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Abstract. We consider a nonsymmetric algebraic matrix Riccati equation arising from transport
theory. The nonnegative solutions of the equation can be explicitly constructed via the inversion
formula of a Cauchy matrix. An error analysis and numerical results are given. We also show a
comparison theorem of the nonnegative solutions.
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1. Introduction. In transport theory, a variation of the usual one-group neu-
tron transport equation [2, 8, 10] is formulated as{

(µ+ α)
∂

∂x
+ 1

}
ϕ(x, µ) =

c

2

∫ 1

−1

ϕ(x, ω)dω,(1a)

ϕ(0, µ) = f(µ), µ > −α, |µ| ≤ 1,(1b)

lim
x→∞ϕ(x, µ) = 0.(1c)

Here ϕ is the neutron flux, α (0 ≤ α < 1) is an angular shift, and c is the average
of the total number of particles emerging from a collision, which is assumed to be
conservation; i.e., 0 ≤ c ≤ 1.

The scattering function (see, e.g., [15]) for particle transport (or radiative trans-
fer) in the half-space can be derived from (1) via invariant embedding [2]. Such
a scattering function satisfies the following integrodifferential equation (see the ap-
pendix in [15]):(

1

µ+ α
+

1

ν − α

)
X(µ, ν) = c

[
1 +

1

2

∫ 1

−α

X(ω, ν)

ω + α
dω

][
1 +

1

2

∫ 1

α

X(µ, ω)

ω − α dω

]
,(2)

with (µ, ν) ∈ [−α, 1] × [α, 1]. Here the function X : [−α, 1] × [α, 1] → R is called a
scattering function. For the case in which c = 0 or α = 1, (2) has a trivial solution.
When α = 0, the existence of nonnegative solutions of (2) has been studied by many
authors (see, e.g., [15] and the works cited therein). In fact, for this case, the two
integrals in (2) are the usual Chandrasekhar H-function [5, 15].

Discretization of the integrodifferential equation of (2) yields an algebraic matrix
Riccati equation. To see this, let {ωk}nk=1 and {ck}nk=1 denote the sets of the Gauss–
Legendre nodes and weights, respectively, on [0, 1] with

0 < ωn < · · · < ω2 < ω1 < 1(3a)
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NONSYMMETRIC ALGEBRAIC RICCATI EQUATIONS 229

and

n∑
k=1

ck = 1, ck > 0, k = 1, 2, . . . , n.(3b)

Transforming the Gauss–Legendre nodes and weights on [0, 1] to the intervals [−α, 1]
and [α, 1], respectively, we have the following relationships:

ω−k = {(1 + α)ωk − α} ∈ [−α, 1], c−k = ck(1 + α),(4a)

ω+
k = {(1− α)ωk + α} ∈ [α, 1], c+k = ck(1− α)(4b)

for k = 1, . . . , n. Let Xij = X(ω−i , ω
+
j ), i, j = 1, . . . , n. Replacing µ, ν with ω−i and

ω+
j , respectively, in (2), the integrals in (2) can be approximated by∫ 1

−α

X(ω, ω+
j )

ω + α
dω ∼

n∑
k=1

c−k Xkj

ω−k + α

and ∫ 1

α

X(ω−i , ω)

ω − α dω ∼
n∑
k=1

c+kXik

ω+
k − α

.

Consequently, the descretized version of (2) becomes

1

c(ω−i + α)
Xij +

1

c(ω+
j − α)

Xij

= 1 +
1

2

n∑
k=1

c−k Xkj

ω−k + α
+

1

2

n∑
k=1

c+kXik

ω+
k − α

+
1

4

n∑
k=1

n∑
l=1

Xikc
+
k c
−
l Xlj

(ω+
k − α)(ω−l + α)

.(5)

Substituting (4) into (5) and writing the resulting equation in matrix form, we get
an n× n nonsymmetric algebraic matrix Riccati equation in X:

B −AX −XD +XCX = 0,(6)

where A,B,C, and D have the following structures:

A = diag[δ1, δ2, . . . , δn]− eqT ,(7a)

B = eeT ,(7b)

C = qqT ,(7c)

and

D = diag[d1, d2, . . . , dn]− qeT ,(7d)

where

δi =
1

cwi(1 + α)
, di =

1

cwi(1− α)
,(8a)

and

e = [1, 1, . . . , 1]T , q = [q1, q2, . . . , qn]T with qi =
ci

2wi
.(8b)
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230 JONQ JUANG AND WEN-WEI LIN

In studying (6), we may assume that all the data are real and that 0 < c ≤ 1, 0 ≤
α < 1, and (3) are satisfied. Consequently, we may assume that

0 < δ1 < δ2 < · · · < δn(9a)

and

0 < d1 < d2 < · · · < dn.(9b)

In addition, we may assume that

di = δi for α = 0, di > δi for α 6= 0, i = 1, 2, . . . , n.(9c)

Recently, the existence of nonnegative solutions (in the componentwise sense) of
(6) was demonstrated via the degree theory by Juang [13]. Some iterative procedures
[14] have been developed for finding the nonnegative solutions of (6). However, for
the case in which c ≈ 1 and α ≈ 0, the convergence rates of these procedures are very
slow, which is unsatisfactory.

Now, let H denote a 2× 2 block matrix of the form

H :=

[
D −C
B −A

]
,(10)

where A,B,C, and D are as defined in (7). We call this matrix H a Hamiltonian-
like matrix of (6). In this paper, we develop a different approach to constructing
the nonnegative solutions of (6) based on computing the invariant subspaces of H
corresponding to some specified eigenvalues. The inversion formula of a Cauchy
matrix is also used to explicitly construct such solutions. Our approach gives a
complete representation and bifurcation diagram, with respect to parameters c and
α, for nonnegative solutions of (6). Furthermore, it provides a numerical algorithm
for computing the nonnegative solutions of (6) and avoids the deficiencies inherent in
the iterative procedures mentioned above.

Symmetric algebraic Riccati equations arising from linear-quadratic control prob-
lems are often solved by computing the “stable” invariant subspace of the correspond-
ing Hamiltonian matrix H̃ (see, e.g., [17, p. 55]). Such equations have been treated
at length in the literature (see, e.g., [17] and the works cited therein). Here H̃ is of

the form H̃ =
[ÃT −C̃
B̃ −Ã

]
, where B̃, C̃ are symmetric and Ã is arbitrary. On the other

hand, nonsymmetric Riccati equations (see, e.g., [7, 18]) are less well understood than
their symmetric counterparts. Note that H, given in (10), is a Hamiltonian matrix
only when c = 1 and α = 0, which is why we call it a Hamiltonian-like matrix.
Moreover, we are seeking a nonnegative solution of (6), as opposed to the positive
semidefinite solutions found in linear-quadratic control problems or the nonsingular
solutions found in polynomial factorizations.

This paper is organized as follows. In section 2, we analyze the eigenvalue dis-
tribution of H and characterize the components of the associated eigenvectors. In
section 3, a complete representation and bifurcation diagram of the nonnegative solu-
tions of (6) are established. In particular, we show that (6) has a unique nonnegative
solution when c = 1 and α = 0 and two nonnegative solutions otherwise. An error
analysis and some numerical experiments for the computation of the nonnegative
solutions are given in section 4. In section 5, some comparison results are derived.
Specifically, we are able to show that the minimal solution of (6) is increasing in c and
decreasing in α. Our concluding section primarily contains some thoughts regarding
possible future research related to the results presented here. For completeness and
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NONSYMMETRIC ALGEBRAIC RICCATI EQUATIONS 231

ease of reference, we conclude this introductory section by recording some well-known
results.

In what follows, we shall give the definition of the M-matrix and its properties
(see, e.g., [19, p. 54]).

Definition 1.1. A real n × n matrix A is an M-matrix if there exists a
nonnegative matrix B with a maximal eigenvalue r such that A = cIn − B, where
c ≥ r.

Theorem 1.2. Let matrix A be an n×n nonsingular real matrix with nonpositive
off-diagonal elements. Then the following are equivalent:
(i) A is an M-matrix. (ii) Every real eigenvalue in A is nonnegative. (iii) A−1 is
nonnegative.

Theorem 1.3. Let two n × n matrices Ai, i = 1, 2, be decomposed into Ai =
Di − Bi, respectively, where Di, i = 1, 2, are diagonal parts of Ai, i = 1, 2. Suppose
A1 is an invertible M-matrix, D1 ≤ D2, and B1 ≥ B2 ≥ 0. A2 is then an M-matrix
and A−1

2 ≤ A−1
1 .

2. Properties of the Hamiltonian-like matrix H. In this section, we ana-
lyze the eigenvalue distribution of H given in (10) and characterize the components
and properties of the associated eigenvectors.

Lemma 2.1. The matrix H, as defined in (10), has only real eigenvalues
{−µn, . . . ,−µ1, λ1, . . . , λn}, which are arranged in an ascending order and satisfy
the following inequalities:

−δn < −µn < −δn−1 < . . . < −δ2 < −µ2 < −δ1 < −µ1 ≤ 0,(11a)

0 ≤ λ1 < d1 < λ2 < d2 < . . . < λn < dn.(11b)

Moreover, the following hold: (i) µ1 = 0 only if c = 1. (ii) λ1 = 0 only if c = 1 and
α = 0. (iii) µi = λi, i = 1, 2, . . . , n, for α = 0.

Proof. Let

D1 = diag[d1, d2, . . . , dn] and ∆1 = diag[δ1, δ2, . . . , δn].(12)

We rewrite H − λI as

H − λI =

[
D1 0
0 −∆1

]
− λI −

[
q
−e

] [
eT , qT

]
.(13)

The secular equation (see, e.g., [3, 6, 11]) of H − λI is given by

f(λ) = 1− (eT , qT )

[
(D1 − λI)−1 0

0 −(∆1 + λI)−1

] [
q
−e

]
= 1−

n∑
i=1

qi
di − λ −

n∑
i=1

qi
δi + λ

.(14)

Since λ = di and −δi, i = 1, . . . , n, are not eigenvalues of H, finding eigenvalues
of H is equivalent to locating the roots of f(λ). Using (14), we immediately have the
following asymptotic properties:

lim
λ→±∞

f(λ) = 1, lim
λ→d±

i

f(λ) = ±∞, lim
λ→−δ±

i

f(λ) = ∓∞, i = 1, 2, . . . , n.

The intermediate value theorem indicates that f(λ) must have at least one root in
each of the intervals (di, di+1) and (−δi+1,−δi), where i = 1, 2, . . . , n−1. Thus, there

D
ow

nl
oa

de
d 

04
/2

8/
14

 to
 1

40
.1

13
.3

8.
11

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



232 JONQ JUANG AND WEN-WEI LIN

are at least 2n− 2 roots in those intervals. We next examine the number of possible
roots of f(λ) in the interval (−δ1, d1). To this end, we evaluate f(0) and its rate of
change, f

′
(0).

From (14), (8), and (3b), it can be determined that

f(0) = 1−
n∑
i=1

ci
2ωi

cωi(1− α)−
n∑
i=1

ci
2ωi

cωi(1 + α)

= 1− c
{
> 0 for 0 ≤ c < 1,
= 0 for c = 1

(15a)

and

f ′(0) = −1

2

n∑
i=1

cic
2ωi(1− α)2 +

1

2

n∑
i=1

cic
2ωi(1 + α)2

= 2αc2
n∑
i=1

ciωi

{
> 0 for α > 0,
= 0 for α = 0.

(15b)

Since limλ→−δ+
1
f(λ) = limλ→d−1 f(λ) = −∞, we conclude, via (15), that, for 0 < c <

1, f(λ) has two other roots. Specifically, one is in (−δ1, 0) and the other is in (0, d1).
It follows from (15) that, for c = 1 and 0 < α < 1, one root of f(λ) is zero and the
other root is in (0, d1), and for c = 1 and α = 0, f(λ) has a zero root of multiplicity
2. We thus complete the proof of the lemma.

The following results can be easily obtained by studying the secular equations of
A and D. The proof of the lemma is thus omitted.

Lemma 2.2. The eigenvalues of A and D are real and positive.

We now turn our attention to the eigenvectors corresponding to the eigenvalues
λk and µk of H for k = 1, . . . , n.

Lemma 2.3. Let [x1,k, . . . , x2n,k]
T

and [z1,k, . . . , z2n,k]
T

be the eigenvectors of H
corresponding to λk and −µk, respectively, for k = 1, . . . , n. Then it holds that

xi,k =
qi(δn + λk)

di − λk and xn+i,k =
δn + λk
δi + λk

, i = 1, . . . , n,(16)

zi,k =
qi(δn − µk)

di + µk
and zn+i,k =

δn − µk
δi − µk , i = 1, . . . , n,(17)

for k = 1, . . . , n.

Proof. Let xk = [x1,k, x2,k, . . . , x2n,k]
T

be the eigenvector corresponding to λk;
i.e., (H − λkI)xk = 0. Writing H − λkI in the form of (13) and using the last
component −1 in

[
q
−e
]

as a pivotal element to eliminate the other elements of
[
q
−e
]
,

we get
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NONSYMMETRIC ALGEBRAIC RICCATI EQUATIONS 233

(18)

d̃1,k 0 · · · 0 0 · · · · · · 0 −q1δ̃n,k

0
. . .

. . .
...

...
...

. . .
. . . 0

...
...

...
. . . d̃n,k 0

... −qnδ̃n,k
... 0 −δ̃1,k . . .

... δ̃n,k
... 0

. . .
. . .

...
...

...
. . .

. . . 0
...

0 · · · · · · 0 0 · · · 0 −δ̃n−1,k δ̃n,k
1 · · · · · · 1 q1 · · · · · · qn−1 −δ̃n,k + qn





x1,k

...

...
xn,k
xn+1,k

...

...
x2n−1,k

x2n,k


= 0.

Here, d̃i,k = di − λk and δ̃i,k = δi + λk. Letting x2n,k = 1, we see, via (18), that

xi,k =
qiδ̃n,k

d̃i,k
=
qi(δn + λk)

di − λk and xn+i,k =
δ̃n

δ̃i
=
δn + λk
δi + λk

(19)

for i = 1, . . . , n. The eigenvectors corresponding to −µk can be obtained in a similar
way.

Proposition 2.4. For c = 1 and α = 0, λ1 = µ1 = 0 is a zero eigenvalue of H
that has an algebraic multiplicity of two and a geometric multiplicity of one.

Proof. From Lemma 2.1 we see that the eigenvalues λ1 = µ1 = 0 of H has
algebraic multiplicity of two. To see the geometric multiplicity of λ1 = µ1 = 0, by
noting the leading principal (2n−1)× (2n−1) minor of the coefficient matrix in (18)
with d̃i,k = di and δ̃i,k = δi is nonzero, we conclude that the geometric multiplicity
of λ1 = µ1 = 0 is one.

Let

W =

[
1

di − λj

]n
i,j=1

:= [wi,j ],(20)

where {di}ni=1 and {λj}nj=1 are given in Lemma 2.3. Then W is a Cauchy matrix.

We next state a result of [9] which is very useful in proving our main results.
Lemma 2.5. (i) (See Theorem 3.1 of [9].) The matrix W defined in (20) is

nonsingular, and its inverse is given by

W−1 = D1W
TD2,(21)

where D1 = diag(α1, . . . , αn) and D2 = diag(β1, . . . , βn) with

αi =

− n

Π
j=1

(λi − dj)
n

Π
j=1,j 6=i

(λi − λj)
and βi =

n

Π
j=1

(di − λj)
n

Π
j=1,j 6=i

(di − dj)
,(22)

for i = 1,. . . , n. Moreover, αi, βi > 0 for 1 ≤ i ≤ n. For n = 1 the denominators in
(24) is interpreted as 1.

(ii) Let α = [α1, . . . , αn]T , β = [β1, . . . , βn]T . Then Wα = e and WTβ = e.
Here e is given in (8b).
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234 JONQ JUANG AND WEN-WEI LIN

Proof. We need only to prove the second part of the lemma. To this end, let
WTβ = f = [f1, f2, . . . , fn]T . By (20) and (22),

fi =
n∑
k=1

n

Π
j=1,j 6=i

(dk − λj)
n

Π
j=1,j 6=k

(dk − dj)
=:

n∑
k=1

rk.

Let φi(λ) =
n

Π
j=1,j 6=i

(λ− λj), which is an n− 1 order monic polynomial. Set

ψ(λ) :=

n∑
k=1

rk

n∏
j=1,j 6=k

(λ− dj).

Then ψ(λ) is the Lagrangian interplating polynomial of φi(λ) at the points d1, . . . , dn.
That is, φi(dj) = ψ(dj), j = 1, . . . , n. Because the order of ψ(λ) is also n − 1, we
have φi(λ) ≡ ψ(λ). By comparing the first coefficient, we get fi = 1. So we have
WTβ = e. Finally, W−1e = D1W

TD2e = D1W
Tβ = D1e = α. We thus complete

the proof of the lemma.
Remark 2.1. Let αi and βi be as given in (22) except with λ1 on the respective

products replaced by −µk. Denote such new αi and βi by αi,k and βi,k, respectively.
Then the assertions in the second part of Lemma 2.5 still hold for the corresponding
W since the interlace property remains true.

We next show the matrices X1 and Z
(k)
1 , given in (23), are invertible. Such

assertions will be used in constructing the solution of the algebraic Riccati equation
(6) in section 3.

Theorem 2.6. Let

X1 =


x1,1 x1,2 · · · x1,n

x2,1 x2,2 · · · x2,n

...
...

...
xn,1 xn,2 · · · xn,n

 , Z(k)
1 =


z1,k x1,2 · · · x1,n

z2,k x2,2 · · · x2,n

...
...

...
zn,k xn,2 · · · xn,n

 ,(23)

where xi,k and zi,k, 1 ≤ i, k ≤ n, are defined in (16) and (17), respectively. Then X1

and Z
(k)
1 , k = 1, 2, . . . , n, are invertible.

Proof. From (16), decompose X1 into

X1 = DqWDδ,(24)

where

Dq = diag[q1, q2, . . . , qn],(25a)

Dδ = diag[δn + λ1, δn + λ2, . . . , δn + λn],(25b)

and W is defined as in (20). Thus, the nonsingularity of W , and therefore of X1,

follows immediately from Lemma 2.5. The assertion for Z
(k)
1 , k = 1, . . . , n, can be

similarly obtained.
Corollary 2.7. Let X−1

1 = [x̃i,j ]
n
i,j=1. Then it holds that

x̃i,j > 0 for i ≤ j and x̃i,j < 0 for i > j.(26)

Similarly, let (Z
(k)
1 )−1 = [z̃

(k)
i,j ]ni,j . The corresponding elements z̃

(k)
i,j , i, j = 1, 2, . . . , n,

then satisfy the relationship shown in (26).
Proof. The statement (26) follows immediately from (21), (22), and (24).
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NONSYMMETRIC ALGEBRAIC RICCATI EQUATIONS 235

3. Existence and multiplicity of nonnegative solutions. Our object in this
section is to study the existence and multiplicity of the nonnegative solutions of (6).
To derive the main results, we first write (6) in the form

[
D −C
B −A

] [
I
X

]
=

[
I
X

]
(D − CX).(27)

It is easily seen that the Span {[ IX]} forms an invariant subspace of H corre-
sponding to the matrix D − CX. We first recall the following well-known theorem
(see, e.g., [17]).

Theorem 3.1. If the Span {[X1

X2

]} forms an invariant subspace of H associated

with the matrix Λ ∈ Rn×n and if X1 is invertible, then X = X2X
−1
1 is a solution of

(6).

Proposition 3.2. If X is a nonnegative solution of (6), then {λ2, λ3, . . . , λn}
must be the eigenvalues of D−CX. Consequently, (6) has at most n+ 1 nonnegative
solutions and at most n nonnegative solutions when c = 1 and α = 0.

Proof. Let X be a nonnegative solution of (6). Then,

D − CX = D1 − q(eT + qTX) := D1 − qq̃T

with q̃i > 0 for all i. The secular equation of D1 − qq̃T is

s(λ) = 1−
n∑
i=1

qiq̃i
di − λ.

Since s(−∞) > 0, s(d−1 ) < 0, and s(d+
i )s(d−i+1) < 0 for i = 1, 2, . . . , n − 1, we may

conclude that D−CX has n distinct real eigenvalues λ̃1, λ̃2, . . . , λ̃n. Moreover, there
are at least n−1 positive eigenvalues, say, λ̃i > 0, i = 2, . . . , n. Since σ(D−CX), the
spectrum of D − CX, is contained in σ

([
D −C
B −A

])
, it then follows from Lemma 2.1

that λi = λ̃i for i = 2, 3, . . . , n. The assertions in the proposition then follow from
Theorem 3.1 and Proposition 2.4.

Remark 3.1. From Lemma 2.1, Theorem 3.1, and Proposition 2.4, we conclude
that (6) has at most

(
2n
n

) − (2n−2
n−1

)
solutions for c = 1 and α = 0 and at most

(
2n
n

)
solutions otherwise.

We next prove the following main result.

Theorem 3.3. Let
[
X1

X2

]
and

[Z(1)
1

Z
(1)
2

]
be the eigenvector matrices of H correspond-

ing to Λ = diag[λ1, λ2, . . . , λn] and Γ1 = diag[−µ1, λ2, . . . , λn], respectively. Then

X = X2X
−1
1 and Z = Z

(1)
2 (Z

(1)
1 )−1 are positive solutions of Riccati equation (6).

Moreover, Z ≥ X > 0.

Proof. We first prove that X2X
−1
1 is positive. Let W2 =

[
1

δi+λj

]
, Dδ, and Dq be

given in (25). Using (16), we see that X2 = W2Dδ and X1 = DqWDδ. Hence,

X = W2W
−1D−1

q = W2D1W
TD2D

−1
q ,

where D1 and D2 are given in (21). Let X = [χi,j ]. We see that

χi,j =

{
n∑
`=1

(
1

δi + λ`

)(
1

dj − λ`

)
α`

}(
βj
qj

)
.
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236 JONQ JUANG AND WEN-WEI LIN

Using the identity

1

(δi + λ`)(dj − λ`) =
1

δi + dj

(
1

δi + λ`
+

1

dj − λ`

)
and recognizing

n∑
`=1

α`
dj − λ` = (Wα)j = 1,(28)

we see that

χi,j =
βj

qj(δi + dj)

(
1 +

n∑
`=1

α`
δi + λ`

)
> 0.(29)

The last equality in (28) is justified by Lemma 2.5 (ii). To complete the proof of the

theorem, let Z = Z
(1)
2 (Z

(1)
1 )−1 = [ζi,j ]. Here Z

(1)
1 is given in (23) and

Z
(1)
2 =


zn+1,1 xn+1,2 xn+1,3 · · · xn+1,n

zn+2,1 xn+2,2 xn+2,3 · · · xn+2,n

...
...

... · · · ...
zn+n,1 xn+n,2 xn+n,3 · · · xn+n,n

 ,
where zn+i,1 and xn+i,k are defined in (16) and (17), respectively.

To complete the proof of the theorem, it remains to show that Z − X ≥ 0. To
this end, we see that

Z −X = (Z
(1)
2 −XZ(1)

1 )(Z
(1)
1 )−1

= {(Z(1)
2 −X2) +X(X1 − Z(1)

1 )}(Z(1)
1 )−1

=: F (Z
(1)
1 )−1.

Using (16), (17) and doing some direct calculations, we see that F must be of the
form F = geT1 , where g is a nonnegative vector and eT1 = (1, 0, . . . , 0)T . Note, via

Corollary 2.7, that eT1 (Z
(1)
1 )−1 ≥ 0. Thus Z − X = F (Z

(1)
1 )−1 = geT1 (Z

(1)
1 )−1 ≥ 0.

The proof of the theorem is thus complete.
Remark 3.2. Using Remark 2.1 and a procedure similar to that above, we have

that ζi,j are defined as in (29) except with λ1 in the respective products and summa-
tion taken as −µ1; i.e.,

ζi,j =
βj,1

qj(δi + dj)

(
1 +

α1,1

δi − µ1
+

n∑
`=2

α`,1
δi + λ`

)
.(30)

Theorem 3.4. Equation (6) has a unique nonnegative solution when c = 1 and
α = 0; otherwise, when 0 < c < 1 and 0 < α < 1, it has two nonnegative solutions.

Proof. From Proposition 3.2, it suffices to show, at this stage, that for

k = 2, . . . , n, letting
[Z(k)

1

Z
(k)
2

]
be the eigenvector matrices of H corresponding to

{−µk, λ2, . . . , λn}, respectively, results in Z(k) = Z
(k)
2 (Z

(k)
1 )−1 being other than non-

negative. However, these assertions follow directly from Corollary 2.7 and (17).
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NONSYMMETRIC ALGEBRAIC RICCATI EQUATIONS 237

4. Error analysis and numerical experiments. In this section, we first pro-
vide a perturbation analysis of Riccati equation (6). For the case that 0 ≤ c < 1 and
0 < α < 1, one can apply the standard theory as discussed in Byers [4] and Kenney
and Laub [16]. Let X = X2X

−1
1 be the positive solution of (6). Let || · || denote the

Frobenius norm and PX(δ) be the set of perturbations with respect to X:

PX(δ) =

{‖∆X‖
δ‖X‖ :

‖∆A‖
‖A‖ ≤ δ,

‖∆D‖
‖D‖ ≤ δ,

‖∆C‖
‖C‖ ≤ δ

}
.

Here Ã = A+∆A, D̃ = D+∆D, and C̃ = C+∆C are some perturbed matrices in a
δ-neighborhood of A, D, and C, respectively, and X̃ = X+ ∆X is the corresponding
perturbed solution. Note that B = eeT has no perturbation error. Following Rice
[20], we define the (asymptotic) condition number of (6) as follows:

ν
X

(A,C,D) = lim
δ→0

sup{PX(δ)}.(31)

The magnitude of ν
X

(A,C,D) is used to measure the sensitivity of the solution
of (6) to perturbations in the data. If ν

X
(A,C,D) is “large,” then small changes in

the data make large changes in the solution. Consequently, the Riccati equation (6)
is ill conditioned. If ν

X
(A,C,D) is of “modest magnitude,” then the small changes

in the data make small changes in the solution. Hence, the corresponding Riccati
equation (6) is well conditioned. Define

KX(A,C,D) =
‖ΘX‖max{‖A‖, ‖D‖}+ ‖ΠX‖‖C‖

‖X‖ ,(32)

where ΘX and ΠX are linear operators on Rn×n, respectively, given by

ΘX(V ) = Ω−1
X (V TX +XV ) and ΠX(V ) = Ω−1

X (XVX)

with

ΩX(V ) = (−XC +A)V + V (D − CX).

By a similar argument in [4], one can also show that

1

9
KX(A,C,D) ≤ ν

X
(A,C,D) ≤ 4KX(A,C,D).(33)

From (27), we have that the eigenvalues of ΩX are of the form λk + µ`, where
{λk}nk=1 and {µ`}n`=1, defined in Lemma 2.1, are eigenvalues of (D − CX) and
(A−XC), respectively. Expressions (32) and (33) show that Riccati equation (6) is
ill conditioned when ‖Ω−1

X ‖ is large. The quantity ‖Ω−1
X ‖−1 is usually measured by

sep((D − CX),−(A−XC)) [21]. From the definition of “sep” it follows that

1

min
1≤k,`≤n

|λk + µ`| ≤ ‖Ω
−1
X ‖ = [sep((D − CX),−(A−XC))]−1.(34)

We next apply the above perturbation analysis to the case that c ≈ 1 and α ≈ 0.
From Lemma 2.1, we see that λ1 → 0+ and −µ1 → 0− as c→ 1− and α→ 0+. In this
case, 1

|λ1+µ1| ; hence, ν
X

(A,C,D) become very large. Therefore, the Riccati equation

(6) for c ≈ 1 and α ≈ 0 is very ill conditioned. This shows that the convergence rates
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238 JONQ JUANG AND WEN-WEI LIN

of some iterative methods of [14] for solving Riccati equation (6) are very slow and
unsatisfactory.

We now turn our attention to the formulae derived in (29) and (30). The

nonnegative solutions X = X2X
−1
1 and Z = Z

(1)
2 Z

(1)−1
1 are as in Theorem 3.4 and

thus can be computed directly by (29), (30), and (22). In the following we give an
error analysis on the method of (29) and (30). For simplicity, we suppose the given
data {di, δi}ni=1 have no error propagation in computation and let ε

λi
be the relative

error of λi caused by computation. By a standard technique of error analysis (see,
e.g., [22, Chap. 1]), one can derive the relative errors for the computation of {αi}ni=1

and {βi}ni=1 of (22) as follows:

rel(αi) ≡ εαi =
n∑
j=1

λi
λi − dj ελi −

n∑
j=1,j 6=i

(
λi

λi − λj ελi −
λj

λi − λj ελj
)

(35a)

and

rel(βi) ≡ εβi =
n∑
j=1

λj
λj − di ελj .(35b)

Here rel(x) denotes the relative error for the computation of x. Let

εmax
:= max{|ε

λi
|, i = 1, . . . , n},(36a)

θmax := max

{ |λi|
|λi − di| ,

|λi|
|λi − di−1| , i = 1, . . . , n, d0 = −∞

}
,(36b)

θ̃max := max

{∣∣∣∣λi + λi+1

λi+1 − λi

∣∣∣∣ , i = 1, . . . , n

}
,(36c)

dmin
:= min {|di − di+1|, i = 1, . . . , n} .(36d)

From (35), (36), and (11) we can estimate |εαi | and |ε
βi
| as follows:

|εαi | ≤
 |λi|
|λi − di| +

|λi|
|λi − di−1| +

i−2∑
j=1

+
n∑

j=i+1

 |λi|
|λi − dj |


+

 |λi+1 + λi|
|λi+1 − λi| +

|λi + λi−1|
|λi − λi−1| +

i−2∑
j=1

+
n∑

j=i+1

 |λi + λj |
|λi − λj |

 ε
max

≤
[
2
(
θ

max
+ θ̃

max

)
+

2di + dn
d

min

(`n(4(i− 2)(n− i)))
]
ε

max

≤
[
2
(
θ

max
+ θ̃

max

)
+

6dn
dmin

`n(2n)

]
ε

max
(37)

and

|ε
βi
| ≤

 |λi|
|λi − di| +

|λi+1|
|λi+1 − di| +

i−2∑
j=1

+
n∑

j=i+1

 |λj |
|λj − di|

 ε
max

≤
[
2θ

max +
dn
dmin

(`n(4(i− 1)(n− i+ 1)))

]
εmax

≤
[
2θ

max
+

2dn
d

min

`n(2n)

]
ε

max
.(38)
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NONSYMMETRIC ALGEBRAIC RICCATI EQUATIONS 239

Table 4.1
(c = 0.999999, α = 10−8).

n = 32 n = 64 n = 128 n = 256
rX 2.1807e-13 4.3211e-12 3.1650e-11 1.0723e-10
rZ 2.1926e-13 4.4682e-12 3.1528e-11 1.2455e-10
λ1 1.73206684765e-3 1.73206684059e-3 1.73206683757e-3 1.73206678707e-3
−µ1 –1.73203684762e-3 –1.73203684057e-3 –1.73203683731e-3 –1.73203678614e-3

Table 4.2
(c = 1.0, α = 10−14).

n = 32 n = 64 n = 128 n = 256
rX 6.9022e-13 4.3476e-12 4.8312e-11 2.0916e-10
λ1 1.72951930554e-15 4.14078493715e-15 2.15344021678e-15 2.61125671244e-15

Here `n denotes the natural logarithm.
Consequently, from (37) and (38) the relative error for the computation of xi,j is

bounded by

|rel(xi,j)| ≤
[
1 + 4θ

max
+ 2θ̃

max
+

8dn
d

min

`n(2n)

]
ε

max
(39)

for i, j = 1, . . . , n. From (4) and (8) we see that the distances between di and di+1

are well separated. Moreover, using the fact that λi ∈ (di, di+1) and the secular
equation f(λ) in (14), we see that λi is well separated from the end points di and
di+1. Therefore, the quantities θmax and θ̃max and 1

d
min

defined in (36) cannot become

too large. Thus, the relative error of xi,j depends on the quantity of εmax . Indeed,
a bisection method combined with Newton’s acceleration scheme can be applied to
f(λ) in (14) for computing the desired eigenvalues {λi}ni=1 accurately. Numerical

stability for the computation {xi,j}ni,j=1 and {z(1)
i,j }ni,j=1 is guaranteed, even when the

problem for solving Riccati equation (6) is ill posed for c ≈ 1 and α ≈ 0.
In the following, we give the numerical results of our test examples. We compute

the nonnegative solutions X and Z by using the formulae (29) and (30) with differ-
ent matrix sizes, n = 32, 64, 128, and 256. In Table 4.1 we compute nonnegative
solutions X and Z for c = 0.999999 and α = 10−8. In Table 4.2 we compute the
unique nonnegative solution X for c = 1.0 and α = 10−14. Here r

X
and r

Z
denote,

respectively, the 2-norm residuals of Riccati equation (6) for the computed solutions
X and Z.

As mentioned in section 1 for the case in which c ≈ 1 and α ≈ 0, iterative
procedures [14] can cause numerical problems during the convergence process. Our
numerical result shows that the residual r

X
of the computed nonnegative solution is

very satisfactory, even when the condition number ν
X

(A,C,D) estimated by (32),
(33), and (34) is very “large” for c = 1 and α = 10−14.

5. Comparison theorems for nonnegative solutions. Noting that only
minimal solution is physically meaningful (see, e.g., [2]), we show in this section
that the minimal nonnegative solution X of (6) is increasing in c and decreasing in α.
The dependency of X on the parameter c is well known. However, the effect of the
parameter α on X is less understood. Our assertions here provide a better picture as
to how the roles of α are played.

To begin, we consider the following iteration:

AX(p+1) +X(p+1)(D − CX(p))) = B = eeT ,(40)
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240 JONQ JUANG AND WEN-WEI LIN

with X(0) = 0. Let X = X2X
−1
1 be as given in Theorem 3.3, and set

D − CX(p) := Λp.(41)

Let X(p+1) = [x
(p+1)
i,j ]. Equation (40) can be equivalently written as a linear system

of the form

(A⊗ I + I ⊗ Λp)[x
(p+1)
11 , . . . , x

(p+1)
1n , x

(p+1)
21 , . . . , x(p+1)

nn ] = [1, 1, . . . , 1]T .(42)

Here ⊗ denotes the Kronecker product (see, e.g., [1]). To save notation, we shall
write (42) as

(A⊗ I + I ⊗ Λp)X
(p+1) = B.(43)

We then prove the following lemmas.
Lemma 5.1. (i) Λ0 = D is an M-matrix. (ii) Λ = X1ΛX−1

1 = D − CX is an
M-matrix.

Proof. To see the first assertion of the lemma, we note, via Lemma 2.2, that the
eigenvalues of D are real and nonnegative. Using the fact that off-diagonal elements
of D are nonpositive, we conclude that Λ0 is an M-matrix. The second assertion
also follows from the fact that off-diagonal elements of Λ are nonpositive and its
eigenvalues are {λi}, which are nonnegative.

Lemma 5.2. (i) A ⊗ I + I ⊗ Λ is an M-matrix. (ii) Let p ∈ N ∪ {0}. For
matrix Λp = D − CX(p), with 0 ≤ X(p) ≤ X, A ⊗ I + I ⊗ Λp is an M-matrix, and
(A⊗ I + I ⊗ Λ)−1 ≥ (A⊗ I + I ⊗ Λp)

−1.
Proof. We first note, via Lemma 2.2, that the eigenvalues of A are positive. It

is then clear that the off-diagonal elements of A ⊗ I + I ⊗ Λ are nonpositive and
its eigenvalues are nonnegative. Hence, A ⊗ I + I ⊗ Λ is an M-matrix. The second
part of the lemma follows by applying Theorem 1.3 on A ⊗ I + I ⊗ Λ(= A1) and
A⊗ I + I ⊗ Λp(= A2).

We are now ready to prove the following theorem.
Lemma 5.3. Let X = X2X

−1
1 be as given in Theorem 3.4. Then X(p), as defined

in (40), converge upward to X.
Proof. We first prove that

0 ≤ X(p−1) ≤ X(p) ≤ X for all p ∈ N.

To see this, we note that

0 = X(0) ≤ X(1).

Moreover, using Lemma 5.2 (ii), we get

X = (A⊗ I + I ⊗ Λ)−1B ≥ (A⊗ I + I ⊗ Λ0)−1B = X(1),

and so

0 = X(0) ≤ X(1) ≤ X.
Suppose (42) holds for p = k. Then we see, as in Lemma 5.2 (ii), that

(A⊗ I + I ⊗ Λk−1)−1 ≤ (A⊗ I + I ⊗ Λk)−1 ≤ (A⊗ I + I ⊗ Λ)−1.

Using (41), we obtain that

0 ≤ X(k) ≤ X(k+1) ≤ X.
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NONSYMMETRIC ALGEBRAIC RICCATI EQUATIONS 241

Therefore, we conclude, via an induction, that (42) holds as claimed. Let the limit
of the sequence {X(p)} be denoted by X(∞). Since X(∞) is a nonnegative solution of
(6) and X(∞) ≤ X, it must be that X(∞) = X.

To emphasize the dependence of X on the parameters c and α, we write X as
X(c, α). Likewise, all quantities are similarly written if necessary. We are now ready
to state our comparison result.

Theorem 5.4. The solution X = X2X
−1
1 of (6) is increasing in c and decreasing

in α. In particular, X(1, 0) ≥ X(c, α) for all c, α.
Proof. For fixed α and c1 ≤ c2, suppose X(p)(c1, α) ≤ X(p)(c2, α), where

X(p)(ci, α), i = 1, 2, are as defined in (40). Then by applying Theorem 1.3 on

A1 = A(c2, α)⊗ I + I ⊗ Λp(c2, α) and A2 = A(c1, α)⊗ I + I ⊗ Λp(c1, α),

we get

(A(c1, α)⊗ I + I ⊗ Λp(c1, α))−1 ≤ (A(c2, α)⊗ I + I ⊗ Λp(c2, α))−1.

Here Λp(ci, α) := D(ci, α)− CX(p)(ci, α), i = 1, 2. It then follows from (41) that

X(p+1)(c1, α) ≤ X(p+1)(c2, α).

Clearly,

0 = X(0)(c1, α) ≤ X(0)(c2, α) = 0.

Hence, an induction yields that X(p)(c1, α) ≤ X(p)(c2, α) for all p ∈ N. We conclude,
via Lemma 5.3, that X(c1, α) ≤ X(c2, α).

To see X(c, α) is decreasing in α, we first note that

δi + di =
1

cwi(1 + α)
+

1

cwi(1− α)
=

2

cwi(1− α2)

are increasing in α. Therefore, for fixed c and α1 ≤ α2, suppose X(p)(c, α1) ≥
X(p)(c, α2). Then by applying Theorem 1.3 on A1 = A(c, α1)⊗ I + I ⊗Λp(c, α1) and
A2 = A(c, α2)⊗ I + I ⊗ Λp(c, α2), we get

[A(c, α1)⊗ I + I ⊗ Λp(c, α1)]−1 ≥ [A(c, α2)⊗ I + I ⊗ Λp(c, α2)]−1.

Noting that

0 = X(0)(c, α1) ≥ X(0)(c, α2) = 0,

we conclude, via an induction and Lemma 5.3, that

X(c, α1) ≥ X(c, α2).

The proof of the theorem is thus complete.

6. Concluding remarks. We conclude with a few suggestions for further re-
lated work.

First, the method of invariant embedding has been applied to transport problems
(see, e.g., [10]) involving neutrons and gamma rays with realistic energy and angle-
dependent cross-sections. It is therefore of interest to study a more general form of
algebraic matrix Riccati equations encompassing those cases.
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242 JONQ JUANG AND WEN-WEI LIN

Next, we note that the simple transport model [8, 10] in an isotropically scattering
plane-parallel layer of finite thickness would induce a differential Riccati equation of
the form

X ′ = B −AX −XD +XCX,(44a)

X(0) = 0.(44b)

Here A,B,C, and D are as defined in (7). It would be worthwhile to pursue the
asymptotic characteristics and stability of the nonnegative solutions of (6) with re-
spect to this differential Riccati equation (44).

Finally, it would be desirable to generalize our techniques for solving the corre-
sponding algebraic Riccati equation to infinitely dimensional cases [15].

Acknowledgments. We thank Professor Volker Mehrmann and referees for sug-
gesting numerous improvements to the original draft. In particular, the inversion
formula of a Cauchy matrix was brought to our attention, which leads to a much
shorter proof of Theorem 3.4 and Lemma 2.5 (ii).

REFERENCES

[1] R. Bellman, Introduction to Matrix Analysis, 2nd ed., McGraw-Hill, New York, 1970.
[2] R. Bellman and G. M. Wing, An Introduction to Invariant Embedding, John Wiley, New

York, 1975.
[3] J. R. Bunch, C. R. Nielsen, and D. C. Sorensen, Rank-one modification of the symmetric

eigenproblem, Numer. Math., 31 (1978), pp. 31–48.
[4] R. Byers, Numerical stability and instability in matrix sign function based in algorithms, in

Computational and Combined Methods in Systems Theory, C. I. Byrnes and A. Lindquist,
eds., North-Holland, New York, 1986, pp. 185–200.

[5] S. Chandrasekhar, Radiative Transfer, Dover, New York, 1960.
[6] J. J. M. Cuppen, A divide and conquer method for the symmetric tridiagonal eigenproblem,

Numer. Math., 36 (1981), pp. 177–195.
[7] D. J. Clements and B. D. O. Anderson, Polynomial factorization via the Riccati equation,

SIAM J. Appl. Math., 31 (1976), pp. 179–205.
[8] F. Coron, Computation of the asymptotic states for linear half space kinetic problem, Trans-

port Theory Statist. Phys., 19 (1990), pp. 89–114.
[9] T. Finck, G. Heinig, and K. Rost, An inversion formula and fast algorithms for Cauchy-

Vandermonde matrices, Linear Algebra Appl., 183 (1993), pp. 179–197.
[10] B. D. Ganapol, An investigation of a simple transport model, Transport Theory Statist.

Phys., 21 (1992), pp. 1–37.
[11] G. H. Golub, Some modified matrix eigenvalue problems, SIAM Rev., 15 (1973), pp. 318–334.
[12] G. H. Golub and J. H. Wilkinson, Ill-conditioned eigensystems and the computations of the

Jordan canonical form, SIAM Rev., 18 (1976), pp. 578–619.
[13] J. Juang, Existence of algebraic matrix Riccati equations arising in transport theory, Linear

Algebra Appl., 230 (1995), pp. 89–100.
[14] J. Juang and I-Der Chen, Iterative solution for a certain class of algebraic matrix Riccati

equations arising in transport theory, Transport Theory Statist. Phys., 21 (1993), pp. 65–
80.

[15] J. Juang and P. Nelson, Global existence, asymptotic and uniqueness for the reflection kernel
of the angularly shifted transport equation, Math. Models Methods Appl. Sci., 5 (1995),
pp. 239–251 .

[16] C. Kenney and A. J. Laub, Condition estimation for matrix functions, SIAM J. Matrix Anal.
Appl., 10 (1989), pp. 191–209.

[17] V. L. Mehrmann, The Autonomous Linear Quadratic Control Problem, Springer-Verlag,
Berlin, 1991.

[18] H. Meyer, The matrix equation AZ +B − ZCZ − ZD = 0, SIAM J. Appl. Math., 30 (1976),
pp. 136-142.

[19] J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several
Variables, Academic Press, New York, 1970.

D
ow

nl
oa

de
d 

04
/2

8/
14

 to
 1

40
.1

13
.3

8.
11

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



NONSYMMETRIC ALGEBRAIC RICCATI EQUATIONS 243

[20] J. R. Rice, A theory of condition, SIAM J. Numer. Anal., 3 (1966), pp. 287–310.
[21] G. W. Stewart, Error and perturbation bounds for subspaces associated with certain eigen-

value problems, SIAM Rev., 15 (1973), pp. 727–764.
[22] J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, Springer-Verlag, New York,

1980.

D
ow

nl
oa

de
d 

04
/2

8/
14

 to
 1

40
.1

13
.3

8.
11

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p


