guaranteed
edges of the rectangle [see Fig. 1(a)]. Similarly, the equipRr a workspace modeled with a generalized potential function,
tential contours of (4) due to a rectangle always consist of sgigt not the Newtonian potential. Section V presents some
of parallel line segments [see Fig. 1(b)]. concluding remarks.

The Newtonian potential which is inversely proportional to
the distance between two point-charges is used in [11] for theII
path planning in the 2-D space. By assuming that the polygonal
obstacle boundaries are uniformly charged, it is shown that theconsider a planar surfacg in the 3-D space shown in
resulting potential field have the above attributes. Moreovérid. 2; the direction of its boundary}s, is determined with
such a workspace model is unique in the following ways. 'eSpectto its surface normai, by the right-hand rulei x1 =

1) The resultant potential field is obtained by superposirly Wherea andi are along the (outward) normal and tangential

the potential due to individual boundary point dlrectly irections of 35, respectively. For the generalized potential

instead of intermediate representation of the obstadidction, the potential value at can be defined as

boundaries such as boundary equations. Furthermore, ds
each boundary point contributes to the potential field /
in an independent and identical fashion.

2) An analytic equation of the potential function due to #here R = |r' —r|, r' € 5, and integern is the order of
line segment enables the computation of the exact p#e potential function. The basic procedure to evaluate the
tential for the obstacles, avoiding the need to discreti®tential can be summarized as follows.
the obstacle boundary into a set of points. Step 1. Write the integrand of the potential integral oger

3) The potential field and its gradient are analytically as surface divergence of some vector function.
computable throughout the free space. Therefore, esStep 2. Transform the integral into the one owt based
tablishing a database of the potential function, e.g., a on the surface divergence theorem.

whereé is a small number and the scalar function

. GENERALIZED POTENTIAL FIELDS IN THE 3-D SPACE

s an,
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A By solving the associated linear first-order differential equa-
tion, we have (ignoring the additive constant)

FulB) =55 [ B

log
i Nas R "
- B (11)
2
; m—r N e—a) "7

E'g 2d Adg()'ygz”?' SUffageff t'hn the 3tDt Sl?ace fThe d'VEC“IOt:‘ ?rf] its [ f1(R) corresponds to the vector function used in [12] for the
oundary, IS determinea wi respec 0 Its surface normal,oy the N . . .
ewtonian potential integrall.

right-hand rulejit x 1 = f, where andl are in the (outward) normal and
tangential directions 0BS5S, respectively.

B. Analytic Expressions of the Generalized Potential Fields

_ O (origin)

According to thef,,(R) derived in the previous subsection,
if r¢ is insidesS, f,,(R) may becomes singular. L&t denote
the intersection of and a small circular region o of radius
¢ and centered aty, the potential due t&' can be evaluated as

[l [ v twpass [ o]
/ F(DP - dl

+ hm {— /a € fm(\/ €2+ d2) do
0

pdpdf
p +d2 (2 L J2ym/2

Fig. 3. Geometric quantities associated with a point, an &dgésubscript _ 0 . 1. ]
¢ is omitted) of.S shown in Fig. 2 and the plar@ containing$ (reproduced - Z Py fm, Z(ZZ) dl; + gm(a) (12)
from [12]).

Step 3: Evaluate the integral as the sum of line integralhere
over edges obS.

Related geometric quantities associated with an &dgef S Jm,ili) = fm <R =/ E+d&+ (Pi°)2> (13)

in the plane containing, @, are shown in Fig. 3 for’ € C;.

Without loss of generality, it is assumed that a log d, m=2
A gmla)=q > . m > 2. (14)
d=n-(r—r')>0 (7) (m —2)dm—2’

which is equal to the distance fromto @. P? is the distance betweanand C;; [; is measured from the

projection ofr on C; along the direction of;; and « is the
angular extent oBS. lying inside S as¢ — 0. For example,
Assume the vector function in Step 1 can be expressed as= 2r if rq is inside S, « = 0 if rg is outsideS, a = =
Fum(R) g) If rg is on an edge of and« is equal to the angle between
two edges ifrg is a vertex ofS where the two edges are
whereP is the position vector of a point i with respect to connected. (For simplicity, the subscriptis omitted in the
rq, the projection ofr on Q. The goal of Step 1 is to find rest of the paper whenever it is appropriate.)

A. Determination of the Vector Function in Step 1

fm(R) such that It is shown in [12] that for Newtonian potentiai(= 1)
1
o =Vs - (fm(R)P) / i R++l+
1 —
where V(- --) denotes the divergence operator with respect SR + i _
to surface coordinates. Equation (9) can be simplified as + 4 tan—t AL tan—?! 7d
1 PO PORT POR—
=V fm(R) - P+ f(R)Vs - P (15)
= (fz “P)fL(R) 4+ 2fm(R) Since /(1) is a rational function for evem’s whenm # 2
P, and is rationalizable (see [13]) for odd'’s, the line integrals
=— fI(R)+ 2fn(R). 10 . ’
R T (B) & 2fm(F) (10) can always be evaluated in closed form exceptifor 2. For
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example, if PY # 0, then we have

1 I d LY
and

Cnmda=L L (&t £ -
= —= | == an — — tan e
ot 242 | RO RO RO
1 A P
The potential due to a polyhedron can then be obtained by
calculating (12) for each polygonal face and then superposing 3 3 5
the results. For example, if. = 3, (12) can be expressed as ; 3 ;;2;”3"%%125,... ‘\Q‘:ﬁ‘:“{f‘;th\
J RIS
B > (@5 i(wi =17,y 2) . f%,,,;%ﬁffffﬁ?‘:;:%“,:;&ﬁg&%&{}{{§§$§a
s & - 9 R
s G T
« 3 A
= ®s (i =15y 2)) + = (18) 3 i "i,:o'“\;“\‘ i T
z N 3 TR
. v PO
where, for eaclC, the trple s, yi andz = d > 0 are ¢ 4 e
measured alond;, —i; andn, respectively, with the origin ,/é‘: ,,2;‘3"2':::::::2:::‘:::&13&‘3&8‘3%33‘%33“‘*‘“““““““
. . . ity AR
located at the projection af on C;. It is not hard to show < NS o
that (subscripti is omitted) . e 3 A
1 _1 Tz \°+r® ‘2 s e +’°+
O3z, y, 2) = — tan — (19) . &
# yvat+y +z * -
For brevity, only the generalized potential of the third order,
m = 3, will be considered in the rest of this paper. .
. y 4 Vitin 0
C. Special Cases ¢ M i i \\\\\\
_ | n . .
When the point for which the potential is to be evaluated > I’IIMW””T:;.‘\“\\\\\\\\“\“\
is located on the extended plane of one of the faces of the R [II‘\\\
polyhedral obstacle, e.gr,is on @} in Fig. 3,d = 0 and (7) N
is no longer valid. Instead, we have i
P [ =P i [ — g :
g 3 o 12+ P0)2)3/2 N Q{”’”III[[II[I \\\‘\\\\\\\“\‘!\\\\\
S z+ "o o -
P I (P IF (P2 © 7 - -
°+ . p: e ,°+
and (19) becomes - - L -
3(, 1, 0) i (20)
3\, Y =
T Yy Vx? 4+ y2 Fig. 4. Generalized potential function at constant distances from a square

. . . o region whose vertices are located #4(0, £4.0, 4.0): (a)z = 20, (b)z =
which can also be obtained by taking the limit of (19) fos.0, and (c)> = 4.05.

z — 0.
On the other hand, if pointis on the plane containing edge

¢ and perpendicular t@, i.e., P° = 0, we have profile approaches that due to a point source, as one can expect

from a potential model with spherical symmetry. Fig. 5 shows
P°. il / Fo(l)dl = By(IF, 0, 2) — D, 0, 2) = 0. (21) results similar to Fig. 4 for a pentagonal region.
C

It is not hard to show that (21) is true for any value 20f>
0if I+-1— > 0. [lIl. CONTINUITY AND DIFFERENTIABILITY

Fig. 4 shows surface plots of the potential function cal- For path planning in the 3-D space, it is desirable that the
culated using the above results at different distances fronpetential field due to the proposed workspace model and its
square region whose vertices are locatectat.(), 4.0, 4.0). effect on derived object paths are continuous and smooth as
It is readily observable that the shape of the potential profilerisentioned earlier for the desirable attributes of a potential
influenced more by the shape of the square if it is evaluatedfigid. In this section, the continuity of the analytic potential
a smaller distance from that square. In far field, the potentialesented in the previous section will be proved.
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(@
o Fig. 6. The geometry for the calculation of the potential at a pointhich
N is approaching the corner formed by two planes perpendicula® tand
- Mif' ‘\.\‘ containing edge<’; and C; 1, respectively, alongr which is parallel to
N ,/ .:’.‘ ‘:‘Q‘“\ Q (top view).
N ;1/ ”l "' ""‘*:\s\‘“‘“%
& "llﬂlfff"l'/'o‘u M ‘k‘“«a 19) and we have
2 %gz”ﬂzlz'l"::g%&%\“\\‘ss\\“‘\m 1) 1 Tz T
N ﬁlillll/lll%”ll:"l"l:"m0‘.““‘\“‘:\‘“ ‘{\“\\:‘\ lim ®3(z, y, ) = lim = tan™* - =+—.
Ny o TS s T Rt 2
N AR
. Q%/’””;Z""z"","""':‘:’0'0’:‘\’::"%‘\‘8&“\\\““&\ N A
N ] i i :,,,,I:,,, n A \\\\Q\“gx“\ Moreover, we have
Sl .:w«tu‘i““‘“‘ e
=8 lll,l l';, oouﬂ‘ o asP 3 = _
e ,:"::: :::’:::::.:0::‘:‘:‘:‘\':‘\:\“\“‘ © hi)I(l) {(1)3(.1‘ =1 ' Yo Z) - (1)3(.1‘ - l+7 Y, Z)}
(b) 257 :,.":!,' f»@; ( B s> Y
\07# = :'0:‘:‘“ as® o+\‘6 — {:l:ﬂ/z, l+ e <0 (22)
e 7 + 0 t.1=->0
S asP ’
T o
in (18). Therefore, the potential function is continuous accord-
ing to (21) and (18) withoe = .
2) Case 2: Whenr is approaching the intersection of the
X plane mentioned in Case 1 and plapat a location away from
§ edgeC in Fig. 3, along the shortest (linear) path, we have
Ny |:<I>3(-/E = l_a Y, Z) - (I>3($ = l+a Y, Z)]
5
Q 1 . yZ(l_ /l+2+y2+22_l+ /l—2+y2+22)
= — tan~
: z Y212y 2P Ly 4 22 12
N (23)
Y with [T - [~ > 0 andy = kz for some constant. Therefore,
=3 the potential
© ol & VI + (B2 4+ 122 =11 /177 + (B2 + 1)22
C — tan
z k172 + (k2 4+ 1)22 1T + k2+1)72+l I+

(24)

) . i i . approaches zero as— 0. Since this is consistent with (21),
Fig. 5. Generalized potential function at constant distances from a pentag- . . . . .
onal region centered at (0, 0, 4.0): (a)= 20, (b)z = 6.0, and (c): = the potential function is continuous for this case.
4.05. 3) Case 3:For near the corner formed by two planes
perpendicular to@) and containing edge€’; and C;1, re-
It is not hard to see from (18) and (19) that the th|rd5peCt'Vely let's consider Fig. 6. Assumingis approaching
. . D . Gat corner at some constant distance fr¢malong v, the
order generalized potential function is always continuous an

. . . . . ) otential due to edg€’; is
differentiable in regions away from locations discussed P g€

Section II-C. Here, we will examine the continuity of such at ,1_1)13(0 0 [®s,i(xi =17, yiy 2) — B3z = 1, wi, 2)]
a function near these boundary locations which include: e ’ ) -
1) the plane containing the polygghunder consideration, = yl_imo > tan* i
e.g., the plane? in Fig. 3; s Y/l 2 +yP + 22
2) planes perpendicular t@ and containing one of the 1 I+
edges ofS - lim = tan™t -
' e . . @ v:)—(0,0) # el (k2 + DI+ 22
1) Case 1: When pointr is approaching the plane contain- * ! *
ing edgeC and perpendicular to plan@ in Fig. 3, andr is _ 1 <E — tan—t i) — o (25)
away from all other planes mentioned in 1) and 2) 0 in z \ 2 ks
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Fig. 7. Thexz-component of the gradient of the potential profiles shown in Fig. 4z(8) 6.0 and (b)z = 4.05.

and the potential due to edge; can be calculated as [V. OBSTACLE AVOIDANCE

For potential-based obstacle avoidance in path planning,
1 <ﬁ — tan—! i) = ay (26) the workspace is typically modeled with a scalar function
z \ 2 |k of distances to different obstacles. The simplicity of such
an approach arises from the fact that the gradient of such
wherey; = kllj andy;11 = kol;, for some constants; > 0 a scalar function, to be used as a repulsive force, captures
andk, < 0. The potential is continuous alorgnear the corner how the distance between the object and obstacles varies. The

sincea; + a2 is equal to thex in (18). Newtonian potential due to a uniform source distributed on the
4) Case 4: Whenr is approaching plan€ in the perpen- boundary of a polyhedron can be calculated analytically using
dicular direction the results of [12]. However, the value of the potential function
is finite at a point located on an obstacle boundary thus

hm ®y(z, y, ) = lim 1 tan—! i modeled that it can not be used to ensure obstacle avoidance
=0 z—0 2 yvx2 +y?+ 22 in the 3-D space. In fact, it is possible for a point to move
_ T . 27) through obstacle boundaries by following the direction of the

y/22 + 12 negative potential gradient.

For example, the above situation may occur for a point
Since (27) is identical to (20), the potential function is corlocated inside a polyhedron whose boundary is uniformly
tinuous. charged and the resulting Newtonian potential is nonconstant
The repulsive force on a point charge due Socan be inside the polyhedron. This is because the Newtonian potential
evaluated analytically using the gradient of (18), namely is harmonic in the 3-D space which is free of charge. Accord-
ing to the maximum (minimum) modulus theorem [14], there
ot is no potential maximum (minimum) inside the polyhedral
—Z Vz (1)3 i(a:i—lz,yi, V) . . . . .
region. Therefore, by following the negative potential gradient,
a point located inside the polyhedron will eventually reach
the layer of charges on the boundary of the polyhedron.
Furthermore, since the potential decreases with distance away
whereV; is calculated with respect to the coordinate systefrom the polyhedral surface, continuing the above procedure
associated with”; mentioned earlier in Section 11-B. Fig. 7will lead us to the outside of the polyhedron, and toward the
shows thez-component of the gradient of some potentighfinity.
profiles shown in Fig. 4. Intuitively, the potential function is Consider the interior of a cubic region whose boundary
continuous and smooth in the workspace which is charge-frég,uniformly charged according to the Newtonian potential
including at the locations discussed in Cases 1-4. model, as shown in Fig. 8(a). Assume the vertices of the cube
One the other hand, as we approach an obstacle boundang at ¢10, £10, +£10). The potential field inside the cubic
modeled with layers of the generalized charge, the potentialgion can be calculated using (15). Fig. 8(b) and (c) show
function (and thus the magnitude of its gradient, the repulsitiee equipotential contours for= 0 andxz = y, respectively.
force) will increase indefinitely. Such a phenomenon is desiiBecause of the symmetry, the results are only shown: for
able for path planning in that by minimizing the experienced andy > 0 for the former, andc > 0,y > 0 andz > 0
repulsive force, a charged object can avoid running into tier the latter.) It is readily observable that for these cases, the
obstacles, as discussed next. force following procedure will lead us either to an edge or to

@,
_(I>3 7( T _lz s Yisy "))+;12 (28)

<
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(b) (c)

(b)

Fig. 9. Path planning results obtained by shifting the object skeleton points,
one by one, to the free space bottleneck and finding the object configuration
of minimal Newtonian potential for each skeleton point constrained to lie on
the bottleneck: (a) initial conditions and (b) the resulting object path.

is unbounded as one approaches the obstacle boundary. For
brevity, only the following situations are considered:

1) Case 1: Assumer is approaching polygot¥ in Fig. 2
in the direction perpendicular t8. Sincea > 0, we have

(d) (e) o
Z S50
Fig. 8. (@) A cubic region whose surfaces are uniformly charged according to z

the Newtonian potential model, (b) the equipotential contours of the potential . . . .
field on ;OABC where= = 0, and (c) the equipotential contours of thell (18), i.e., the magnitude of the potential will become

potential field ongOBDE wherex = y (w = /(2 + y2)/2). The darker Unbounded. This can also be observed by examining the results
the shading in the contour plots, the smaller the potential value, and (d) asldown in Fig. 4. As the distance to the square decreases, not
(€) show the equipotential contours similar to (b) and (c), respectively, byjyy does the shape of the potential profile approximate that
calculated for the generalized potential function of the third order. . . .

of the square, the magnitude of the potential also increases

dramatically.
a corner of the cube. Thus, the Newtonian potential can notz) Case);: Whenr is on Q and is approaching edg# in
be used to ensure obstacle avoidance of an object path. 1y direction, we have

On the other hand, if a potential function, and thus the
magnitude of its gradient, increases indefinitely as an object lim {®s(z =17, y, 0) — ®s(z = It y, 0} — o0
approaches obstacle boundaries, collision avoidance can be o
accomplished easily without consecutive checking for tHeom (20) sincd* -/~ < 0. Itis not hard to show that a point of
intersections of the corresponding object and obstacle regiousit (generalized) charge can not reach an obstacle boundary
Such a desirable property for path planning can be achieveddeled with (1) in any other ways. Therefore, the collision
by minimizing the total potential experienced by the objedietween a moving object and obstacles is impossible. Fig. 8(d)
through adjusting distances from different object points @nd (e) show the equipotential contours similar to Fig. 8(b) and
obstacles along the direction of the negation of the potentia)), respectively, but calculated for the generalized potential
gradient. Therefore, a collision will never occur in theory ifunction of the third order. It is not hard to see that a positively
the dynamics of the moving object is ignored. charged and initially stationary object point will be confined
To guarantee the obstacle avoidance of an object patiside the cubic region.
planned according to the proposed 3-D workspace modelA simple way of utilizing the obstacle-avoidance property
we will show next that the generalized potential functioprovided by the generalized potential function is to move along
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potential experienced by the object for 25 object configurations
along the path found above. Since the potential is minimized

110+

105 ¢

}_
o
<

Potenrtial

95

0 5 10 is 20

Object configurations along the path [1]
Fig. 10. The potential experienced by the object for 25 object configuration 1
along the path shown in Fig. 9(b). [The configurations include the ones shov\vE]
in Fig. 9(b) plus those obtained for 12 skeleton points which are added to hal

the spacing of the skeletal samples shown in Fig. 9(a).] [4]
(5]

the direction of the negative potential gradient to keep awa
from the obstacles. The motion will cause an object to Ieavé
the obstacle surfaces and move toward a region away from
them. (An application of such a motion can be found in the
skeletonization of a 3-D space, as discussed in [15].)

V. CONCLUSION [

In this paper, we have proposed an analytic potential funﬁ-
tion of 3-D workspace for ensuring obstacle avoidance in
path planning. It is assumed that the workspace boundaryligl
uniformly distributed with generalized charges. The potentiﬁz]
at a distance from a point charge is inversely proportional
to the distance to the power of an integer, the order of the
potential function. The potential functions due to polyhedra{s;
workspace boundaries can be derived in closed form, except
for the second-order potential function, which makes the aé—z‘]
proach computationally efficient. It is shown that the potentigis)
thus calculated is continuous and smooth which ensures that
an object path planned with such a model is well-behaved. The
proposed model is especially useful in path planning because
the collision avoidance is guaranteed if the dynamics of the
moving object is ignored.

APPENDIX

Consider the 2-D problem shown in Fig. 9(a) in which a
L-shaped object is to move through a free space bottlene-_

line segment) connecting the two obstacle boundaries. W

represented by the shortest line segment (shown as dg\’-—

for the obstacle avoidance purpose only, its local extrema do
not cause a problem in the path planning.
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