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AbstractÐAn e�cient method is presented to model the transient characteristics of distributed resistor±
capacitor of ULSI multilevel interconnections on complex topography, in which the reformulation of
the boundary-element method (BEM) associated with the PadeÁ -via-Lanczos (PVL) algorithm can avoid
the redundant works on both volume mesh and transient analysis associated with the ®nite-di�erence
method. An adaptive multilayer closed-form spatial Green's function for BEM is developed to examine
the voltage and current responses of the multilevel conductor system by using the boundary-element
method of integral formulation, in which arbitrary triangular elements on the surface of conductors are
used to e�ciently calculate the free-charge distributions of complex structure based on actual topogra-
phy/processes. Applying the Galerkin principle over boundary elements, all of the surface integrals of
charge distribution have been discretized and evaluated analytically for constant element. To improve
the timing-analysis e�ciency of the ®nite-di�erence method, the dominant poles are obtained by intro-
ducing the PadeÁ -via-Lanczos (PVL) algorithm for model-order reduction. Hence, it is easy to calculate
the transient characteristics of both parallel conductors and complicated con®gurations such as crossing
lines, corners, contacts, multilayers and their combinations. Therefore, a simple and more general
method is proposed for solving the combinations of complex structures based on actual topography/
processes and arbitrary geometric con®gurations of multilevel interconnection lines in order to link
with the present CAD tools. # 1998 Published by Elsevier Science Ltd. All rights reserved

1. INTRODUCTION

As the feature sizes of integrated devices are scaled

down, the response time of ULSI chip is increas-

ingly determined by the interconnection[1,2]. The

IC interconnection delay modeled with high accu-

racy in ULSI circuits becomes more and more im-

portant and necessary. The geometry of the

interconnection is an important factor in the trans-

mission behavior and is also essential for the lay-

out-to-circuit extractors to obtain accuracy and

e�ciency. In a software tool called Space[3], the

interconnections are subdivided into small elements

and each element is replaced by a lumped RC-sec-

tion. However, the number of elements must be suf-

®ciently large to guarantee that the distributed

properties of the interconnection are accurately

re¯ected by the resulting network, and an enormous

amount of memory employed due to a large num-

ber of the extracted section will not result in e�-

cient timing analysis. In the past, it was suggested

that simulations with su�cient accuracy based on

asymptotic waveform evaluation (AWE)[4] could be

performed by computing the transient character-

istics of the electric ®elds both inside and outside

the interconnects by the ®nite-di�erence discretiza-

tion of Laplace equation[5]. However, this method

is time-consuming and the ill-conditioned problem

of matching the moments for the AWE method will

explicitly happen. Recently, the boundary-element

approach based on Green's theorem, which has

been widely applied to important issues of intercon-

nections but can avoid the volume mesh associated

with the ®nite-di�erence methods, has been investi-

gated by many research groups[6±10]. Furthermore,

to analyze the transient characteristics of the inter-

connections placed in complex topography becomes

an even more complicated and di�cult task.

To deal with these problems, an e�cient and

accurate modeling of transient characteristics of

di�erent dielectric layers for such a densely packed

multiconductor system has been developed. Based

on the conservation of charge[10], the boundary-el-

ement integral can be reformulated by time-depen-

dent integral formulation. Nevertheless, arbitrary

triangular elements on the surface of conductors for

charge distribution are adopted to calculate the

free-charge distribution for arbitrary con®gurations

of multilevel conductor system in a inhomogeneous

medium, and the actual topography of multilevel

conductor system becomes more realistic in model-

ing its transient characteristics. For this purpose,

our work uses an adaptive multilayer closed-form
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spatial Green's function[13] for BEM to examine
the voltage and current responses of multilevel con-

ductor system. By introducing the closed-form
spatial Green's function, we can e�ciently deal with
the number of layer more than three, as compared

with the method using the full- form Green's func-
tion in Ref.[9]. Applying the Galerkin principle over
boundary elements, all of the surface integrals of

charge distribution have been discretized and evalu-
ated analytically for constant element. After the
Laplace transformation of the large linear

equations, all the poles and residues can be
obtained by diagonalization of matrix. To improve
timing analysis e�ciency, the PadeÁ -via-Lanczos
(PVL) algorithm[11] is introduced to generate arbi-

trary numbers of poles and residues with little nu-
merical degradation. Besides, this method can avoid
the ill-conditioned problem of matching the

moments induced explicitly by the AWE method.
The formulations of poles and residues are derived,
which can be calculated fast enough to easily

include in a circuit simulator. Hence, it is easy to
calculate transient characteristics of both parallel
conductors and complicated con®gurations such as

crossing lines, corners, contacts, multilayers and
their combinations. At the same time, we ®nd that
the transient characteristics of the interconnection
strongly depend on its capacitance obtained by

Ref.[7] for steady state. Major improvements are
the reformulation of BEM and PVL with multilayer
closed-form spatial Green's function to model the

transient characteristics, which are proven to be ap-
plicable to even more complex con®guration.

2. MATHEMATICAL FORMULATION

2.1. Green's formulation

It is adequate to assume that the relaxation time
of the volume charge is short enough to be negli-
gible so that we only consider the transient response

of surface charge. The BEM for calculating multi-
conductor transient characteristics is based on
Green's function approach to the electrostatic pro-
blem. Consider a geometry with a number of con-

ductors embedded in a perfectly strati®ed dielectric
medium, the multilayer Green's function G(x, xs)
can be obtained. For a view point x and a source

point xs, let us de®ne the potential V(x), the dielec-
tric constant e(x), rx s

� @=@nx s
the derivative along

the outward normal nx s
to the boundary surface

S(xs). From the Laplace equation H2V00 and its
Green's function de®ned as H2G0ÿ d/e(xs), one
can obtain the boundary integral equation:

c�x�V�x��
�
S

V�x s�e�x s�rx s
G�x,x s� � dS

�
�
S

G�x,x s�e�x s�rx s
V�x s� � ndS, �1�

where c(x) is equal to 1/2 due to singularity integral

for the view point x on boundary, otherwise

c(x) = 1 for the view point x on bulk.

Decompose the second integral in Equation (1)

into contact Sc and ¯oating (non-contact) Sf surface

integrals, as represented by fS=
�
Sc
� �Sf

. For the

view point x on the non-contact (¯oating) and con-

tact surface of conductors, the conservation of

charges[10] can be written by the following

equations, respectively:

ÿ @rf
@ t
� Jnormal�x f� ÿ srx f

V�x f� �2�

and

ÿ @rc
@ t
� ÿsrx c

V�x c� ÿ Jexternal�x c�, �3�

where s is the conductivity of conductor; Jnormal(x)

is the current density along the inward directed nor-

mal to the conductor surface; Jexternal(x) is the cur-

rent density supplied to the conductor through the

contact; and HxV(x) is the spatial derivative of V

along the inward directed normal to the conductor

surface. For the wavelength of electromagnetic

wave longer than the length of conductor, the mag-

netic ®elds can be neglected and Equation (1) is de-

rived by the following expression:

t�x� @V�x�
@ t
�c�x�V�x� �

�
S

V�x s�e�x s�rx s
G�x,x s� � dS

�
�
Sc

G�x,x c�t�x c�Jexternal�x c�dSc, �4�

where t = e/s is the dielectric relaxation time.

Let the external charge at the contact region be

de®ned as

rexternal�x c� � t�x c�Jexternal�x c�: �5�
After discretization of Equation (4), the surface of

conductors is divided into N elements and the

meshing number of the contact part of the conduc-

tor surface is M. Generally, the charge density

rexternal(xj) on conductors can be described by the

shape function fk(xj) and the charge of the kth el-

ement rk(xk), where the index ``k'' denotes the kth

element of the contact surface of conductors. To

make the calculation more e�cient under tolerable

error, it is taken to be a piecewise constant distri-

bution over a set of the triangular elements, as

described by

rexternal�x j � �
XM
k�1

rk�xk� fk�x j �, �6�

where fj(xj) is the constant-element shape function

assigned to the boundary element Sj such that�
Sj
fj(xj)dSj=1. The Galerkin method applied to the

discretized boundary integral equation gives
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t�x i � @V�x i �
@ t

�c�x i �V�x i �

�
XN
j�1

�
Sj

V�x j �e�xj �rx j
G�x i,x j � � dSj

�
XM
j�1

rj�x j �
�
Sj

G�x i,x j �fj�x j �dSj: �7�

We choose the view point x on boundary, so c(xi)

is equal to 1/2 due to singularity integral. The

above equation can be rewritten as

t�x i � @V�x i �
@ t

� 1

2
V�x i � �

XN
j�1

�
V�x j �G �n�ij

�
XM
j�1

rj�x j �Gij, �8�

where the matrix element Gij=
�
Sj
G(xi, xj)fj(xj)dSj

and the matrix element Gij
(n)=

�
Sj
e(xj)rx j

G(xi,

xj)fj(xj)�dSj.

To obtain a concise form in matrix notation for

the discretized boundary integral formulation, the

above equation can be reformulated as

t
�
@V

@ t

�
� �Hij ��V � � �Gij ��r�, �9�

where [Hij]=
1
2[I] + [Gij

(n)]. Explicitly, [V] = [V1, V2,

. . . , VN]
T and [r] = [r1, r2, . . . , rM]T are the poten-

tials and charges of element, respectively; [I] is the

identity matrix. After the Laplace transformation of

the above equation, one can obtain the following

expression:

ts
�
Vc

Vf

�
�
�
Hcc Hcf

Hfc Hff

��
Vc

Vf

�
�
�
Gcc

Gfc

�
�rc�, �10�

where the index ``c'' denotes the contact region and

``f'' denotes the ¯oating region. De®ne the Laplace

transformation of the input excitation vector [Vc] as

[b]u(s), we can obtain the contact charges of con-

ductors as

�rc� �ts�Gcc�ÿ1�b�u�s� ÿ �Gcc�ÿ1�Hcc��b�u�s�
ÿ �Gcc�ÿ1�Hcf��Vf� �11�

and the potential of the ¯oating region on conduc-

tor as

�Vf� � �b2�u�s�t
� �ts�I � ÿ �A��ÿ1�v�u�s�, �12�

where [A] = [H�]ÿ [Bfc][Hcf],

[b1] = ([Hfc]ÿ [Bfc][Hcc])[b], [b2] = t[Bfc][b],

[Bfc] = [Gfc][Gcc]
ÿ1 and [v] = [b1] + [A][Bfc][b]. To

obtain transient behavior, the transfer function for

voltage is de®ned as

H�s� �
�l �T�Vf�s��

u�s� , �13�

where [l]T$RN ÿM is the vector which picks out the
voltages from a speci®c observation point. By com-

bining the above two equations, we immediately
obtain

H�s� � k� �l �T�ts�I � ÿ �A��ÿ1�v�, �14�
where k= [l]T[b2]/t. Besides, the transfer function

for current can be de®ned as

H�s� � �L�
T�Jexternal�x c,s��

u�s� , �15�

where [L]T$RM is the vector which picks out the

currents from a speci®c observation point. By com-
bining Equations (5) and (11) and the above
equation, we also get

H�s� � k0 � sk1 ÿ 1

t
�L�T�Gcc�ÿ1�Hcf��ts�I � ÿ �A��ÿ1�v�,

�16�
where k0=ÿ (1/t)[L]T[Gcc]

ÿ1[Hcc][b]ÿ (1/
t2)[L]T[Gcc]

ÿ1[Hcf][b2] and k1=[L]T[Gcc]
ÿ1[b].

2.2. PadeÁ-via-Lanczos (PVL) algorithm

Using the PadeÁ -via-Lanczos (PVL) algorithm[11],
the reduced-order transfer function for

Equation (14) can then be constructed as

Hq�s� � k� �l �T�v��e1�T�ts�I � ÿ �Tq�s���ÿ1�e1�, �17�
which is just the qth PadeÁ approximation of H,
whereas [e1] = [100 . . .0]T$Rq, [Tq(s)] is the tridiago-

nal matrices and q�q upper Hessenberg matrix.
The transfer function of the reduced qth-order sys-
tem can be obtained directly by using the eigen-de-

composition [Sq][diag(l1, l2, . . . , lq)][Sq]
ÿ1. After

manipulation, we can obtain

Hq�s� � k�
Xq
j�1

Rj

sÿ Pj
, �18�

where [m]T=[e1]
T[Sq] and [n] = [Sq]

ÿ1[e1]. The jth
pole and the jth residue of Hq(s) are Pj=lj/t and

Rj=[l]T[v]mjnj/t, respectively.
Similarly, the reduced-order transfer function for

Equation (16) can be also derived by the PVL al-
gorithm. Furthermore, the pole/residue represen-

tation of the PadeÁ approximation of Hq can be
obtained by running the Lanczos algorithm and by
computing an eigen decomposition of the Lanczos

matrix Tq. As the number of computed poles q is
increased, one can see more and more accurate ap-
proximation of the poles. At the same time, the Hq

approximation form is more and more approaching
the exact frequency response H. It is noted that
both the pole and residue formulations are concise
and are easy to link with the present CAD tools.

2.3. Closed-form Green's function

The derivations given in the above sections can
be used when there is the multilayer region.
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Fig. 1. The con®guration of multilevel interconnections (rpolysilicon=0.01 O cm) in inhomogeneous med-
ium over an in®nite ground plane and its equivalent circuit.

Generally, the problem of an appropriate 3-D
Green's function in the multilayer region can be

obtained by the proper closed-form integrations.
The closed-form expression of the electrostatic
Green's functions for a point charge derived in this

section is based on the approach used in[13]. We
consider that the interconnections are placed in a N
dielectric strati®ed medium over an electric ground

plane as depicted in Fig. 1. This assumption is valid
when the substrate is heavily doped and the IC is

reasonably planar. So, the Si-substrate is the in®nite
ground plane and the multidielectric layers, SiO2

and Si3N4 layers, are used as protective material.

The Nth layer is a half-space and all dielectric
layers and ground plane are assumed to be planar

and in®nite in the xy-plane. The electrostatic
Green's function in the spatial domain is described

by the following closed-form formula:

G� p,q� � 1

4pem

X4
i�1

f 2
i � p,q�: �19�

For i= 1 and zrz', the expression of fi
2(p, q) is

given by

f �1 � p,q� �
K �,1m,n,1������������������������������������������������������������������������������

�xÿ x 0�2 � � yÿ y 0�2 � �z� z 0 ÿ 2dn�2
q �

XN�m,n,1

j�1

C �,jm,n,1����������������������������������������������������������������������������������������������
�xÿ x 0�2 � � yÿ y 0�2 � �z� z 0 ÿ 2dn � a�,jm,n,1�2

q
�20�

where the superscripts + andÿ are used to denote
the cases for zrz' and zRz', respectively. The par-

ameter Km,n,j
+ is approximated by

PN�
m,n,1

j�1 Cm,n,1
+, j

ea
�,j
m,n,1

g. This scenario has been described in[13].
Nm,n,1

+ is the number of exponential functions used

to approximate Km,n,1
+ . Here a maximum number of

exponentials used in the approximation is eleven.
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Km,n,1
+,1 denotes the asymptotic value of Km,n,1

+ . The
®rst subscript m denotes the layer where the source

is located, whereas the second subscript n will be
used to denote the layer where the Green's function
is evaluated. The parameter em denotes the dielectric

constant of the mth layer and dn is the thickness of
the nth layer. The source point q(x', y', z') and the
®eld point p(x, y, z) are space variables, which are

described in the rectangular coordinate shown in
Fig. 1.
Finally, we note that considering the form of

Equation (19), it can be seen that the exponentials
used to approximate the Green's function in the
spectral domain correspond to the weighted images
in the space domain.

3. ELEMENT INTEGRATION

The constant ¯at boundary element system is
used here. The boundary G is approximated by a
polyhedron of N ¯at sides, i.e. G =

G1+G2+ . . . + GN. Here we choose the triangular
element, so N= 3. The integral calculations of
matrix element Gij=

�
Sj
G(xi, xj)fj(xj)dSj and the

matrix element Gij
(n)=

�
Sj
e(xj)rx j

G(xi, xj)fj(xj)�dSj in

Equation (8) are the most critical part of a simu-

lator, since it determines the computation time and

the accuracy. For the constant boundary element,

the integral terms of matrix elements, Gij and Gij
(n),

are in analytical forms, which can be expressed

as[12]

G
�n�
ij �

XG3

G1

�tanÿ1�ZY � � sign�Z �DY� �21�

Gij � 1

2e�x j �Aj

XG3

G1

�Dln

���� r1 � r2 � L

r1 � r2 ÿ L

����
ÿ jZjtanÿ1�jZjY � � jZjDY�

where Y = (Dr1l2ÿr2l1)/D2
1r1r2+z2l1l2 and

DY �
� �a� corner angle
�b� 2p
�c� 0

�23�

in which the condition (a) in Equation (23) is the

projection point on vertex; the condition (b) is the

projection point on boundary or inside triangular

Fig. 2. The con®guration of the ®eld point and the triangular element based on three source points.
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element; and the condition (c) is else. The par-

ameters of Z, D, r1, r2, l1, l2, and L are shown in
Fig. 2; the parameter of Aj is the area of the jth tri-
angular element; the term tanÿ1(y/x) in

Equation (21) is de®ned to take a value in (ÿp, p]
as the counterclockwise angle from x-axis in xy-
plane.
According to the layout data, an automatic mesh

generation takes place, in which node numbers and
their coordinates are linked to the pre-processor of
boundary element tools. Hence, it has been pointed

out[7] that the calculated capacitance values are
sensitive with respect to selection of nodes. To
examine the accuracy and the e�ciency of sinusoi-

dal weighing method, we employ the following
scheme within each other of vertex points, ri,vertex1
and ri,vertex2, in which one takes

ri,k �
�
ri,vertex2 � ri,vertex1

2

�
ÿ
�
ri,vertex2 ÿ ri,vertex1

2

�

�
�
cos
�kÿ 1�p

K

�n

, �24�

where k = 1, 2, . . . , K; ri,k is the position for the
kth node of the ith conductor and n is the weighing

factor.

4. RESULTS AND COMPARISON

The most obvious application of our proposed

method is to determine how much changes in vol-
tages on a given conductor to capacitively transmit
to nearby conductor in inhomogeneous dielectric

material oriented over an in®nite ground plane. For

the general case, we consider the scenario described
in Fig. 1, in which a voltage step is applied to the

near end of M1 conductor. Actually, when the
pumping charges are driven to one end of conduc-
tor, according to the image charges induced by the

multiconductors on multilayer topography we
adopted, the coupling capacitance of interconnec-

tions becomes complicated to analyze. The voltage
responses at both the far ends of the parallel con-

ductors are monitored, in which M2 has its near
end grounded. For this con®guration, typically one
end of every conductor is driven and the other end

is connected to a high-impedance input, which can
be considered as open.

For the convenience of monitoring, all the values
in the tables but not all the ®gures listed are calcu-

lated at far end of M1 conductor. The accuracy of
the proposed method could be checked against data

in Table 1 for two parallel conductors and in-
homogeneous dielectric material (e1=12e0, e2=10e0,
e3=8e0, e4=6e0, e5=5e0, e6=4e0, e7=3e0,
e8=2e0, e9=e0, d1=2.5 mm, d2±d8=2 mm,
rpolysilicon=0.01 O cm, h1=0.5 mm and h2=2.5 mm)

oriented over an in®nite ground plane shown in
Fig. 1. One can see from Table 1 that the relative

error of dominant pole will converge to less than
about 6% for the number of nodes larger than 216
under equal-space meshing and the CPU time will

be less than 388 s. To investigate the e�ectiveness of
the sinusoidal weighing scheme, which has been

proven with e�ciency[7], we calculate the dominant
poles for Fig. 1 under di�erent grid-partition con-

Table 1. The accuracy and the CPU time vs the total mesh number for Fig. 1. (e1=12e0, e2=10e0, e3=8e0, e4=6e0, e5=5e0, e6=4e0,
e7=3e0, e8=2e0, e9=e0, d1=2.5 mm, d2±d8=2 mm, rpolysilicon=0.01 O cm, h1=0.5 mm, and h2=2.5 mm)

Number of nodes K
Dominant pole

(P)�1013 Residue (R)� 1012 P-relative error (%)
R-relative error

(%) CPU time (s)

24 1,1,1 ÿ1.675877 12.61800 41.32 39.80 3.6
64 2,2,1 ÿ1.404943 10.68733 18.48 18.41 28.8
96 2,2,2 ÿ1.353656 9.457056 14.15 4.780 64.0
120 3,3,1 ÿ1.341787 10.40872 13.15 15.32 107.1
192 4,4,1 ÿ1.316535 10.31855 11.02 14.33 294.1
216 3,3,3 ÿ1.257249 9.021230 6.022 0.04836 387.1
360 3,3,6 ÿ1.240282 9.224103 4.591 2.199 1125.6
384 4,4,4 ÿ1.211498 9.005094 2.164 0.2271 1368.3
600 5,5,5 ÿ1.185834 9.025595 0.0 0.0 4012.6

Table 2. The e�ectiveness of the sinusoidal weighing scheme for Fig. 1. (e1=12e0, e2=10e0, e3=8e0, e4=6e0, e5=5e0, e6=4e0, e7=3e0,
e8=2e0, e9=e0, d1=2.5 mm, d2±d8=2 mm, rpolysilicon=0.01 O cm, h1=0.5 mm, and h2=2.5 mm, and the total number of nodes = 216)

Number of
nodes K n

Dominant pole
(P)�1013

Residue
(R)� 1012

P-relative error
(%)

R-relative error
(%) CPU time (s)

600 5,5,5 ÿ ÿ1.185834 9.025595 0.0 0.0 4012.6
216 3,3,3 ÿ ÿ1.257249 9.021230 6.022 0.04836 387.1
216 3,3,3 0.1 ÿ1.536966 17.15946 29.61 90.12 375.3
216 3,3,3 0.3 ÿ1.402907 13.44055 18.31 48.92 377.9
216 3,3,3 0.5 ÿ1.315606 10.92545 10.10 21.05 376.8
216 3,3,3 0.7 ÿ1.278199 10.07221 7.789 11.60 376.9
216 3,3,3 0.9 ÿ1.259367 9.587981 6.201 6.231 383.1
216 3,3,3 1 ÿ1.254386 9.424369 5.781 4.418 374.8
216 3,3,3 3 ÿ1.308487 9.243864 10.34 2.418 365.3
216 3,3,3 5 ÿ1.320206 8.540574 11.33 5.374 385.6
216 3,3,3 7 ÿ1.329681 7.839647 12.13 13.14 358.9
216 3,3,3 9 ÿ1.334477 7.536269 12.58 16.50 380.5

C.-Y. Wu and H.-M. Hou1886



ditions, as shown in Table 2. The second and third

rows are calculated under equal-space meshing as

references for other sinusoidal weighing conditions.

From Table 2, it can be found that the relative

error will grow as n value is both larger and less

than 1. Obviously, the sinusoidal weighing method

for the transient cases has no particular advantage

as compared to the steady case[7], due to the com-

plex charge pumping process. It is should be noted

that the computation time is made on HP-735

workstation, which depends not only on the algor-

ithm presented here but also on the method of grid

partition. Furthermore, the pole/residue represen-

tation of the PadeÁ approximation of Hq can be

obtained by running the Lanczos algorithm and by

computing an eigen decomposition of the Lanczos

matrix Tq. From Table 3, as the number of com-

puted poles q is increased, one can see more and

more accurate approximation of the poles. At the

same time, the Hq approximation form is more and

more approaching the exact frequency response H.

It is worth to note that under equal-space meshing

for q = 8, the relative error is only about

0.007715% and the CPU time is greatly reduced to

about 30% of the value under equal-space meshing

in the tenth row with q = 180.

In order to illustrate the ¯exibility of our pro-

posed technique, we consider more general cases

with di�erent values of the ground plane position

and dielectric constants for multilayers. Two di�er-

ent cases for transient characteristics are analyzed.

For the ®rst case, we consider the in¯uence of the

ground plane in a strati®ed inhomogeneous dielec-

tric medium (h2 is a variable, h1=0.5 mm, e1=12e0,
e2=10e0, e3=8e0, e4=6e0, e5=5e0, e6=4e0, e7=3e0,
e8=2e0, e9=e0, d1=2.5 mm, d2±d8=2 mm, t1=e1/s,
and the total number of nodes = 216), shown in

Fig. 1. Comparisons with these capacitances under

steady state are made in Table 4, which are calcu-

lated by BFEM[7], where Cii is the ground capaci-

tance and Cij is the coupling capacitance. In Table 4,

it is a inhomogeneous dielectric medium case and

we can see the consistency between the results with

its transient phenomena shown in Figs 3 and 4,

which monitor the far ends of M1 and M2 conduc-

tors, respectively. The transient current of M1 con-

ductor is capacitively transmitted to the M2

conductor and the ground plane. So, the conductor

nearby the ground plane has larger ground capaci-

tance and transient current to the ground plane,

resulting in slower rising time, as shown in Fig. 3.

Accordingly, the larger coupling capacitance results

in the larger transient current to M2 conductor and

at the same time the larger voltage response of

cross talk occurs, as shown in Fig. 4.

In the second case, di�erent permitivities of in-

homogeneous dielectric material (e2±e9 are variables,

e1=12e0, h1=0.5 mm, h2=2.5 mm, d1=2.5 mm, d2±

d8=2 mm, and the total number of nodes = 216)

are oriented over an in®nite ground plane shown in

Fig. 1 and comparisons of these capacitance data[7]

are made in Table 5. The results with transient

phenomena shown in Figs 5 and 6 monitor the far

ends of M1 and M2 conductors, respectively.

Whereas, it's interesting to note that the larger total

capacitance of M1 conductor is due to the larger

Table 3. The e�ectiveness of the PadeÂ -via-Lanezos (PVL) algorithm for Fig. 1. (e1=12e0, e2=10e0, e3=8e0, e4=6e0, e5=5e0, e6=4e0,
e7=3e0, e8=2e0, e9=e0, d1=2.5 mm, d2±d8=2 mm, rpolysilicon=0.01 O cm, h1=0.5 mm, and h2=2.5 mm, and the total number of

nodes = 216)

Number of nodes q
Dominant pole

(P)�1013 Residue (R)� 1012 P-relative error (%)
R-relative error

(%) CPU time (s)

216 1 ÿ1.364759 10.71526 8.551 18.78 284.0
216 2 ÿ1.269978 10.47836 1.012 16.15 286.3
216 3 ÿ1.298798 10.65753 3.305 18.14 286.3
216 4 ÿ1.305764 10.72842 3.859 18.92 287.2
216 5 ÿ1.270067 9.781184 1.020 8.424 286.8
216 6 ÿ1.259597 9.221521 0.1868 2.220 288.9
216 7 ÿ1.260981 9.313396 0.2968 3.239 285.7
216 8 ÿ1.257346 9.030531 0.007715 0.1031 286.0
216 180 ÿ1.257249 9.021230 0.0 0.0 387.1

Table 4. Comparisons of computed capacitances for di�erent vertical positions of the conductorM1 in homogeneous medium (h2 is a variable,
h1 � 0:5mm; E1 � 12E0; E2 � 10E0; E3 � 8E0; E4 � 6E0; E5 � 5E0; E6 � 4E0; E7 � 3E0; E8 � 2E0; E9 � E0; d1 � 2:5 mm d2 ÿ d8 � 2mm, and the

total number of nodes = 216) over the ground plane shown in Fig. 1

h2 (in mm) C11 (in fF) C12=C21 (in fF) C22 (in fF)
Dominant pole

(P)� 1013 Residue (R)�1012

2.5 1.1349504 0.23096465 0.6664932 ÿ1.257249 9.021230
4.5 1.2369053 0.06489628 0.5894202 ÿ1.335456 10.42261
6.5 1.2677952 0.02904903 0.4645599 ÿ1.341432 10.53949
8.5 1.2798277 0.01603546 0.3783433 ÿ1.342607 10.55964

10.5 1.2856113 0.01013377 0.3045548 ÿ1.343004 10.56757
12.5 1.2890541 0.00670949 0.2320600 ÿ1.343167 10.56859
14.5 1.2913719 0.00438618 0.1607427 ÿ1.343251 10.57229
16.5 1.2934351 0.00233123 0.0931514 ÿ1.343316 10.58283
18.5 1.2942815 0.00150988 0.0767692 ÿ1.343328 10.57293
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Fig. 4. The transient characteristics for the end of the conductor M2 vs di�erent vertical positions of
the conductor M1 in homogeneous medium (e1=12e0, e2=10e0, e3=8e0, e4=6e0, e5=5e0, e6=4e0,
e7=3e0, e8=2e0, e9=e0, d1=2.5 mm, d2±d8=2 mm, rpolysilicon=0.01 O cm, h1=0.5 mm and h2=2.5 mm,

t1=e1/s, and the total number of nodes = 216) over the ground plane shown in Fig. 1.

Fig. 3. The transient characteristics for the end of the conductor M1 vs di�erent vertical positions of
the conductor M1 in inhomogeneous medium (e1=12e0, e2=10e0, e3=8e0, e4=6e0, e5=5e0, e6=4e0,
e7=3e0, e8=2e0, e9=e0, d1=2.5 mm, d2±d8=2 mm, rpolysilicon=0.01 O cm, h1=0.5 mm and h2=2.5 mm,

t1=e1/s, and the total number of nodes = 216) over the ground plane shown in Fig. 1.
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permittivity in the above 2th dielectric layers, result-

ing in the larger transient current ¯owing from M1

conductor to M2 conductor and the ground plane.

So, the slower rising time of voltage for M1 conduc-

tor occurs at the same time, as shown in Fig. 5.

Accordingly, the larger coupling capacitance C12 is

due to the larger permittivity in the above 2th

dielectric layers, resulting in the larger transient cur-

rent to M2 conductor. Nevertheless, the larger total

capacitance of M2 conductor is due to the larger

permittivity in the above 2th dielectric layers, result-

ing in the larger transient current ¯owing from M2

conductor to M1 conductor and the ground plane.

So, the larger voltage response of cross talk occurs

at the same time, as shown in Fig. 6. Furthermore,

it is worth to note that the phase of the transient

current is leading to one of the transient voltage, as

depicted in Figs 4 and 6. From the above analysis,

it's important to incorporate the consideration of

multilayer topography for modeling the transient

characteristics of multilevel interconnection.

5. CONCLUSIONS

To model the transient characteristics of distribu-

ted resistor±capacitor of ULSI multilevel intercon-
nections on complex topography, we have proposed
an e�cient method to avoid the redundant works
on both volume mesh and transient analysis associ-

ated with the ®nite-di�erence method. Based on the
conservation of charge, the boundary-element inte-
gral formulation associated with the PVL algorithm

is reconstructed to analyze e�ciently the transient
characteristics, in which arbitrary triangular el-
ements on the surface of conductors for charge dis-

tribution are used to calculate the free-charge
distribution for arbitrary con®gurations of the mul-
tilevel conductor system in a inhomogeneous med-

Table 5. Comparisons of computed capacitances for two parallel conductors in di�erent permitivities of inhomogeneous dielectric material
(h1=0.5 mm, h2=2.5 mm, d1=2.5 mm, d2±d8=2 mm, the total number of nodes = 216, e1=12e0, and e2ÿe9 are variables (1) e2±e9=1.0, 0.8,
0.6, 0.5, 0.4, 0.3, 0.2, 0.1 e0; (2) e2Ðe9=10, 8, 6, 5, 4, 3, 2, 1 e0; (3) e2±e9=100, 80, 60, 50, 40, 30, 20, 10 e0) oriented over an in®nite

ground plane shown in Fig. 1

e2 (in e0) C11 (in fF) C12=C21 (in fF) C22 (in fF)
Dominant pole

(p)� 1013 Residue (R)�1012

1.0 1.2143509 0.15929757 0.7180898 ÿ1.352663 10.46842
10.0 1.1349504 0.23096465 0.6664932 ÿ1.257249 9.021230

100.0 1.1430249 0.26650206 4.9028508 ÿ1.280641 10.67617

Fig. 5. The transient characteristics for the end of the conductor M1 vs di�erent permitivities of in-
homogeneous dielectric material (h1=0.5 mm, h2=2.5 mm, d1=2.5 mm, d2±d8=2 mm, the total number
of nodes = 216, e1=12e0, t1=e1/s, and e2±e9 are variables: (1) eE±e9=1.0, 0.8, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1
e0; (2) e2±e9=10, 8, 6, 5, 4, 3, 2, 1 e0; (3) e2±e9=100, 80, 60, 50, 40, 30, 20, 10 e0) oriented over an in®-

nite ground plane shown in Fig. 1.
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ium. The actual topography of the multilevel con-

ductor system becomes more realistic in modeling
its transient characteristics. For this purpose, our
work uses an adaptive multilayer closed-form

spatial Green's function for BEM to examine the
voltage and current responses of the multilevel con-
ductor system. By introducing the closed-form

spatial Green's function, we can e�ciently deal with
the number of layer more than three, as compared
with the method using the full-form Green's func-

tion in[9]. All of the surface integrals of charge dis-
tribution have been discretized after the use of

Galerkin principle over boundary elements. To
improve computation e�ciency, we have adopted
constant element for discritization, which can be

evaluated analytically. To cope with the poor tim-
ing analysis e�ciency of the ®nite-di�erence
method, arbitrary numbers of poles and residues

are generated by introducing the PadeÁ -via-Lanczos
(PVL) algorithm with little numerical degradation.
The formulations of poles and residues are derived,

which can be calculated fast enough to be easily
included in a circuit simulator. Hence, it is easy to

calculate the transient characteristics of both paral-
lel conductors and complicated con®gurations such
as crossing lines, corners, contacts, multilayers and

their combinations. From our analysis, it has been
pointed out that incorporation of the consideration
of multilayer topography for modeling the transient

characteristics of multilevel interconnection is im-

portant and necessary. Moreover, our reformulation
algorithm can also be applied to even more complex
topography, which has been proven by the merge of
boundary-element method (MBEM)[8]. Major

improvements are the reformulation of BEM and
PVL with multilayer closed-form spatial Green's
function to model the transient characteristics,

which are proven to be applicable to even more
complex con®guration. These improvements have
made possible to link with existing CAD tools.
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