Effects of CoSi₂ on p^+ Polysilicon Gates Fabricated by BF₂ Implantation into CoSi/Amorphous Si Bilayers

Huang-Chung Cheng, Wen-Koi Lai, and Hon-Wen Liu

Department of Electronics Engineering and Institute of Electronics, National Chiao Tung University, Hsinchu, Taiwan

Miin-Horng Juang

Department of Electronics Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan

ABSTRACT

The integrity of thin gate oxide structures fabricated by implanting BF_i^{\dagger} ions into bilayered CoSi/amorphous silicon films and subsequent annealing has been studied as a function of cobalt silicide thickness and implantation energy.
Significant degradation of gate oxide integrity and flatband voltage shifts were found with increasing cob thickness and annealing temperature. It is shown that although thinner cobalt suicide can result in excellent gate dielectric integrity it also leads to worse thermal stability at a high annealing temperature. Moreover, shallower implantation depth and lower annealing temperature can reduce the boron penetration, but depletion effects in polycrystalline silicon gates are caused accordingly. Hence, appropriate process conditions, involving trade-offs among CoSi₂ thickness, implantation energy and annealing temperature, must be used to optimize the device performance while retain dielectric reliability.

Introduction

Surface channel p-type metal-oxide-semiconductor fieldeffect transistors (p-MOSFETs) with p⁺ polycrystalline-sili- con (poly-Si) gates have been investigated¹ in place of the buried-channel devices with n^+ poly-Si gates, due to superior short-channel behavior, better turn-off characteristics, lower threshold voltage operation, much less sensitivity to process tolerances,² and improved hot-carrier reliability³ in the deep submicron regime. However, it has been reported that boron impurity from the B^+ -doped poly-Si gate could
amorphous, which can effectively reduce the diffusion of readily diffuse through the gate oxide during high-temperature anneals.⁴⁻⁷ This boron penetration effect can result in application of H₂O:H₂O₂:NH₄OH at 55-60°C. Subflatband voltage (V_{FB}) shift, increase of subthreshold swing and leakage current, and deterioration of gate oxide quality. On the other hand, metal silicides have been used to lower the contact resistance and sheet resistances of source/drain and gate electrodes as well as interconnections. $8-10$ Cobalt disilicide $(CoSi₂)$ is one of the most promising materials in anneal was performed at temperatures ranging from 600 to the deep-submicron regimes because of its low bulk resistivity (about 18 $\mu\Omega$ cm) and good thermal stability at high tem-
peratures. Hence CoSi₂ has received much attention in the self-aligned silicide (salicide) technology of ultralarge scale films on Si substrates have been shown to be capable of forming ultrashallow junctions. $1^{4 \times 17}$

However, the dielectric strength of thin gate oxides beneath cobalt polycide gate electrodes is an important issue which has not been extensively investigated. In this paper,
the reliability of thin gate oxides fabricated by implanting BF $_2^*$ ions into bilayered CoSi/amorphous silicon films has been studied. Various process conditions are examined, in-
cluding the cobalt silicide thickness, the implantation order to investigate the effects of CoSi_2 thickness on thin
conditions, and the annealing cycles.
gate conditions, and the annealing cycles.

Experimental

(100) oriented, 3-5 Ω cm, phosphorus-doped n-type Si respectively, for the specimens with different CoSi₂ thick-wafers were used. Field oxides 450 nm thick were thermally grown for patterning the active regions of metal-oxidesemiconductor (MOS) capacitors. After the pattering, thin gate oxides \sim 8 nm thick were thermally grown at 90° °C in a dry O_2 ambient. Immediately, undoped a-Si films of about 115, 131, and 146 nm thickness were, respectively, deposited onto the samples by using the low pressure chemical vapor deposition (LPCVD) system at 550°C. The gate electrode was then patterned for utilization of selective etching. Subsequently, thin Co films of about 4.5, 9, and 13.5 nm thickness were deposited onto the samples with undoped a-Si films of 115, 131, and 146 nm thickness, cor-

integrated (ULSI) devices.¹¹⁻¹³ In addition, the techniques semiconductor parameter analyzers HP 4156, the Keithley
which implant dopant through thin metal or metal silicide lyzer were conducted, respectively. In additio respondingly, by an E-beam evaporation system. As a result, after the whole silicidation process, the $CoSi₂$ films of about 15, 30, and 45 nm thickness were formed, respectively. Moreover, the residual poly-Si thickness was about 100 nm for all the samples. To serve as a passivation layer for silicidation annealing, the samples were further covered with thin Mo films of about 6, 12, and 18 nm thickness, correspondingly The first step anneal was performed at 450°C for 60 s by rapid thermal annealing (RTA). After the first step anneal, the undoped a-Si layer would still be dopant impurities.¹⁸ Then, Mo layers were removed in a sequently, all the samples with bilayered CoSi/a-Si films were BF $_2^+$ implanted with various energies to a dose of 5 \times 10^{15} cm⁻², as listed in Table I. The unreacted Co layers on field oxide were selectively removed in a 6:1:1 mixture of $H₂O:H₂O₂:HC1$ at 55-60°C. The second step silicidation 900°C for 30 min by furnace annealing. The resultant integrity of gate oxides was characterized by current-voltage $(I-V)$ and capacitance-voltage (C-V) measurements. the semiconductor parameter analyzers HP 4156, the Keithley 595 quasi—static C-V meter, and the Keithley 590 C-V anaondary ion mass spectroscopy (SIMS) was also used to investigate the dopant distributions after annealing.

Results and Discussion

In this study the transport of ions in matter (TRIM) simulation program was used to predict the distribution of asimplanted dopants in the bilayered CoSi/a-Si films. In order to investigate the effects of $CoSi₂$ thickness on thin chosen to adapt the projected range (Rp) near predicted CoSi./poly-Si interface or deeply into poly-Si gates,

Table I. The process conditions for \textsf{CoSi}_2 thickness and implant energy.

Implantation peak	CoSi, thickness		
	15 nm	30 nm	45 nm
Near CoSi ₂ /poly-Si interface (keV)	20	40	60
Deeply into poly-Si film (keV)	40	60	80

3590 J. Electrochem. Soc., Vol. 145, No. 10, October 1998 © The Electrochemical Society, Inc.

Fig. 1. The as-implanted dopant profiles simulated by TRIM program for the samples with various $\cos i_2$ thicknesses and implant energies, correspondingly.

nesses. The results are show in Fig. 1. The dopant penetration into the poly-Si film would be caused by using the deeper implantation, with a penetration depth of about 10 nm below the CoSi₂/poly-Si interface.

Cobalt silicides are often used as a contact material to reduce the resistance and thus increase the device speed. Figure 2 shows the sheet resistance (Rs) value as a function of annealing temperature for the samples with different $CoSi₂$ thicknesses and implant energies, respectively. The thicknesses of $CoSi₂$ films were 15, 30, and 45 nm, respectively. After the process of BF $_i$ implantation, the sheet resistance tracks the radiation damages caused by ion implantation. As illustrated in Fig. 2, for all specimens, Rs in Fig. 4b, higher implantation energy can also improve the was slightly reduced with increasing the second step annealing temperature until 800°C, due to the recovery of 700° C, but which causes much more positive shifts of C-V implantation damages and/or the grain growth of formed curves at higher annealing temperature, indicati implantation damages and/or the grain growth of formed cobalt silicide. The sheet resistance of thicker $\cos i_2$ films can remain stable even after an annealing at 900°C. However, for the 15 nm thick CoSi_2 films, the sheet resistance increases tremendously after an annealing at 900°C regardless of the implantation conditions. This result was

attributable to the formation of island structure of the cobalt silicide at such a high-temperature annealing.

 CoSi_2 =30nm,40keV Figure 3 indicates the dependences of flatband voltage
CoSi =45nm CoCo_2 (V_{FB}) on annealing temperature for the specimens implantpredicted CoSi /poly-Si interface •1. • ..i. .. .12. .. .i. •. In this study, the CoSi film is used an an implantation barrier to minimize the dopant impurity diffusion by reducing the projectible range and implant-induced defects. ed near the CoSi₂/poly-Si interface or deeper, with the CoSi_2 thickness as a parameters. The thicknesses of CoSi_2 films were 15, 30, and 45 nm, respectively. While implanting impurities near the CoSi₂/poly-Si interface, smaller V_{FB} shifts were found for the samples with thinner CoSi₂ film thickness, and the V_{FB} shift would lower as the annealing temperature was decreased. As for the specimens implanted deeply into poly-Si films, the samples with thicker $CoSi₂$ layers (45 nm) exhibit much larger V_{FB} shifts than those with thinner $\cos i_2$ films (15 and 30 nm), especially at the annealing temperature of 900°C. This gate oxides, attributable to the fact that the higher implantation energy could result in the distribution of asimplanted dopants deeply and widely into the poly-Si gates. Hence, thinner CoSi_2 layers with BF $_2^+$ implantation near the $CoSi_2$ /poly-Si interface sustain smaller V_{FB} shift as the annealing temperature is decreased. However, shallower implant projected range or lower annealing temper- ature could cause the depletion effect of poly-Si gates. Figures 4a and b show the dependences of normalized

high frequency C-V curves on annealing temperature for the samples with BF_2^+ implantation near the $CoSi_2/poly-Si$ interface or deeper, correspondingly. The cobalt silicide thickness is 30 nm. The gate depletion effect was observed at annealing temperatures of 600 and 700°C, as shown in Fig. 4a, attributable to insufficient thermal budget. The dopant concentration could be insufficient, since the furnace annealing treatment at lower temperature would lead to less dopant drive-in from the $CoSi_2^{\degree}$ layer during annealing. However, the dopant drive-in efficiency has been improved at annealing temperatures above 800°C. On the other hand, as shown in Fig. 4b, higher implantation energy can also improve the 700° C, but which causes much more positive shifts of C-V eration of a large amount of electron traps. Moreover, the samples with 15 nm thick $CoSi₂$ films also showed similar results of gate depletion effects at lower annealing temperatures or implant energies, in comparison with those with 30 nm thick $\overline{\text{CoSi}_2}$ films. In order to eliminate the gate deple-

Fig. 2. Dependence of sheet resistance on function of annealing temperature for the samples with various CoSi₂ thickness and implantation near the CoSi₂/poly-Si interface or deeper, correspondingly.

Fig. 3. Dependences of flat-band voltage on function of annealing temperature for the samples with various CoSi₂ thickness and implantation near the CoSi₂/poly-Si interface or deeper, correspondingly.

Fig. 4. The high-frequency C-V curves for the specimens with was u and Bf_2^* implantation (a) near the CoSi $_2$ /poly-Si interface or (b) deeply into poly-Si gates, annealed from 600 to 900°C for 30 min, respectively. The $\overline{\text{CoSi}}_2$ thickness is 30 nm.

tion effects, an appropriate choice for implantation conditions and thermal cycles is necessary for such a promising
process. For an example, the 30 nm thick $\cos i_2$ films with BF $_2^*$ implantation near the CoSi₂/poly-Si interface and annealing at 800°C can be employed.

The effects of CoSi₂ thickness on the gate oxide reliability ϵ_{16} are investigated. Figures 5 and 6 indicate the time zero dielectric breakdown (TZDB) results as a function of CoSi_2
thicknesses for the samples with BF⁺₂ implantation near the $\frac{1}{2}$ CoSi₂/poly-Si interface or deeper and then annealed at 800 $\frac{1}{2}$ 14 and 900°C, correspondingly. At least 20 capacitors for each sample were taken to attain the average values of breakdown fields (E_{bd}) and charges to breakdown (Q_{bd}) . For the samples with implantation near the CoSi₂/poly-Si interface, slight degradation of E_{bd} values was found with increasing CoSi, thickness at annealing temperatures of 800 and 900°C. On the other hand, for the specimens implanted deeply into poly-Si gates, the E_{bd} values are severely degraded as the CoSi_2 film thickness is increased, especially for thicker CoSi_2 films (45 nm). The samples with thicker $CoSi₂$ would require higher implant energy to keep the same peak position of implanted impurities, thus leading to a wider as-implanted dopant profile and readily resulting in a large amount of boron

Fig. 5. Breakdown field as a function of CoSi₂ thicknesses for the samples with implantation near the $\textsf{CoSi}_2\textsf{/poly-Si}$ interface or deeper, respectively, and annealing at 900°C for 30 mm.

impurities which diffuse through gate oxides at annealing temperatures of 800 and 900°C. Even for the samples with $BF\frac{1}{2}$ implantation near the CoSi₂/poly-Si interface, the specimens with thicker $CoSi₂$ film (45 nm) still show the boron penetration effects of annealing temperatures of 800 and 900° C. However, the specimens with CoSi₂ layers 30 nm thick just manifest minute E_{bd} degradation even at higher implant energy and higher annealing temperature, and which almost show no deterioration at annealing temperature of 800°C. As results, excellent thin gate oxides can be achieved by the samples with thinner $CoSi₂$ films (15 and 30 nm) annealed at 800°C, regardless of the implant conditions, as well as by the samples with 30 nm thick $\cos i_2$ films and implantation near the CoSi₂/poly-Si interface annealed at 900°C. Furthermore, Fig. 7 indicates the Wiebull plot of charge to breakdown (Q_{bd}) for the samples with various $CoSi₂$ thicknesses and implantation near the $CoSi₂/poly-Si$ interface or deeper, respectively. The annealing condition is at 800°C for 30 mm. A stress current density of 100 mA/cm2 was used, with the stress area of 1.767×10^{-4} cm². The sam-

Fig. 6. Breakdown field as a function of CoSi₂ thicknesses for the samples with implantation near the CoSi₂/poly-Si interface or deeper, respectively, and annealing at 800°C for 30 mm.

Fig. 7. The Weibull plot of charge to breakdown for the samples 800°C for 30 min. with various CoSi₂ thickness and implantation near the CoSi₂/poly-Si interface or deeper, correspondingly, annealed at 800°C for 30 min.

ples exhibit negative shifts of Q_{bd} distribution as the $CoSi₂$ thickness is increased. Slight variations of Q_{bd} distribution and 30 nm), no matter what implant conditions. However, the samples with thicker $CoSi₂$ film (45 nm) exhibit significantly deterioration of the gate oxide quality, especially for higher implant energy as 80 keV. The degraded $Q_{\rm bd}$ values are further identified to be consistent with the results of E_{bd} Significant degradation of gate oxide quality and flat-
characteristics shown in Fig. 5. In addition from the curves characteristics shown in Fig. 5. In addition, from the curves of gate voltage shifts against stress time for the samples
er $\cos i_2$ films and annealed at higher temperatures, attri-
annealed at 800° C shown in Fig. 9, the samples with thinner annealed at 800° C, shown in Fig. 8, the samples with thinner CoSi₂ film thickness lead to much lower electron-trapping rate of gate oxides, regardless of the implant conditions. The samples with thicker $CoSi₃$ films as 45 nm in thickness still show an extremely large electron-trapping rate at annealing $\frac{uy}{2}$ at an annealing temperature of y at y at y at y at an annealing temperature of y at y at z at temperature of 800°C.
Figure 9 shows the measured SIMS depth profiles of

boron concentration in the $\text{CoSi}_2\text{/poly-Si/SiO}_2/\text{Si}$ substrate

Fig. 8. Comparisons of the gate voltage shift for the samples with various CoSi₂ thickness and implantation near the CoSi₂/poly-Si interface or deeper, respectively, annealed at 800°C for 30 min. The stress current density is 100 mA/cm2.

Fig. 9. Boron depth profiles measured by SIMS for the samples with implantation deeply into poly-Si gates and annealing at

were observe for the samples with thinner \tilde{CoSi}_2 layers (15 and S1 substrates. However, a large amount of boron impuant $\tilde{30}$ nm), no matter what implant conditions. However ities are found to be diffused into S1 structure. The samples were BF_{2}^{+} -implanted deeply into the poly-Si gates, followed by furnace annealing at 800°C for 30 min. As can be seen, the samples with thinner $\cos i_2$ films (15 and 30 nm) exhibit much less boron penetration into Si substrates. However, a large amount of boron impusamples with 45 nm thick $CoSi₂$ films, leading to poor E_{bd} and Q_{bd} characteristics as shown in Fig. 5 and 7.

Conclusions

band voltage shifts were found for the samples with thickbutable to the severe boron penetration. Although the samples with thinner $\cos i_2$ films (15 nm) can result in excellent integrity of gate dielectrics, poor thermal stability at an annealing temperature of 900° C is caused. Moreplantation energy would result in the depletion effect of poly-Si gates. Hence, a proper choice of process conditions is necessary to attain better cobalt silicide stability as well as thin gate dielectric reliability. For examples, the $CoSi₂$ films, 15 and 30 nm thick, with implantation near the $CoSi₂/poly-Si$ interface and annealing at 800°C, or, with deeper implantation into poly-Si gates and annealing at 700 and 800°C can be employed. In addition, the 45 nm thick CoSi₂ films with implantation near the CoSi₂/poly-Si interface and annealing at 700°C can be used to lead to excellent gate oxide reliability. Those conditions are listed in Table II.

Acknowledgments

This work was supported in part by the Republic of China National Science Council (R.O.C. NSC) under contract NSC-87-2215-E-009-047. The authors thank the National
Nano Device Laboratory (NDL) of R.O.C. NSC and the Semiconductor Research Center (SRC) in National Chiao Tung University for technical support.

Manuscript submitted September 8, 1997; revised man- uscript received June 26, 1998.

National Chiao Tung University assisted in meeting the publication costs of this article.

REFERENCES

- 1. G. J. Hu, and R. H. Bruce, IEEE Trans. Electron De-
-
- Devices. Meet., 628 (1987). 3. F. Matsuoka, H. Iwai, H. Hayashida, K. Hama, Y. Toyoshima, and K. Maeguchi, IEEE Trans. Electron
- Devices, ED-37, 1487 (1990).
4. J. Y.-C. Sun, C. Wong, Y. Taur, and C.-H. Hsu, in Pro-
ceedings of the 1989 Symposiumon VLSI Technolo-
- gy, 17 (1989).
5. J. R. Pfiester, F. K. Baker, T. C. Mele, H.-H. Tseng, P. J. Tobin, J. D. Hayden, J. W. Miller, C. D. Gunderson, and L. C. Parrillo, *IEEE Trans. Electron Devices*, **ED-37**, 1842 (1990).
- ED-37, 1842 (1990). 6. J. J. Sung and C.-Y. Lu, IEEE Trans. Electron Devices,
- ED-37, 2312 (1990).
7. C.-Y. Chang, C.-Y. Lin, J. W. Chou, C. C.-H. Hsu, H.-T.
Pan, and J. Ko, *IEEE Electron Device Lett.*, **EDL-15**,
- 437 (1994). 8. 5. P. Murarka, Silicides for VLSI Applications, Academic Press, Inc., New York (1993).
- 9. T. P. Chow and A. J. Steckl, IEEE, Trans. Electron Devices, **ED-30**, 1480 (1983).
10. M. A. Nicolet and S. S. Lau, *VLSI Electronics: Micro-*
- $structure\,$ Science, Vol. $6,\,\mathrm{N}.\,\mathrm{G}$. Einspruch, and $\mathrm{G}.\,\mathrm{B}.$ Larrabee, Editors, Chap. 6, p. 329, Academic Press,
Inc., New York (1983).
11. K. Inoue, K. Mikagi, H. Abiko,and T. Kikkawa, *Tech*.
- vices, ED-32, 584 (1985). 2. K. Tanaka, and M. Fukuma, Tech. Dig. Int. Electron Dig. Int. Electron. Devices Meet., 18.1.1, 445 (1995).
	- Dig. Int. Electron. Devices Meet., 18.1.1, 445 (1995).
12. H. Kawaguchi, H. Abiko, K. Inoue, Y. Saito, T. Yamamo-
to, Y. Hayashi, S. Masuoka, A. Ono, T. Tamura, K. to, Y. Hayashi, S. Masuoka, A. Ono, T. Tamura, K.
Takunaga, Y. Yamada, K. Yoshida, and I. Sakai, *Dig*.
	- Tech. Pap. Symp. VLSI Technol., **9B-4**, 125 (1997).
13. T. Ohguro, S. Nakamura, E. Morifuji, T. Yoshitomi, T.
Morimoto, H. Harakawa, H. S. Momose, Y. Katsuma-Morimoto, H. Harakawa, H. S. Momose, Y. Katsumata, and H. Iwai, Dig. Tech. Pap. Symp. VLSI Tech-
nol., **8B-1**, 101 (1997).
	- 14. M. H. Juang, C. T. Lin, and H. C. Cheng, J. Appl. Phys., 76, 1323 (1994).
	- 15. C. T. Lin, P. F. Chou, and H. C. Cheng, Jpn. J. Appl.
Phys., 33, 3402 (1994).
	- 16. F. La Via, and E. Rimini, IEEE Trans. Electron Devices, 44, 526 (1997).
	- 17. B. S. Chen and M. C. Chen, J. Appl. Phys., **74**, 3605 (1993).
	- 18. W. K. Lai, H. W. Liu, M. H. Juang, N. C. Chen, and H. C. Cheng, IEEE Electron Device Lett., Submitted.

Optimization of the Growth of CdTe Thin Films Formed by Electrochemical Atomic Layer Epitaxy in an Automated Deposition System

Lisa P. Colletti* and John L. Stickney**

Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA

ABSTRACT

This paper describes the deposition of CdTe thin films by electrochemical atomic layer epitaxy (ALE). ALE involves the formation of compounds an atomic layer at a time, using surface-limited reactions. That is, atomic layers of the ele-
ments making up a compound are deposited in a cycle, where each cycle produces a monolayer of the co trochemical ALE, the surface-limited reactions that produce the atomic layers are referred to as underpotential deposition (UPD). This article describes the dependence of the deposit structure, morphology and composition on a number of the steps in the deposition cycle. Separate optimized solutions and potentials are used to deposit each of the elements.
Specifically, a variety of deposition and stripping potentials have been examined, resulting in a bro for Te UPD to form on. If the potentials were too far negative, bulk Cd began to deposit, and Cd-rich three-dimensional
growth predominated. There was a 0.2 V plateau for the Cd deposition potential where stoichismetric fi growth predominated. There was a 0.2 \vee plateau for the ed deposition possession and -0.55 and -0.65 V. The optimal ed; however, the highest quality films were formed within a 0.1 V wide plateau, between -0.55 an α , no event, the magnetic supplemental supplemental of the supplemental state of a state of a stripped,
while at more negative potentials Te dendrites were formed and the surface roughened badly. Potentials of -1.2 V while at more negative potentials te dendries were formed and the sarrier forgetted and stomic layer. If more positive
below should be used for the Te stripping step, in order to remove all excess Te, above an atomic layer potentials were used, some excess Te remained and three-dimensional growth resulted. Te strippingshould be performed for at least 20 s to completely remove the excess Te. Neither substrate orientation, nor annealing to 300°C had much effect on the quality of the deposited films.

Introduction

optoelectronic devices.^{1,2} Nanostructuring is becoming an increasingly important feature of such devices; solid-state blue lasers are a good example.3 For most thin-film deposition methodologies, sufficient control over nanostructural deposition process. dimensions is problematic, while atomic level control is becoming very desirable. To that end, atomic layer epitaxy (ALE) is being developed as a modification of vacuumbased techniques such as molecular beam epitaxy (MBE) fact and chemical vapor deposition (CVD) .⁴⁻⁷ ALE breaks up the deposition of each monolayer of a compound into a series deposition of each monolayer of a compound into a series
of steps. The steps consist of the application of surface-lim-

Compound semiconductors are a critical constituent of the atomic layer of one of the elements making up the compound semiconductors are a critical constituent of compound. The series of steps can be used in a cycle to form ited reactions, where each reaction results in the formation compound. The series of steps can be used in a cycle to peated the desired number of times to form a given thickness of deposit. Each step can be a point of control for the

Work in this group has focused on developing an electrochemical analog of ALE.⁸⁻¹⁵ Electrochemical techniques are desirable as they allow uniform deposition on irregular surfaces, at low temperatures with excellent selectivity and process control.^{8,16-18} In addition, electrochemical techniques generally have simplified waste streams, as less dangerous or toxic materials are used relative to the precursors in many vacuum-based techniques. Electrochemical ALE (ECALE) makes use of well-known electrochemical sur-

Electrochemical Society Student Member. Electrochemical Society Active Member