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logic control. The main contribution of this study is to construct a controller, under appro-
priate conditions, such that the resulting closed-loop system is valid for any initial condi-
tion and bounded tracking signal with the following characteristics: input-to-state stability
with respect to disturbance inputs and almost disturbance decoupling, i.e., the influence of
disturbances on the L, norm of the output tracking error can be arbitrarily attenuated by
changing some adjustable parameters. One example, which cannot be solved by the first
paper on the almost disturbance decoupling problem, is proposed in this paper to exploit

Keywords:

Fuzzy logic control

Almost disturbance decoupling
Feedback linearizable

Composite Lyapunov approach the fact that the tracking and the almost disturbance decoupling performances are easily
Uniform ultimate bounded achieved by our proposed approach. The simulation results show that our proposed
AMIRA's ball and beam system approach has achieved the almost disturbance decoupling performance perfectly.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Many approaches for nonlinear systems are introduced including feedback linearization, regulation control, nonlinear H*
control, internal model principle and H* adaptive fuzzy control. An output tracking approach is to utilize the scheme of the
output regulation control [1] in which the outputs are assumed to be excited by an exosystem. However, the nonlinear reg-
ulation problem requires to solve the difficult solution of partial-differential algebraic equation. Another problem of the out-
put regulation control is that the exosystem states need to be switched to describe changes in the output and this will create
transient tracking errors [2]. In general, the nonlinear H* control has to solve the Hamilton-Jacobi equation, which is a dif-
ficult nonlinear partial-differential equation [3-6]. Only for some particular nonlinear systems we can derive a closed-form
solution [7]. The control approach based on internal model principle converts the tracking problem to nonlinear output reg-
ulation problem [8]. This approach depends on solving a first-order partial-differential equation of the center manifold [1].
For some special nonlinear systems and desired trajectories, the asymptotic solutions of this equation via ordinary differen-
tial equations have been developed [9,10]. Recently, H* adaptive fuzzy control has been proposed to systematically deal
with nonlinear systems [11]. The drawback with H* adaptive fuzzy control is that the complex parameter update law makes
this approach impractical. During the past decade significant progress has been made in the research of control approaches
for nonlinear systems based on the feedback linearization theory [12-15]. Moreover, feedback linearization approach has
been applied successfully to address many real controls. These include the control of electromagnetic suspension system
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[16], pendulum system [17], spacecraft [18], electrohydraulic servosystem [19], car-pole system [20] and bank-to-turn mis-
sile system [21].

Almost disturbance decoupling analysis and systematic design are among the most issues to be further addressed. The
almost disturbance decoupling problem, that is the design of a controller which attenuates the effect of the disturbance
on the output terminal to an arbitrary degree of accuracy, was originally developed for linear and nonlinear control systems
by Willems [22] and Marino et al. [23], respectively. Henceforward, the problem has attracted considerable attention and
many significant results have been developed for both linear and nonlinear control systems [24-26]. Marino et al. [23] shows
that for nonlinear SISO systems the almost disturbance decoupling problem may not be solvable, as the following examples
show:

X1 (t) =tan~'x, + 0(t), X (t)=u,

y=X,

where u, y denote the input and output respectively and 0 is the disturbance. On the contrary, these examples can be easily
solved via the proposed approach in this paper.

Fuzzy logic control has been applied not only to cement kiln, subway train but also to industrial processes. Its designing
procedure is as follows. First representing the nonlinear system as the famous Takagi-Sugeno fuzzy model offers an alter-
native to conventional model [27,28]. The control design is carried out based on an aggregation of linear controllers con-
structed for each local linear element of the fuzzy model via the parallel distributed compensation scheme [29]. For the
stability analysis of fuzzy system, a lot of studies are reported (see, e.g., [30-33], and the references therein). The stability
and controller design of fuzzy system can be mainly discussed by Tanaka-Sugeno’s theorem [30]. However, it’s difficult
to find the common positive definite matrix P for linear matrix inequality (LMI) problem [34,35] even if P is a second order
matrix [36]. To overcome the difficulty of finding the common positive definite matrix P for fuzzy-model approach, we will
propose a new method to guarantee that the closed-loop systems is stable and the almost disturbance decoupling perfor-
mance is achieved. The desired problem for this study is summarized as follows. First, based on the feedback linearization
approach a tracking control is designed to guarantee the almost disturbance decoupling property, i.e. the influence of distur-
bances on the L, norm of the output tracking error can be arbitrarily attenuated by changing some adjustable parameters,
and the uniform ultimate bounded stability of the control system response within an adjustable global final attractor of the
zero state, i.e., such response enters a neighborhood of zero state in finite time and remains within it thereafter. Once the
tracking errors are driven to touch the attractor with the desired radius, the conventional fuzzy logic control immediately
applied via human expert’s knowledge to improve the convergence rate. In order to exploit the significant applicability, this
paper also has successfully derived tracking controller with almost disturbance decoupling for a famous AMIRA’s ball and
beam system.

2. Mathematical model of the AMIRA’s ball and beam system

Fig. 2.1 is the hardware structure of the AMIRA’s ball and beam system. U-type aluminium profiles construct the platform
and the organization of the ball and beam system which is covered at the side by four sheets of Plexiglas. The steel ball rolls
freely on the beam and its position is measured by a camera unit and the lighting module mounted below a small platform

Fig. 2.1. The AMIRA’s ball and beam experimental equipment.
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on top of the system. The beam is located in the center of the system and driven by a tooth-belt, a tooth wheel and a DC
motor. The angle of the beam is measured by an incremental encoder mounted at the rear end of the beam shaft. Two limited
switches are located below the beam to detect whether the beam reaches its maximum angle or not. The unmeasurable
states, the speed of the ball and the angular speed of the beam, are estimated by a Luenberger reduced order observer.
Due to the mounting of the beam, the maximum angle oy,,x ~ 0.24 rad.

Balancing all the forces acted upon the system, it is easy to evaluate the Kinetic energy, potential energy, dissipative
forces, and generalized forces of the system. Inserting them into the Lagrange equation, we can obtain simultaneously the
motion equations [37]

(m + %)x’ + (mr? + Ib)lrzx — mx'6? = mg(sina), (2.1a)

MX)? + I + L,)& + (2mX'X’ + bP)6 + KP o + (mr? + I) %)’é’ — mgx'(cos o) = ul(cos ) (2.1b)

and the nonlinear state equation

X1 =Xz, (2.2a)
az[(baX1X2 + b3)Xa + baxs — bexy cos(x3)] + (mx2 + by)(az sin(x3) + mx1x2) — @l cos(x3)u

Xy = . , (2.2b)

a;(mx4 + by) — azbs
X3 = X4, (22C)
s —(b2X1X2 + b3)X4 — byx3 + beX1 cOS(X3) B bs(as sin(x3) + mx1x3)
4 mX% + b] a, (mxf + b]) - a2b5
B Ay bs[(bax1X2 + b3)Xg + baxs — beX1 COS(X3)] iy aybs Icos(xs)u (2.2d)
(mx2 + by)(a;(mx? + by) — axbs) ai(mx? + by) — aybs] mx3 + by’ '

where the abbreviations have the following meanings: m = mass of the ball, r = roll radius of the ball, I, = inertia moment of
the ball, a, = (mr? +1,)1,b, = 2m, b = friction coefficient of the drive mechanics, [=radius of force application, b; = bI?,
I, = radius of beam, K = stiffness of the drive mechanics, b, = KI?, g = gravity, bg = mg, I,, = inertia moment of the beam,
by =1, +1,, a3 =mg, u=force of the drive mechanics, a; = m +%, bs = (mr? + I,,)%,xl = X' = position of the ball, x, =X =
velocity of the ball, x; = « = angle of the beam to the horizontal, o/,.= maximum angle of the beam to the horizontal,
x4 = o = angular velocity of the beam. Substituting all the physical values r=0.02m, =048 m, m=0.0162Kg,
M=1.122Kg, b=1 Ns/m, K= 0.001 N/m, I, = 0.5 m into (2.2), the state equation can be rewritten as follows:

Xl = X2, (233)

fp =020 by g4, (2.3b)
as b2z

Xg = X4, (23(:)

212 + Z34 + Z56
Xg=""""
Z7

+ au, (2.3d)

where
a2, = 0.0000561038x;x,x4 + 0.0004157x4 + 0.000000415757x3 — 0.00027490882x; cos(X3)

(34 = 0.0025719x2(sin(x3)) + 0.00026244x3x2 + 0.03711015 sin(xs) + 0.00378675x;x2

as = 0.0015x% + 0.021642252, by; = —0.000848484 os(xs), by, = 0.0015x2 + 0.021642252
Z12 = —0.0000486x3X,x, — 0.00036018x2x; — 0.00000036x2x5 + 0.000238x° CoS(X3)

234 = —0.0007013X;X,%4 — 0.005197x4 — 0.000005197x; + 0.003436x; Cos(xs)

Zs6 = —0.00000445x2 sin(x3) — 0.000000454x3x3 — 0.0000643 sin(x3) — 0.00000655x, X3

z; = 0.0000243x] + 0.00070126x7 + 0.021645,



3794 T.-L. Chien et al./Applied Mathematical Modelling 34 (2010) 3791-3804

0 0.000735x2 cos(x3) + 0.0106 cos(x3)
"~ 0.0000243x4 4-0.00070126x3 + 0.021645’

and 0, = sin (t — 8) is assumed to be the disturbance item.
2.1. Feedback linearization controller design

In this paper, we consider the following nonlinear control system with disturbances:

X1 fi(x1,X2, ..., Xp) g1(X1,X2,...,Xy)
X3 f(x1,X2,..., Xn) g2(X1,X2,...,Xn) P
= ; + . u+>y qo;, (3.1a)
N . i=1
Xﬂ fn(x1sX27"~7xn) gn(XhXZa“‘?Xn)
Y(£) = h(X1,%2, ..., Xn) (3.1b)

ie.,

. p
X(t) = fX(6)) + gX(E)u+ Y q;0;,
i=1

y(t) = h(X(1)),
where X(t) := [x; (£)Xa(t) - - - X, (£)]" € R" is the state vector, u € R! is the input, y € R! is the output, 0 := [0; (£)0,(t) - - - Op(t)}r is

a bounded time-varying disturbance vector, f, g,q;, . . ., g, are smooth vector fields on %", and h(X(t)) € %! is a smooth func-
tion. The nominal system is then defined as follows:
X(t) = fX()) + X (t)u, (3:2a)
¥(t) = h(X(0)). (3.2b)
The nominal system (3.2) consists of relative degree r [38], i.e., there exists a positive integer 1 < r < oo such that
LLfh(X(t) =0, k<r—1, (3.3)
LeLi 'h(X(t)) # O (3.4)

for all X € ®" and t € [0,0), where the operator L is the Lie derivative [12]. The desired output trajectory y,(t) and its first r
derivatives are all uniformly bounded and

|[ya0.5 @ ¥ ©)] | < Ba, (35)

where B, is some positive constant.
Under the assumption of well-defined relative degree, it has been shown [12] that the mapping

¢ R — R, (3.6)
defined as

$X(0) = &) =LhX(), i=1.2,...r (3.7)

O (X(0) :=n(t), k=r+1,r+2,....n (3.8)
and satisfying

Lepp(X(£))=0, k=r+1,r+2,...,n (3.9)
is a diffeomorphism onto image. For the sake of convenience, define the trajectory error to be

ei(t) =&t —yS V), i=1,2,...,r (3.10)

e(t) = [er(t)ea(t) - ex(t)]' € W', (3.11)
the trajectory error multiplied with some adjustable positive constant &

gt) =& le(t), i=1,2,....r, (3.12)

e(t) == [er(t)ex(t)---e (t)] € R (3.13)

and
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&(t) =[G (0)&(t) - &) e R, (3.14a)
N(E) = My (O 5(8) -1, (O] € R, (3.14b)
9O 1O) 1= Lybra OLrdra(O) - Lda(O] = [drir Gz -+ G’ (3.14¢)
Define a phase-variable canonical matrix A; to be
r 0 1 0 - 07
0 0 1 - 0
A= : : , (3.15)
0 0 o - 1
L—oty —0p —0O3 - —Ord,,

where o4,00,...,d, are any chosen parameters such that A. is Hurwitz and the vector B to be

B:=[0 0 --- 0 1]},. (3.16)
Let P be the positive definite solution of the following Lyapunov equation:

AIP 4+ PA, = I, (3.17)

/max(P) := the maximum eigenvalue of P, (3.18)

Jmin(P) := the minimum eigenvalue of P. (3.19)

Assumption 1. Forallt > 0, € R" " and ¢ € W, there exists a positive constant L such that the following inequality holds:
1922(€, 11, €) — G5 (.1, 0)|| < M(]le])), (3.20)
where gy, (t,1,€) := q(&, 1)

Assumption 2. There exists known function B,(-) : ®" — R* such that

x| < Ballel, (3.21)
where Ky := [ky ko -+ Kk ]le and ky;, i=1,2,...,n, are real constants. For the sake of stating precisely the investigated
problem, define

d:= LgL}’lh(X(t)), ¢ := Lth(X(t)) (3.22a)
and

€= 0187 + 083 + - - + 0, E;. (3.22b)

Definition 1 ([15]). Consider the system x = f(t,x, 0), where f : [0,00) x R" x R" — R" is piecewise continuous in t and
locally Lipschitz in x and 0. This system is said to be input-to-state stable if there exists a class KL function g, a class K func-
tion y and positive constants k; and k, such that for any initial state x(t,) with ||x(ty)|| < k; and any bounded input 6(t) with
Sup;..., [10(t)|| < k2, the state exists and satisfies

X0 < BlIx(to)ll, € = to) +7 <t511112t |9(T)II> (3.23a)

0STS

for all t > ty > 0. Now we formulate the almost disturbance decoupling problem as follows:

Definition 2 ([25]). The tracking problem with almost disturbance decoupling is said to be globally solvable by the state
feedback controller u for the transformed-error system by a global diffeomorphism (3.6), if the controller u enjoys the
following properties:

(i) It is input-to-state stable with respect to disturbance inputs.
(i) For any initial value X.o := [&(to) #(to)]", for any t > to and for any t; > 0

() = ya(O < Bra ([x(to)[l, £ — o) + \/Lﬁ;ﬁn < sup. IIG(T)H) (3.23b)

fH<T<
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and

Baa

where f,,, f44 are some positive constants, 833, fiss are class K functions and f;; is a class KL function.

y(@) —yaede < | prskal) + | Bsl0E)P)e], 3239

Definition 3. Consider the following dynamical system:
z(t) =f(t,z(t)), ze NP, z(to) := 2o,

where z € %P is the state and f{-) is a smooth function. We use z(t; ty,Zo) to denote the solution of system with z(to; to,20) = Zo.
A closed set S is called a global final attractor for the trajectories z(-) : [t, co) — RP, z(to) = 2o, of the system, if for any initial
state zq, there exists a finite constant T(z,S) € [0,0) such that

Z(t; to,Zo) €S, Vt= t0+T(ZO7S).

Theorem 1. Suppose that there exists a continuously differentiable function Vo : R"" — R* such that the following three inequal-
ities hold for all n € R"~":

@) oinl* <V < oafnl, w0 >0 (3.24a)
(b) VeV + (VyV) s (t,0.0) < ~20 I, o >0 (3.24b)
(© [IVyVI <as|nl, @s>0, (3.24c)

then the tracking problem with almost disturbance decoupling is globally solvable by the controller defined by

Upeedback = [LgL}” h(X(t))] - {—L;h(X) +y0 —eTay [L;)h(X) - yd}

e, [L}h(X) - yﬂ gy, [L}*lh(X) - yf{’”] n 1<§x}, (3.25)
whereK :=[k; k, --- ky]issome adjustable real matrix, and the influence of disturbances on the L, norm of the tracking error
can be arbitrarily attenuated by increasing the following adjustable parameter NN>:

1 wsM

- L PN - s ||
Hg) — { 11 12} ‘: 1 k(2) | /2Wi Zmin (P) (3.26a)

Hi; Hy o wsM 1 _ 28T PIBy+2(k(e) /o)l PPl

Vk(©) | /2Wi 2 (P) | EAmax(P) &4min(P)
1/2
Hq{ +Hy — [(Hn — sz)z +4H$2]

os(8) == 7 , (3.26b)
N := 204(¢), (3.26¢)
N, := min {wl,k(Tg)zmin(P)} (3.26d)

[ exhay o egkhg,
¢:(8) = : : (3.26e)

L& kL thay o &L h,

-%qbrﬂq; T %d’rﬂqz
bp@ = C (3.26f)

L & nqjlﬂ & nqz
where H is positive definite matrix and k(¢) : ®* — R is any continuous function satisfies

l‘irglk(.s) =0 and llm ’( ) =0. (3.26g)

Moreover, the output tracking error of system (2.1) is exponentially attracted into a sphere B.,r =
of convergence

NN , with an exponential rate
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T(NN, Ny 1
2 Amax Amaxfz _2 '

where

2
1
Nii=y ( sup ||e<r>>
to<T<t

Amax = Min {wz,gimax(P)}.

and

Proof. Applying the co-ordinate transformation (3.6) yields

b =280 00X

f+g- u+qu }

= LIh(X(t)) + LeLP (X (0))u + i a0

1 a T oh(X) .
:th(X<t))+8—XZqiof:@(th o 90

0, dX oL 2h( (1)

Er—l( ) - X dt

f+g u+Zq, }

T 2
= L Th(X(t)) + LeLf *h(X(t))u + 8Lf

qu 91

oL *h(X (1)) 2h . oL *h(X(t)) 2h X()

quolzgr Z

i=1

=L h(X(1) + q; 0;
9, dX _ 0L 1h( (1)

&(0) = oX dt

f+g u+Zq, }

i=1

r 1
= LIh(X(t)) + LeLf "h(X(t))u + aLf

Zq, 0.

P ALy Th(X(t OL T h(X (¢
:L;h(X)+LgL;*1h(X)u+Z¢ql b —cidusy )(( ®,
i=1

a0,
i=1

78¢k( )dx ad)k( )

f+eg- u+Zq, }

I (X) 8¢() 49X
=~ T ax k qu

0
fo¢k+Z ¢" q,() k=r+1,r+2,.

Since
c(&(t),n(t)) == Leh(X(1)),
d(&(),n(t)) := LeLy "h(X (1)),
q (&), n(0) =Lgp(X), k=r+1,r+2,....n

the dynamic equations of system (3.1) in the new co-ordinates are shown as follows:

3797

(3.26h)

(3.26i)

(3.26))

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)
(3.32)
(3.33)
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P
: 9 i
G0 =&in(0), ) el hgi, =12, 11, (3.34)
i=1
& (t) = c(&(t),n(t) +d(¢ )u -+ Z L} 'hg; 0;, (3.35)
p
b _
() = qu(EO.1(0), Y 2 oeX)ai 0 k=r+1,....m, (3.36)
i=1
y(t) = & (). (3.37)
Define
vimyy = &0 [Lh(X) — ya| — e [LhX) — ] - = e o [ TRO) -y ]+ KIX. (3.38)

According to Egs. (3.7), (3.10), (3.31), (3.32) and (3.38), the tracking controller can be rewritten as
u=d'[-c+ 1. (3.39)
Substituting Eq. (3.39) into (3.35), the dynamic equations of system (3.1) can be shown as follows:

- P T
2 hg'6;
(b 010 0 Gt 0 ;E)Xh%el
v t E t ;
@l | 1001 0 0 Sl N ’ oy | D krhait (3.40)
: = : : : o 7 |
&,—,] (t) 0 0O 1 ér—1 (t) 0 '
- ) P
£ 000 0J [ & 1 ;%L}’]hqi*@i
- p 0 T
Z]ﬁ(prﬂql
iz
N1 (t) i1 () Loy
Nr42 (t) Qr+2 (t) E x (/)qul Hl
) E . | | (3.41)
;;In—l (t) n (t) Xp: %an lql 0;
() qn(t) =
P
2 1 ul O
&)
&(t)
y=[1 0 - 0 0],| : =& -
fr—l(t)
ér(t) rx1

Combining Eqgs. (3.10), (3.12), (3.15) and (3.38), it can be easily verified that Egs. (3.40)-(3.42) can be transformed into the
following form:

() = q(E(6), n(t)) + ¢y0 := o (t,71(8), €) + by, 0 (3.43a)
ce(t) = Ace + BEKLX + ¢.0, (3.43b)
y(t) = &(8). (3.44)

We consider L(e, ) defined by a weighted sum of V (#) and W(e),
L(e,n) := V() + k(&)W (e), (3.45)

as a composite Lyapunov function of the subsystems (3.43a) and (3.43b) [39,40], where W (e) satisfies
W(e) = %éTPé (3.46)

In view of (3.17), (3.20), (3.21), (3.24) and (3.25), the derivative of L along the trajectories of (3.43a) and (3.43b) is given by
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L=[VV+(V,V)ij + ’2—‘ [(é)TPé + éTP(é)}

k

_ T, 1, r—1 (1T 1 ! 5 1l 1, r—1 (1T 1
_ {v[v +(V,V) 11] +5 { {EACe +Be (KXX> + Eqsga] Pe+e'P|_Ace + B (KXX) +=9:0

[v V4 (V,v)' ] 52 €7 (ATP+ PA)e] + 128”1{ZBTPE(K§X)}+I<{ HT¢TPe}
< [VV + (Vg V) g (6,1(6),0)] + [V VIl | g5 (£, 1(E), 8) — @ (£,1(2), 0) || + IV, V| b, 11 0]] -

. _ k _
+ ke {IBPlell KX} + 2 1101 1P el

k

_ .k _
—— W+ ke 1|BTP|||le||B,llell + = ll0l/llo:1lIIP]lI|e
i (P) 1B P|lllellp-llell SH Ill:NlIPl el

=20,V + ws|[n(|M]le]| + ws][nlll| b, [[110] —

k
Eman(P)

_ k - w k _
=200V -+ s [n1MIlel + s iy 161] = 27— W + ke |B Pllﬁszrg||9||||4>5IIHPH||€||
20,V + 0sM——VVVW —+w IRl 12 + L1612 - Wt ke [BTP fy Y
\/— 3 g (P) min(P)
'S 2 21202 1 2
+ 2z I8P IPI el + 7 1l
? wsM _ KIB'PIIB, Kl )’ 1P 1,9
(20, -5 2)v+z __WY__\Wwvw— _gt 2 K19 Wt 110
< o, 19l ) ;maxa)) Do) 2 min(P) 2l
VV 1
~[VV VKW H{ +=[l0)?
[ ] vl 2

ie.

: 1
L < ~min(H)L +3 [10],

where /nin(H) denotes the minimum eigenvalue of the matrix H. Utilizing the fact that A,,(H) = 2a,, we obtain

. 1 1 k _ 1
L < =20+ 0] < ~20(V + kW) + 5 0] < ~2 <w1||n||2 +§zmm<P>ueu2) + 1012

_ 1
NNz (|0l + llell?) + 1017
Define

Hence
. _ _ 1
L<=NNs (1l + lea | + [exrl1?) + 1.

Utilizing (3.51) easily yields

[ o -yiwrtas <@ o [ o)k

so that statement (3.23c) is satisfied. From (3.49), we get

: 1
L < =NNa(|\Yotalll®) + 5 o1,

where

2 5112 2
Yeorall™ = lIEll” + [11711"-

3799

(3.47)

(3.48)

(3.49)

(3.50)

(3.51)

(3.52)

(3.53a)

(3.53b)
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By virtue of [15, Theorem 5.2] (3.53a), implies the input-to-state stability for the closed-loop system. Furthermore, it is easy
to see that

Anin([[e]* + [1171%) < L < Amax([€l + 1117]1%) (3.54)
ie.

Amin(Yiotal®) < L < Amax (1Y 1otall*) (3.55)
where A, := min {@1,4/min(P)} and Amax := min {w;, % imax(P) }. From (3.49) and (3.55), we get

2
P M2y G ool | - (3.56)
Amax 2 to<T<t
Hence,
2
L(t) < L(to)e’%(“") +ﬁ sup [|0(7)| t>to (3.57)
2NN; \ ty<e<e ' ’
which implies
— N:éx(t—tg) Amax
Kimin(P) B (P, (P00 (3.58)

So that statement (3.23b) is proved and then the tracking problem with almost disturbance decoupling is globally solved.
Finally, we will prove that the sphere B, is a global attractor for the output tracking error of system (3.1). From (3.53a)
and (3.26i), we get

L < =NNa (| rogalll?) + N1 (3.59)
For ||ycorall| > I, We have L < 0. Hence any sphere defined by
e _
B { | ] el i <} (3.60)

is a global final attractor for the tracking error system of the nonlinear control systems (3.1). Furthermore, it is easy routine
to see that, for y,,,, ¢ Br, we have

; 2 2
£< _NNZHytOtalH +N1 < _NNZHytotalH —;—Nl < _NN2 Nl > < _NN2 N1 > = g (361)
L L Amax | Veotat Amax Amax||Veotall Amax  AmaxI’
ie.,
L <ol
According to the comparison theorem [41], we get
LW totar(t)) < LViotar(to)) €XP[—0t” (£ — to)].
Therefore,
AmaXHJ/mtaI”z < LWiota(t)) < LViora(to)) €XPl—0(t — to)] < AmaXHJ’total(tO)Hz exp[—o(t —to)]. (3.62)
Consequently, we get
Rule Base
A
A
y + e > >
a = . *"| Inference
Output Fuzzifier . » Defuzzifier—»u,.,
differentiator > > Engine
Ya
Tracking
Signal

Fig. 3.1. Fuzzy logic controller.
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A max |:

1,
Yeoattll < |7 IVrotar (o) | €XP | =50 ( — to)
Amin 2

i.e, the convergence rate toward the sphere B, is equal to «'/2. This completes our proof. O

2.2. Fuzzy controller design

After using feedback linearization control as a guarantee of uniform ultimate bounded stability, the multiple-input/sin-
gle-output fuzzy control design can be technically applied via human expert’s knowledge to improve the convergence rate of
tracking error. The block diagram of the fuzzy control is shown in Fig. 3.1. In general, the tracking error e(t) and its time
derivative é(t) are utilized as the input fuzzy variables of the IF-THEN control rules and the output is the control variable
ufuzzy-

For the sake of easy computation, the membership functions of the linguistic terms for e(t), &(t) and uy,, are all chosen to
be the triangular shape function. We define seven linguistic terms: PB (Positive big), PM (Positive medium), PS (Positive
small), ZE (Zero), NS (Negative small), NM (Negative medium) and NB (Negative big), for each fuzzy variable, as shown in
Fig. 3.2.

Fuzzy control rule table for uy,,,, is shown in Fig. 3.3. The rule base is heuristically built by the standard Macvicar-Whelan
rule base [42] for usual servo control systems. The Mamdani method is used for fuzzy inference. The defuzzification of the
output set membership value is obtained by the centroid method. Therefore, we can combine the designs of feedback line-
arization control and fuzzy control to construct the overall controller as follows:

-1
Ut = Upeedbackls(8) + Uz Us(E = 1) = [LL " hX(0)] {=Lih(X) +y§) — 7o [LPh(X) — i
— &', [L}h(X) - yg”] — gy, [L;”h(X) - yf{’”] + KTX g (£) + Upy s (£ — 1), (3.63)

where uy(t) denotes the unit step function and t; is the time that the tracking error of system touch the global final attractor
B,.

" Applying the Theorem 1 to the AMIRA’s ball and beam system now, we have finished some experiments and achieved the
almost disturbance decoupling performance and the goal of finding a tracking controller u that will steer the angle of beam x3
and the position of ball x;, starting from any initial values, to track the desired zero function (i.e. y; = 0). In order to achieve
the goal, we choose h(X)=x; +x, + X3 +x4. Based on the constraint of hardware, h(X) —» 0 implies x; — 0 and x5 — 0. Let’s
arbitrarily choose «; =0.007 and K, =[-0.7 -0.7 -0.7 —0.7]T such that A.=—0.007 is Hurwitze and P=71.43. The

Z Z Z
NB NM NS PS PM PB NB NM NS PS PM PB NB NM NS PS PM PB
-1 -05-02002 0.5 1 > -1 -05-02002 0.5 1 > -1 -05-02002 0.5 1 >
(a) €(t) (b) e(t) (C) ufuzzy

Fig. 3.2. Membership functions for (a) e(t), (b) é(t) and (c) Uzy.

e(t)
U frry NB |[NM |NS |ZE |PS |PM | PB

NB |[PB |PB |[PB |PB |PM |PS |ZE
NM [PB |PB |PB |PM |PS |ZE |NS
NS |[PB |PB |PM |PS |ZE |NS |NM
é(t) |ZE |PB |PM |PS |ZE |[NS |NM | NB
PS |[PM|PS |ZE |[NS |NM |NB | NB
PM |[PS |ZE |NS |NM |NB |NB | NB
PB |ZE |NS |[NM |NB |NB |NB | NB

Fig. 3.3. Fuzzy control rule base.



3802 T.-L. Chien et al./Applied Mathematical Modelling 34 (2010) 3791-3804

Time (seconds)

Fig. 3.4. The tracking error dynamic driven by ug.s, for (2.3).

AMIRA’s ball and beam system is a system of relative degree one. It can be verified that with the choice V(1) = n3 + 12 + 13,

conditions (3.24) and (3.26) are satisfied with £=0.0025,4,=07,M=vV3, 0, =w; =1,0x =1,

w3 =2,H;; =2,H;; = —-1.296,H,, = 3.8,N = 1.325 and N, = 1. From (3.63), we obtain the desired tracking controller

(12 + 034  Z12 + 234 + Z56
as Z7

-1

Uferfu = (? + (1) {*3.5)(1 —4.5x, —3.5%3 —4.5x4 —
22

Hence the tracking controller will steer the angle of beam x3; and the position of ball x; to track the desired trajectory

Ya(t) = h(X)=Xx1 + X5 + X3 + X4 =0 in view of Theorem 1. The tracking errors driven by uf.s for AMIRA ball and beam system

(2.3) is depicted in Fig. 3.4.

}udﬂ—kwhqudtftﬂ. (3.64)

3. Comparative example to some existing approaches

Marino et al. [23] exploits the fact that for nonlinear single-input single-output systems the almost disturbance decou-
pling problem cannot be solved, as the following example shows:

x(0)]  |tan'(xp) 0 1
o) = { 0 } #[2]u o) (41
y(t) =x:(t) :== h(X(t)) (4.1b)

DBf-mnmnnn--

0.6 f---=--n--

DAfemnmann-n-

02p----mm---

)

;.| SRR

DBf--mmmm---

Time (seconds)

Fig. 4.1a. The tracking error dynamic driven by .z for (4.1).
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Fig. 4.1b. The tracking error dynamic driven by uedpack for (4.1).

where u, ydenote the input and output respectively, 0 (t): = 0.5 sint is the disturbance. On the contrary, this problem can be
easily solved via the proposed approach in this paper. Following the same procedures shown in the demonstrated example,
the tracking problem with almost disturbance decoupling problem can be solved by the state feedback controller u defined
as

u=(1+x3)[-sint - (0.03)*(x; —sint) — (0.03) " (tan~" x, — oS t)]us(t) + Upuzaylis (t — t1). (4.2)

The tracking error dynamics driven by s, and Ugeeanack fOr (4.1) are depicted in Fig. 4.1a and 4.1b, respectively. It is easy to
see that the convergence rate driven by both Ufeedpack and Ufzzy, i.€., Upessi, is better than only by Ugeedback-

4. Conclusion

In this paper we have constructed a feedback control algorithm and fuzzy logic control which globally solves the tracking
problem with almost disturbance decoupling for AMIRA’s ball and beam system. The discussion and practical application of
feedback linearization of nonlinear control systems by parameterized co-ordinate transformation have been presented. One
comparative example is proposed to show the significant contribution of this paper with respect to some existing ap-
proaches. Moreover, a practical example of AMIRA’s ball and beam system demonstrated the applicability of the proposed
composite Lyapunov approach. Simulation results exploited the fact that the proposed methodology is successfully applied
to feedback linearization problem and achieves the almost disturbance decoupling and convergence rate performances of the
controlled system.
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