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Potential-Based Modeling of Three-Dimensional
Workspace for Obstacle Avoidance

Jen-Hui Chuang,Member, IEEE

Abstract—A potential-based model of three-dimensional (3-
D) workspace is proposed in this paper for ensuring obstacle
avoidance in path planning. It is assumed that the workspace
boundary is uniformly distributed with generalized charges. The
potential due to a point charge is inversely proportional to the
distance to the power of an integer, the order of the potential
function. It is shown that such potential functions and their
gradients due to polyhedral surfaces can be derived analytically,
and thus can facilitate efficient collision avoidance. Intuitively, the
potential fields and their effects on object paths should be spa-
tially continuous and smooth. The continuity and differentiability
properties of a particular potential function are investigated. In
theory, by minimizing the repulsion between object and obstacles,
the approach completely eliminates the possibility of a collision
between them if the dynamics of the moving object is ignored.

Index Terms—Obstacle avoidance, potential fields, shape mod-
eling, 3-D workspace.

I. INTRODUCTION

I N planning a path of a robot, a repulsive potential function
is usually used to keep a safe distance between the robot

and obstacles. A collision-free path of a robot can be ob-
tained by adjusting its configuration to minimize the potential
experienced by the robot. In general, a potential function
used to model the workspace can be a scalar function of the
distances between the boundary points of the robot and those
of obstacles. The gradient of such a scalar function can be used
as a repulsive force between the robot and obstacles, making
potential-based methods simple. (For a survey of related works
please see also [1] and [2].) An artificial repulsive potential
whose value is determined by the Yukawa function [3] and
whose isopotential contours are modified-ellipses is used in
[4] for local planning of linked line segments. The potential
from an obstacle is given by

(1)

where the pseudo-distance is made to change linearly along
the -axis and is used to specify each contour. Ideally, as
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mentioned in [4], a potential field should have the following
attributes.

1) The magnitude of potential should be unbounded near
obstacle boundaries and should decrease with range.
(This property captures the basic requirement of col-
lision avoidance.)

2) The potential should have a spherical symmetry far away
from the obstacle.

3) The equipotential surface near an obstacle should have
a shape similar to that of the obstacle surface.

4) The potential, its gradient and their effects on paths must
be spatially continuous.

A potential function which is a cubic function of the distance
between a point object and the obstacles is used in [5] for
moving a point object in the two-dimensional (2-D) space.
The potential function ranges from zero at some maximum
distance to a maximum value ( ) at zero distance. In [6],
local planning similar to that discussed in [4] is done using an
artificial potential function which is a function of the shortest
distance between the moving object and the obstacles. The
potential function is described by

(2)

where is the shortest distance and is the effective range.
Clearly, the cubic function mentioned in [5] does not have the
first (unbounded) attribute. Furthermore, at the locations where
the shortest distance corresponds to multiple obstacle points,
the gradient of the potential function will be undefined (the
same problem exists for the potential function used in [6]).

Harmonic functions which do not exhibit local minimum
in the free space are used in [7] to find object trajectories in
the configuration space. Since the potential along an obstacle
of nonzero extent is finite, the only obstacle structure for
which collision avoidance can be guaranteed is a point itself
(see Section IV for more detailed discussion). For each given
source/goal pair in the configuration space, an iterative method
is used to generate a discrete regular sampling of a potential
field on a grid numerically such that following the gradient
from the start point will move the robot to the goal safely. A
potential function, called a navigation function, is constructed
in [8] for a point object to navigate among disk obstacles
toward the goal position. By adjusting a parameter of the
potential function, all local minima can be removed. The
drawback of this approach is that i) disks cannot overlap and
ii) the shapes of the configuration-space obstacles have to be
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(a) (b)

Fig. 1. The equipotential contours of the potential functions specified by (a)
(1) and (b) (4), due to a rectangle.

computed first, thus limiting its application to a point robot.
This algorithm is later generalized to star-shaped sets [9].

Boundary equations of polytopes are used in [10] to create
an artificial potential function. Let

(3)

be the set of linear inequalities describing a convex region.
Assuming there are boundary polytopes, the potential
function is defined as

(4)

where is a small number and the scalar function

(5)

is zero inside the region and grows linearly as the distance
from the region increases.

It is easy to see that the potential functions described in (2)
and (4) do not have the attribute of spherical symmetry. For
example, the equipotential contour of (2) due to a rectangle
never converges to a circular shape in far field in the sense that
the difference between the maximum and minimum distances
from points on any contour to the centroid of the rectangle is
always equal to the length difference between two neighboring
edges of the rectangle [see Fig. 1(a)]. Similarly, the equipo-
tential contours of (4) due to a rectangle always consist of sets
of parallel line segments [see Fig. 1(b)].

The Newtonian potential which is inversely proportional to
the distance between two point-charges is used in [11] for the
path planning in the 2-D space. By assuming that the polygonal
obstacle boundaries are uniformly charged, it is shown that the
resulting potential field have the above attributes. Moreover,
such a workspace model is unique in the following ways.

1) The resultant potential field is obtained by superposing
the potential due to individual boundary point directly,
instead of intermediate representation of the obstacle
boundaries such as boundary equations. Furthermore,
each boundary point contributes to the potential field
in an independent and identical fashion.

2) An analytic equation of the potential function due to a
line segment enables the computation of the exact po-
tential for the obstacles, avoiding the need to discretize
the obstacle boundary into a set of points.

3) The potential field and its gradient are analytically
computable throughout the free space. Therefore, es-
tablishing a database of the potential function, e.g., a

distance map, upon a discrete representation of the free
space is not necessary.

It is not hard to see that the potential field established in [5]
is not obtained by superposing the potential due to individual
boundary point directly. Thus, whether each boundary point
is contributing to the potential field in an independent and
identical fashion is out of the question. In fact, since the
definition of the pseudo-distance depends on the orientation
of the coordinate system, the potential field is not rotational
invariant except for circularly symmetric obstacles, e.g., disks,
in the 2-D space.

In [11], an algorithm is developed to compute a safe
and smooth object path by minimizing the potential function
locally for obstacle avoidance, while the gross robot movement
is subject to the constraints derived from the topology of the
path givena priori. Since the potential is minimized for the
obstacle avoidance purpose only, its local minima do not cause
a problem in the path planning (see Appendix).

The main contribution of this paper is the development of an
analytic potential for a polyhedron enabling efficient collision
avoidance in three-dimensional (3-D) space. The Newtonian
potential due to a uniform source distributed on the boundary
of a polyhedron can be obtained analytically using the results
of [12]. However, since the potential function is finite for
a point located on a surface thus modeled, the Newtonian
potential can not be used to ensure obstacle avoidance in
the 3-D space. In this paper, higher-order potential functions,
called generalized potential functions, which decay faster
with distance than the Newtonian potential are proposed
for ensuring obstacle avoidance of an object trajectory in
the 3-D space. In is shown in Section II that the potential
functions due to a uniform source distributed on the boundary
of a polyhedron can be derived in closed form. Intuitively,
these functions are continuous and smooth. Such properties
of a potential function are studied in depth in Section III.
Section IV shows that obstacle avoidance can be guaranteed
in a workspace modeled with a generalized potential function,
but not the Newtonian potential. Section V presents some
concluding remarks.

II. GENERALIZED POTENTIAL FIELDS IN THE 3-D SPACE

Consider a planar surface in the 3-D space shown in
Fig. 2; the direction of its boundary, , is determined with
respect to its surface normal,, by the right-hand rule,

, where and are along the (outward) normal and tangential
directions of , respectively. For the generalized potential
function, the potential value at can be defined as

(6)

where , , and integer is the order of
the potential function. The basic procedure to evaluate the
potential can be summarized as follows.

Step 1: Write the integrand of the potential integral over
as surface divergence of some vector function.

Step 2: Transform the integral into the one over based
on the surface divergence theorem.
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Fig. 2. A polygonal surfaceS in the 3-D space. The direction of its
boundary,@S, is determined with respect to its surface normal,n̂, by the
right-hand rule,û � l̂ = n̂, whereû and l̂ are in the (outward) normal and
tangential directions of@S, respectively.

Fig. 3. Geometric quantities associated with a point, an edgeCi (subscript
i is omitted) ofS shown in Fig. 2 and the planeQ containingS (reproduced
from [12]).

Step 3: Evaluate the integral as the sum of line integrals
over edges of .

Related geometric quantities associated with an edgeof
in the plane containing , , are shown in Fig. 3 for .
Without loss of generality, it is assumed that

(7)

which is equal to the distance fromto .

A. Determination of the Vector Function in Step 1

Assume the vector function in Step 1 can be expressed as

(8)

where is the position vector of a point in with respect to
, the projection of on . The goal of Step 1 is to find

such that

(9)

where denotes the divergence operator with respect
to surface coordinates. Equation (9) can be simplified as

(10)

By solving the associated linear first-order differential equa-
tion, we have (ignoring the additive constant)

(11)

[ corresponds to the vector function used in [12] for the
Newtonian potential integral].

B. Analytic Expressions of the Generalized Potential Fields

According to the derived in the previous subsection,
if is inside , may becomes singular. Let denote
the intersection of and a small circular region on of radius

and centered at , the potential due to can be evaluated as

(12)

where

(13)

(14)

is the distance betweenand ; is measured from the
projection of on along the direction of ; and is the
angular extent of lying inside as . For example,

if is inside , if is outside ,
if is on an edge of and is equal to the angle between
two edges if is a vertex of where the two edges are
connected. (For simplicity, the subscriptis omitted in the
rest of the paper whenever it is appropriate.)

It is shown in [12] that for Newtonian potential ( 1)

(15)

Since is a rational function for even ’s when
and is rationalizable (see [13]) for odd’s, the line integrals
can always be evaluated in closed form except for . For
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example, if , then we have

(16)

and

(17)

The potential due to a polyhedron can then be obtained by
calculating (12) for each polygonal face and then superposing
the results. For example, if , (12) can be expressed as

(18)

where, for each , the triple , , and 0 are
measured along , and , respectively, with the origin
located at the projection of on . It is not hard to show
that (subscript is omitted)

(19)

For brevity, only the generalized potential of the third order,
3, will be considered in the rest of this paper.

C. Special Cases

When the point for which the potential is to be evaluated
is located on the extended plane of one of the faces of the
polyhedral obstacle, e.g., is on in Fig. 3, 0 and (7)
is no longer valid. Instead, we have

and (19) becomes

(20)

which can also be obtained by taking the limit of (19) for
0.

On the other hand, if point is on the plane containing edge
and perpendicular to , i.e., 0, we have

(21)

It is not hard to show that (21) is true for any value of
0 if 0.

Fig. 4 shows surface plots of the potential function cal-
culated using the above results at different distances from a
square region whose vertices are located at (4.0, 4.0, 4.0).
It is readily observable that the shape of the potential profile is
influenced more by the shape of the square if it is evaluated at
a smaller distance from that square. In far field, the potential

(a)

(b)

(c)

Fig. 4. Generalized potential function at constant distances from a square
region whose vertices are located at (�4.0,�4.0, 4.0): (a)z = 20, (b) z =
6.0, and (c)z = 4.05.

profile approaches that due to a point source, as one can expect
from a potential model with spherical symmetry. Fig. 5 shows
results similar to Fig. 4 for a pentagonal region.

III. CONTINUITY AND DIFFERENTIABILITY

For path planning in the 3-D space, it is desirable that the
potential field due to the proposed workspace model and its
effect on derived object paths are continuous and smooth as
mentioned earlier for the desirable attributes of a potential
field. In this section, the continuity of the analytic potential
presented in the previous section will be proved.
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(a)

(b)

(c)

Fig. 5. Generalized potential function at constant distances from a pentag-
onal region centered at (0, 0, 4.0): (a)z = 20, (b) z = 6.0, and (c)z =
4.05.

It is not hard to see from (18) and (19) that the third-
order generalized potential function is always continuous and
differentiable in regions away from locations discussed in
Section II-C. Here, we will examine the continuity of such
a function near these boundary locations which include:

1) the plane containing the polygonunder consideration,
e.g., the plane in Fig. 3;

2) planes perpendicular to and containing one of the
edges of .

1) Case 1: When point is approaching the plane contain-
ing edge and perpendicular to plane in Fig. 3, and is
away from all other planes mentioned in 1) and 2), 0 in

Fig. 6. The geometry for the calculation of the potential at a pointr which
is approaching the corner formed by two planes perpendicular toQ and
containing edgesCi and Ci+1, respectively, alongv which is parallel to
Q (top view).

(19) and we have

Moreover, we have

(22)

in (18). Therefore, the potential function is continuous accord-
ing to (21) and (18) with .

2) Case 2: When is approaching the intersection of the
plane mentioned in Case 1 and planeat a location away from
edge in Fig. 3, along the shortest (linear) path, we have

(23)

with and for some constant . Therefore,
the potential

(24)

approaches zero as . Since this is consistent with (21),
the potential function is continuous for this case.

3) Case 3: For near the corner formed by two planes
perpendicular to and containing edges and , re-
spectively, let’s consider Fig. 6. Assumingis approaching
that corner at some constant distance fromalong , the
potential due to edge is

(25)



CHUANG: POTENTIAL-BASED MODELING OF THREE-DIMENSIONAL WORKSPACE FOR OBSTACLE AVOIDANCE 783

(a) (b)

Fig. 7. Thex-component of the gradient of the potential profiles shown in Fig. 4: (a)z = 6.0 and (b)z = 4.05.

and the potential due to edge can be calculated as

(26)

where and for some constants
and . The potential is continuous alongnear the corner
since is equal to the in (18).

4) Case 4: When is approaching plane in the perpen-
dicular direction

(27)

Since (27) is identical to (20), the potential function is con-
tinuous.

The repulsive force on a point charge due tocan be
evaluated analytically using the gradient of (18), namely

(28)

where is calculated with respect to the coordinate system
associated with mentioned earlier in Section II-B. Fig. 7
shows the -component of the gradient of some potential
profiles shown in Fig. 4. Intuitively, the potential function is
continuous and smooth in the workspace which is charge-free,
including at the locations discussed in Cases 1–4.

One the other hand, as we approach an obstacle boundary
modeled with layers of the generalized charge, the potential
function (and thus the magnitude of its gradient, the repulsive
force) will increase indefinitely. Such a phenomenon is desir-
able for path planning in that by minimizing the experienced
repulsive force, a charged object can avoid running into the
obstacles, as discussed next.

IV. OBSTACLE AVOIDANCE

For potential-based obstacle avoidance in path planning,
the workspace is typically modeled with a scalar function
of distances to different obstacles. The simplicity of such
an approach arises from the fact that the gradient of such
a scalar function, to be used as a repulsive force, captures
how the distance between the object and obstacles varies. The
Newtonian potential due to a uniform source distributed on the
boundary of a polyhedron can be calculated analytically using
the results of [12]. However, the value of the potential function
is finite at a point located on an obstacle boundary thus
modeled that it can not be used to ensure obstacle avoidance
in the 3-D space. In fact, it is possible for a point to move
through obstacle boundaries by following the direction of the
negative potential gradient.

For example, the above situation may occur for a point
located inside a polyhedron whose boundary is uniformly
charged and the resulting Newtonian potential is nonconstant
inside the polyhedron. This is because the Newtonian potential
is harmonic in the 3-D space which is free of charge. Accord-
ing to the maximum (minimum) modulus theorem [14], there
is no potential maximum (minimum) inside the polyhedral
region. Therefore, by following the negative potential gradient,
a point located inside the polyhedron will eventually reach
the layer of charges on the boundary of the polyhedron.
Furthermore, since the potential decreases with distance away
from the polyhedral surface, continuing the above procedure
will lead us to the outside of the polyhedron, and toward the
infinity.

Consider the interior of a cubic region whose boundary
is uniformly charged according to the Newtonian potential
model, as shown in Fig. 8(a). Assume the vertices of the cube
are at ( 10, 10, 10). The potential field inside the cubic
region can be calculated using (15). Fig. 8(b) and (c) show
the equipotential contours for 0 and , respectively.
(Because of the symmetry, the results are only shown for
0 and 0 for the former, and 0, 0 and 0
for the latter.) It is readily observable that for these cases, the
force following procedure will lead us either to an edge or to
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(a)

(b) (c)

(d) (e)

Fig. 8. (a) A cubic region whose surfaces are uniformly charged according to
the Newtonian potential model, (b) the equipotential contours of the potential
field on OABC where z = 0, and (c) the equipotential contours of the

potential field on OBDE wherex = y (w
�
= (x2 + y2)=2). The darker

the shading in the contour plots, the smaller the potential value, and (d) and
(e) show the equipotential contours similar to (b) and (c), respectively, but
calculated for the generalized potential function of the third order.

a corner of the cube. Thus, the Newtonian potential can not
be used to ensure obstacle avoidance of an object path.

On the other hand, if a potential function, and thus the
magnitude of its gradient, increases indefinitely as an object
approaches obstacle boundaries, collision avoidance can be
accomplished easily without consecutive checking for the
intersections of the corresponding object and obstacle regions.
Such a desirable property for path planning can be achieved
by minimizing the total potential experienced by the object
through adjusting distances from different object points to
obstacles along the direction of the negation of the potential
gradient. Therefore, a collision will never occur in theory if
the dynamics of the moving object is ignored.

To guarantee the obstacle avoidance of an object path
planned according to the proposed 3-D workspace model,
we will show next that the generalized potential function

(a)

(b)

Fig. 9. Path planning results obtained by shifting the object skeleton points,
one by one, to the free space bottleneck and finding the object configuration
of minimal Newtonian potential for each skeleton point constrained to lie on
the bottleneck: (a) initial conditions and (b) the resulting object path.

is unbounded as one approaches the obstacle boundary. For
brevity, only the following situations are considered:

1) Case 1: Assume is approaching polygon in Fig. 2
in the direction perpendicular to. Since 0, we have

in (18), i.e., the magnitude of the potential will become
unbounded. This can also be observed by examining the results
shown in Fig. 4. As the distance to the square decreases, not
only does the shape of the potential profile approximate that
of the square, the magnitude of the potential also increases
dramatically.

2) Case 2: When is on and is approaching edge in
the direction, we have

from (20) since . It is not hard to show that a point of
unit (generalized) charge can not reach an obstacle boundary
modeled with (1) in any other ways. Therefore, the collision
between a moving object and obstacles is impossible. Fig. 8(d)
and (e) show the equipotential contours similar to Fig. 8(b) and
(c), respectively, but calculated for the generalized potential
function of the third order. It is not hard to see that a positively
charged and initially stationary object point will be confined
inside the cubic region.

A simple way of utilizing the obstacle-avoidance property
provided by the generalized potential function is to move along
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Fig. 10. The potential experienced by the object for 25 object configurations
along the path shown in Fig. 9(b). [The configurations include the ones shown
in Fig. 9(b) plus those obtained for 12 skeleton points which are added to halve
the spacing of the skeletal samples shown in Fig. 9(a).]

the direction of the negative potential gradient to keep away
from the obstacles. The motion will cause an object to leave
the obstacle surfaces and move toward a region away from
them. (An application of such a motion can be found in the
skeletonization of a 3-D space, as discussed in [15].)

V. CONCLUSION

In this paper, we have proposed an analytic potential func-
tion of 3-D workspace for ensuring obstacle avoidance in
path planning. It is assumed that the workspace boundary is
uniformly distributed with generalized charges. The potential
at a distance from a point charge is inversely proportional
to the distance to the power of an integer, the order of the
potential function. The potential functions due to polyhedral
workspace boundaries can be derived in closed form, except
for the second-order potential function, which makes the ap-
proach computationally efficient. It is shown that the potential
thus calculated is continuous and smooth which ensures that
an object path planned with such a model is well-behaved. The
proposed model is especially useful in path planning because
the collision avoidance is guaranteed if the dynamics of the
moving object is ignored.

APPENDIX

Consider the 2-D problem shown in Fig. 9(a) in which an
L-shaped object is to move through a free space bottleneck
represented by the shortest line segment (shown as dashed
line segment) connecting the two obstacle boundaries. With
the leading skeleton point initially located on the bottleneck
as shown in Fig. 9(a), the local planner determines the optimal
location and orientation of the object, as successive skeleton
points are moved onto the bottleneck, such that the potential
experienced by the object is minimized. The resulting path
is safe and smooth, as shown in Fig. 9(b). Fig. 10 shows the

potential experienced by the object for 25 object configurations
along the path found above. Since the potential is minimized
for the obstacle avoidance purpose only, its local extrema do
not cause a problem in the path planning.
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