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Abstract
Magnetoelectric coupling is of interest for a variety of applications, but is weak in monolithic
materials. Strain-coupled bilayers or multilayers of piezoelectric and magnetostrictive material
are an attractive way of obtaining enhanced effective magnetoelectricity. This paper studies the
optimization of magnetoelectricity with respect to the crystallographic orientations and the
relative thickness of the two materials. We show that the effective transverse (αE,31) and
longitudinal (αE,33) coupling constants can be enhanced many-fold at the optimal orientation
compared to those at normal orientation. For example, we show that the constants are 17 and 7
times larger for the optimal orientation of a lithium niobate/Terfenol-D bilayer of equal
thickness compared to the normal orientation. The coupling also increases as the piezoelectric
phase gets thinner.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Magnetoelectricity (ME) refers to the magnetization induced
by an electric field, or conversely the polarization induced
by a magnetic field. The study of magnetoelectricity can
be traced back to 1957 when Landau and Lifshitz [1]
showed the possibility of the existence of a linear relationship
between the electric and magnetic fields in a substance with
a certain magnetic symmetry class. This was subsequently
experimentally confirmed in an antiferromagnetic single-
crystal Cr2O3 by Astrov [2] who measured the magnetization
response to an electric field, and by Rado and Folen [3] who
detected the polarization induced by a magnetic field.

This ME effect is of interest to important technological
applications. It can provide large-area and sensitive detection
of magnetic fields. It can be the basis of a four-state memory
element. It can also be the basis of exotic optical devices.
However, this coupling is limited to monolithic or single-phase
materials, and is often observed only at very low temperatures.
For instance, Cr2O3 has the magnetoelectric voltage coefficient
of 0.02 V cm−1 Oe−1 [4] below the antiferromagnetic Néel
temperature of 307 K [5]. This is insufficient for practical
applications.

To overcome this limitation of natural materials, various
researchers have turned to composite media, as explained in
recent reviews by Eerenstien et al [6] and Nan et al [7]. The
basic idea is to couple a magnetostrictive and a piezoelectric
material using strain: an applied magnetic field creates a
strain in the magnetostrictive material which in turn creates
a strain in the piezoelectric material, resulting in an electric
polarization. Bilayers or laminates are particularly attractive
since the strain coupling is extremely strong. Indeed, the
highest ME coefficients amongst all known materials and
composites have been reported in bilayers [6–9].

The promise of applications, and the indirect coupling
through strain has also made magnetoelectric composites the
topic of a number of theoretical investigations. Harshe
et al [10] and Avellaneda and Harshe [11], in their
pioneering works on magnetoelectric composites, proposed
a theoretical model for a multilayer (2-2) structure. They
computed the longitudinal ME voltage coefficient assuming
ideal coupling at the interface and longitudinal orientation
of the poling and magnetic axes. They also obtained the
optimal volume fraction for energy transfer. Nan [12]
proposed a general theoretical framework based on a Green’s
function method and perturbation theory and provided exact
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and approximate results for the magnetoelectric coefficient
in various special geometries. Benveniste [13] developed
a theory for magnetoelectric coupling in fibrous composites
assuming that the poling and magnetic directions are parallel
to the fibers. Li and Dunn [14] developed a Mori–Tanaka-
based micromechanics approach to analyze the average fields
and effective moduli of the ME composite, and gave explicit
expressions for the effective moduli of fibrous and laminated
composites. In recent years, multilayer composites have been
the subject of numerous investigations. Notable among them is
the averaging method of Bichurin et al [15–17] that has been
applied to perfectly bonded and unclamped bilayers [15, 16]
as well as imperfectly bonded and clamped bilayers [17]. A
complete review of all this literature can be found in Nan et al
[7] and Bichurin [18]. Importantly, much of this theoretical
development limits itself to the situation where the poling
direction of the piezoelectric material and the magnetic axes
of the piezomagnet/magnetostrictive material is either normal
to or along the layer (or fiber) direction. Further, many of these
works assume transverse isotropy or uniaxial symmetry.

Single crystals, or bilayers made of single-crystal
layers, promise further and significant enhancement of the
magnetoelectric coupling. However, single crystals are highly
anisotropic and it is not clear how they should be oriented
with respect to the layer normal for optimal ME coupling.
Recent advances in wafer bonding and layer transfer enables
the fabrication of high quality single-crystal ferroelectric films
of potentially arbitrary orientations on diverse substrates [19].
Indeed, experiments by Yang et al [20] and Wang et al
[21] show that single crystals are attractive and the effective
ME coefficient of the laminate can depend sensitively on the
crystallographic orientation of the material.

Motivated by these advances, and in a departure from
previous works, we develop a method to calculate the
effective ME coefficient of a bilayer without any assumptions
on the symmetry of the underlying materials and without
any assumptions on the crystallographic orientations of the
materials. We then optimize the crystallographic orientation
and volume fraction, and demonstrate our method and its
efficacy using lithium niobate/Terfenol-D as well as lithium
niobate/CoFe2O4 bilayers. We show that the optimal
orientations can be non-trivial and the enhancement to be
manifold over the normal orientations.

2. Model

Consider a bilayer or laminate of piezoelectric and magne-
tostrictive material as shown in figure 1. We assume that the
thickness is much smaller than the lateral extent or in-plane
dimensions. Since the layers are strain-coupled, the bilayer
shown on the left will suffer from some bending while the more
symmetric laminate shown on the right will not. However,
the strains associated with bending will be smaller compared
to those associated with lateral extension. Further, they will
be vanishingly small if the thickness of one layer is small
compared to the other. Therefore we do not make a distinction
between the two geometries.

Figure 1. The bilayer and laminate configurations.

2.1. Constitutive relations

In a Cartesian frame with the x3 direction normal to the
plane, the constitutive relations of the piezoelectric material
(superscript p) are

ε
p
i j = sp,E

i jklσ
p
kl + dki j Ek, (1)

Di = di jkσ
p
jk + εσ

i j E j , (2)

where ε
p
i j and σ

p
i j are the strain and stress; Ei and Di are

the electric field and the electric displacement vector. sp,E
i jkl is

the (constant field) elastic compliance (fourth-order tensor),
di jk is the piezoelectric moduli (third-order) and εσ

i j is the
(constant stress) permittivity (second-order). We assume that
the piezoelectric material is magnetically inert. The summation
convention is used. The constitutive law of magnetostrictive
material (superscript m) is

εm
i j = sm,H

i jkl σ m
kl + λi j(Hk), (3)

where Hi is the applied magnetic field, sm,H
i jkl is the (constant

field) compliance and λi j is the magnetostriction that depends
nonlinearly on the magnetic field. We have not written the
equation for the magnetic moment since we do not need it in
our calculations. The nonlinear magnetoelectric response is
often undesirable in applications, and therefore it is used in
a linear piezomagnetic regime with a small applied field (and
possibly a constant bias field). We then linearize λi j and write
it as λi j = qki j Hk , where qi jk is the piezomagnetic moduli
(third-order tensor).

The equations above refer the material properties (εi j ,
di jk , si jkl , λi j , qi jk) to the laminate frame (figure 1).
However, the material properties are commonly described in
the crystallographic frame and we need to transform them to
the laminate frame. To this end, let us denote the crystal frame
with primes and introduce the rotation matrix ai j . This is given
in terms of the three Euler angles (α, β, γ ) as follows [22]:( a11 a12 a13

a21 a22 a23

a31 a32 a33

)
=

(
cos γ cos α − cos β sin α sin γ cos γ sin α + cos β cos α sin γ sin γ sin β

− sin γ cos α − cos β sin α cos γ − sin γ cos α + cos β cos α cos γ cos γ sin β
sin β sin α − sin β cos α cos β

)
.

(4)

For this change of frame, the material parameters then follow
the tensor transformation rules for second- , third- and fourth-
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Figure 2. The longitudinal ME voltage coefficient of a
LiNbO3/Terfenol-D bilayer for various orientations of LiNbO3. Note
that this coefficient depends only on the Euler angles α and β and is
independent of the third, γ .

order tensors:

εi j = aima jnε
′
mn, λi j = aima jnλ

′
mn,

di jk = aima jnakod ′
mno, qi jk = aima jnakoq ′

mno,

si jkl = aima jnakoalps′
mnop.

(5)

where the primed quantities (ε ′
i j , d ′

i jk , s′
i jkl , λ

′
i j , q ′

i jk) denote the
material properties referred to the crystallographic frame.

2.2. Field equations, boundary conditions and interface
conditions

In the bilayer and laminate geometry, the fields, displacement
current and strains are constant in each layer up to leading
order. Thus the field equations are automatically satisfied.

We assume that there are no applied external stresses.
Therefore the tractions on the top and bottom surfaces as well
as the average tractions on the lateral surfaces are constant.
This implies

σ
p,m
i3 = 0, i = 1, 2, 3, (6)

σ
p
i jv

p + σ m
i j v

m = 0, i, j = 1, 2, (7)

where vp,m are the volume fractions. We assume that the
interfaces are perfectly bonded so that the tangential strains are
continuous [23]:

ε
p
i j = εm

i j , i, j = 1, 2. (8)

We note that (6) automatically ensures traction continuity at
the interface.

We assume that the interface is perfectly electromechani-
cally bonded so that the tangential electric and magnetic fields
are continuous, the jump in normal displacement current is
equal to the surface charge (with density σ ) and the normal
magnetic induction is continuous [24]:

Ep
1 = Em

1 , Ep
2 = Em

2 , Dp
3 − Dm

3 = 4πσ, (9)

Figure 3. The transverse ME voltage coefficient of a
LiNbO3/Terfenol-D bilayer for various orientations of LiNbO3.

H p
1 = H m

1 , H p
2 = H m

2 , Bp
3 = Bm

3 . (10)

There are two situations when it comes to the electrical
conditions since metallic magnetic materials are electrically
conducting while ceramic magnets are not. Therefore we
distinguish between two situations.

2.2.1. Electrically conducting magnetic layer. Here, the in-
plane electric field is zero and the top/bottom surfaces are
equipotential in the magnetic material, and thus we have

Em
1 = Em

2 = Dm
3 = 0. (11)

We are interested in finding the electric field in the
piezoelectric material, and thus consider an open circuit
situation. Therefore σ = 0. From the interfacial condition (9),
we conclude

Ep
1 = Ep

2 = Dp
3 = 0. (12)

2.2.2. Electrically insulating magnetic layer. Here the
displacement current is zero in the magnetic layer and we thus
have

Dm
1 = Dm

2 = Dm
3 = 0. (13)

3
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Figure 4. The optimal ME voltage coefficients of a
LiNbO3/Terfenol-D bilayer for various volume ratios of
LiNbO3/Terfenol-D.

Figure 5. The longitudinal ME voltage coefficient of a
LiNbO3/CoFe2O4 bilayer for various orientations of LiNbO3. Note
that this coefficient depends only on the Euler angles α, β and is
independent of the third γ .

Again, we consider open circuit conditions together with the
in-plane open circuit in the piezoelectric layer so that we
conclude from (10) that

Dp
1 = Dp

2 = Dp
3 = 0. (14)

2.3. Effective magnetoelectric response

We seek to compute the effective magnetoelectric response.
For the linear case of piezomagnetic material, the induced
voltage is proportional to the applied magnetic field and the
constant of proportionality is the effective magnetoelectric
voltage coefficient.

We begin by computing the magnetoelectric voltage
coefficients for the case of the electrically conducting magnetic
layer. We switch from the tensorial notation above to the
Voigt notation. We are given H = {H1, 0, H3} and seek to

Figure 6. The transverse ME voltage coefficient of a
LiNbO3/CoFe2O4 bilayer for various orientations of LiNbO3.

find Ep. In light of equation (6), the only unknown stresses
are σ1, σ2 and σ6. Further, in light of equation (7), we
can obtain the stress components σ m

i in the magnetic layer
from those in the piezoelectric layer σ

p
i . Thus, the only

unknown stresses are σ
p
1 , σ

p
2 and σ

p
6 . Similarly, in light of

equation (12), the electrical unknowns are Dp
1 , Dp

2 and Ep
3 . To

solve for these unknowns, we substitute equations (1) and (3)
into equation (8) and rewrite equation (2) using equation (12).
These equations, (8) and (2), may now be written compactly as
follows in terms of the unknown quantities:⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sp
11 + f sm

11 sp
12 + f sm

12 sp
16 + f sm

16 0 0 d31

sp
21 + f sm

21 sp
22 + f sm

22 sp
26 + f sm

26 0 0 d32

sp
61 + f sm

61 sp
62 + f sm

62 sp
66 + f sm

66 0 0 d36

d11 d12 d16 −1 0 ε13

d21 d22 d26 0 −1 ε23

d31 d32 d36 0 0 ε33

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ
p
1

σ
p
2

σ
p
6

Dp
1

Dp
2

Ep
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

q11 H1 + q31 H3

q12 H1 + q32 H3

q16 H1 + q36 H3

0
0
0

⎤
⎥⎥⎥⎥⎥⎦ (15)

4
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Figure 7. The in-plane longitudinal ME voltage coefficient of a
LiNbO3/CoFe2O4 bilayer for various orientations of LiNbO3.

where f is the volume ratio, vp/vm, between the piezoelectric
and piezomagnetic materials.

We can verify that the matrix of material coefficients on
the left is not singular, and hence we can invert it to find
the unknown stresses, electric displacements and electric field.
Clearly, the transverse electric field Ep

3 depends linearly on
the applied magnetic field. Setting H1 = 0, we can obtain
the longitudinal magnetoelectric voltage coefficient αE,33 =
Ep

3/H3 which describes the out-of-plane electric field due to
the applied out-of-plane magnetic field. Similarly, setting
H3 = 0, we can obtain the transverse magnetoelectric voltage
coefficient αE,31 = Ep

3/H1 which describes the out-of-plane
electric field due to the applied in-plane magnetic field.

The matrix in equation (15) is too complicated to invert in
closed form for a general anisotropy and general orientation.
So we proceed numerically in the general case and present
detailed results in section 3. For now, we note that, in
the special case of an uniaxial piezoelectric with normal
orientation, many of the coefficients are zero and we can obtain
the coefficients in closed form:

αE,33 = Ep
3

H3
= −2d31q31

ε33
(
sp

11 + sp
12

)+ f ε33
(
sm

11 + sm
12

)− 2d2
31

,

(16)

Table 1. Material constants of LiNbO3 [27], PZT [28],
Terfenol-D [29, 30] and CoFe2O4 [14, 31]. (Note: units: s:
10−12 m2 N−1, d: 10−11 C N−1, q: 10−7 Oe−1,
ε0 = 8.854 × 10−12 F m−1. Constants assume materials
polarized/magnetized along the x3 axis.)

Property
LiNbO3

(3m)
PZT-5A
(6mm) Property

Terfenol-D
(6mm)

CoFe2O4

(6mm)

sp,E
11 5.55 16.4 sm,H

11 38.4 6.47

sp,E
12 −1.04 −5.74 sm,H

12 −10.6 −2.38

sp,E
13 −1.3 −7.22 sm,H

13 −13.6 −2.58

sp,E
14 −0.98 0 sm,H

33 45.4 6.97

sp,E
33 4.8 18.8 sm,H

44 73.5 22.08

sp,E
44 20.6 47.5 sm,H

66 63.7 17.70

d15 7.7 58.4 q15 6.34 9.66

d22 1.7 0 q31 −3.05 0.45

d31 −0.13 −17.1 q33 6.99 1.50

d33 0.66 37.4

εσ
11/ε0 84 1730 λ‖ 2 × 10−3 −6 × 10−5

εσ
33/ε0 30 1700 λ⊥ −2.26 × 10−3 7 × 10−5

αE,31 = Ep
3

H1
= −d31(q11 + q12)

ε33
(
sp

11 + sp
12

)+ f ε33
(
sm

11 + sm
12

)− 2d2
31

.

(17)
These are in agreement with those reported in the litera-
ture [25].

We follow a very similar procedure in the electrically
insulating magnetic layer, replacing equation (12) with
equation (14). We obtain the following system of equations:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sp
11 + f sm

11 sp
12 + f sm

12 sp
16 + f sm

16 d11 d21 d31

sp
21 + f sm

21 sp
22 + f sm

22 sp
26 + f sm

26 d12 d22 d32

sp
61 + f sm

61 sp
62 + f sm

62 sp
66 + f sm

66 d16 d26 d36

d11 d12 d16 ε11 ε12 ε13

d21 d22 d26 ε21 ε22 ε23

d31 d32 d36 ε31 ε32 ε33

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ
p
1

σ
p
2

σ
p
6

Ep
1

Ep
2

Ep
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

q11 H1 + q31 H3

q12 H1 + q32 H3

q16 H1 + q36 H3

0
0
0

⎤
⎥⎥⎥⎥⎥⎦ (18)

for the unknowns. We may again verify that the matrix is
invertible and we can solve for the induced stresses and electric
fields in terms of the applied magnetic field, and use them
to compute the longitudinal and transverse magnetoelectric
voltage coefficients as before. Again, these are too complicated
to explore without numerics in the general case, but reduce to
equations (16) and (17) in the case of an uniaxial piezoelectric
that is normally oriented. In this situation of the insulating
magnetic material, we also define an in-plane longitudinal
magnetoelectric voltage coefficient αE,11 = Ep

1/H1. While this
is too complicated to explore without numerics in the general
case, we obtain the following explicit expression in the case of

5
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Figure 8. The ME voltage coefficient of a PZT/Terfenol-D bilayer for various orientations of PZT. (a), (b) The longitudinal coefficient for
various PZT orientations. (c), (d) The transverse coefficient for various PZT orientations.

an uniaxial piezoelectric that is normally oriented:

αE,11 = Ep
1

H1
= [q11(d11sp

22 − d12sp
12 + f d11sm

22 − f d12sm
12)

− q12(d11sp
12 − d12sp

11 + f d11sm
12 − f d12sm

11)][
]−1, (19)

where 
 = ε11[(sp
12)

2 − sp
11sp

22 − f (sm
11sp

22 −2sm
12sp

12 + sp
11sm

22)+
f 2((sm

12)
2 −sm

11sm
22)]+d2

12sp
11 +d2

11sp
22 −2d11d12sp

12+ f (d2
12sm

11+
d2

11sm
22 − 2d11d12sm

12).
Finally, we come to the nonlinear setting of the piezoelec-

tric/magnetostrictive material. Recall from equation (3) that
the strain depends nonlinearly on the applied magnetic field.
However, it turns out that we can follow exactly the same
procedure as above and obtain equations (15) and (18) with
the right-hand side replaced by⎡

⎢⎢⎢⎢⎢⎣

λ1(Hi)

λ2(Hi)

λ6(Hi)

0
0
0

⎤
⎥⎥⎥⎥⎥⎦ . (20)

Thus, we can invert the matrix as before and obtain the induced
electric field (as well as induced stress) as a function of the

applied magnetic field. The induced electric field is a nonlinear
function of the applied magnetic field, so we can either
describe this as a magnetic-field-dependent magnetoelectric
voltage coefficient or directly report the induced voltage as a
function of the magnetic field. We choose to do the latter.
Further, most magnetostrictive materials have a saturation
strain and thus the induced electric field of the bilayer also has
a saturation value. We focus on this value.

2.4. Optimization

We seek to optimize the magnetoelectric coefficient with
respect to the crystallographic orientation of the materials.
This is a highly nonlinear problem and there are a variety of
approaches to solving this numerically [26]. However, all of
these involve probing the local landscape and finding the local
optimum. Unfortunately, this does not guarantee finding the
global optimum that we seek. This is especially problematic
in situations where one has multiple local optima and saddle
points. This is, unfortunately, the situation in this problem, as
we shall see in section 3. However, our problem has a low
dimension and we resort to a brute-force approach where we
create a fine grid of Euler angles and exhaustively compare the
values on this grid.

6
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Figure 9. The ME voltage coefficient of a PZT/CFO bilayer for various orientations of PZT. (a), (b) The longitudinal coefficient for various
PZT orientations. (c), (d) The transverse coefficient for various PZT orientations. (e), (f) The in-plane longitudinal coefficient for various PZT
orientations.

3. Numerical results and optimization

We consider a variety of systems of interest. For the piezoelec-
tric material, we consider the lead-free ferroelectric LiNbO3

(3m symmetry) as well as the widely used poled PZT ceramic

(6mm symmetry). For the piezomagnetic/magnetostrictive ma-

terial we consider the giant magnetostrictive material Terfenol-

D alloy (6mm symmetry) which is electrically conducting as

7
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Figure 10. The magnetically induced electric field in a LiNbO3/Terfenol-D bilayer due to the nonlinear magnetostrictive response of
Terfenol-D. (a), (b) The longitudinal field for various LiNbO3 orientations. (c), (d) The transverse field for various LiNbO3 orientations.

well as the insulating CoFe2O4 (6mm symmetry). The material
properties are listed in table 1 in Voigt notation. Some caution
about factors of two and four is necessary to convert the Voigt
notation to tensor notation. Also, there is uncertainty in the
piezomagnetism of Terfenol-D and CoFe2O4 since it depends
on the specific bias magnetic field.

3.1. Piezoelectric and piezomagnetic bilayers

We begin with the case of a piezoelectric and piezomagnetic
bilayer. We first consider Terfenol-D as the magnetic layer
and note that it is electrically conducting. For each orientation,
we follow the procedure developed in section 2 to obtain the
magnetoelectric voltage coefficients.

Figure 2 shows the longitudinal ME voltage coefficient
αE,33 with respect to the crystallographic orientation of
LiNbO3. The orientation of Terfenol-D is the normal cut where
the c axis coincides with the laminate normal x3 since this
happens be optimal and the volume fractions are equal. We
observe that the maximum of −6.17 V cm−1 Oe−1 occurs at
Euler angles (α, β, γ ) = (±60◦, 50◦, γ ) or (0◦,−50◦, γ ),
where γ is arbitrary. This degeneracy of optimal orientation

reflects the 3m symmetry. Significantly, the optimized value
of −6.17 V cm−1 Oe−1 is almost seven times higher than
−0.92 V cm−1 Oe−1, which is the value of the normal cut
where the c axis of the LiNbO3 is along the laminate normal.

We now turn to the transverse ME voltage coefficient
αE,31 and its orientation dependence is shown in figure 3.
The orientation of Terfenol-D is assumed to be parallel
to the x1 (optimal) and the volume fractions are equal.
The maximum value is 8.72 V cm−1 Oe−1 at the optimal
orientation (α, β, γ ) = (0◦, 40◦,±90◦), and this is as much
as seventeen times higher than the value of 0.51 V cm−1 Oe−1

at the normal cut. Further, it is almost four times the value
of 2.31 V cm−1 Oe−1 obtained at the [(zxtw) − 129◦/30◦] cut
introduced by Yang et al [20].

Figure 4 shows the effect of volume ratio vp/vm on
the ME coefficients. The maximum value is obtained at
vanishing piezoelectric material. At a finite thickness ratio,
the piezoelectric material resists the magnetically induced
strain in the magnetostrictive material. This gives rise to
internal stresses which reduce the strain and consequently
ME strain. However, as the thickness of the piezoelectric
material vanishes it is unable to resist the magnetically induced

8
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Figure 11. The magnetically induced electric field in a LiNbO3/CoFe2O4 bilayer due to the nonlinear magnetostrictive response of CFO. (a),
(b) The longitudinal field for various LiNbO3 orientations. (c), (d) The transverse field for various LiNbO3 orientations. (e), (f) The in-plane
longitudinal field for various LiNbO3 orientations.

strain, the internal stress vanishes and it suffers the full (stress-
free) magnetically induced strain. The maximum value of the
longitudinal coefficient αE,33 is −46.73 V cm−1 Oe−1 while
that of the transverse coefficient αE,31 is 79.81 V cm−1 Oe−1,
both of these evaluated at their respective optimal orientations.

Numerical calculations show that the optimal orientation is
almost independent of the volume ratio.

To understand the role of electrical boundary conditions,
we repeat these calculations with the LiNbO3/CoFe2O4 bilayer
since CFO is electrically insulating. We first consider

9
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Figure 12. The magnetically induced electric field in a PZT/Terfenol-D bilayer due to the nonlinear magnetostrictive response of Terfenol-D.
(a), (b) The longitudinal field for various PZT orientations. (c), (d) The transverse field for various PZT orientations.

the variation of the longitudinal magnetoelectric voltage
coefficient αE,33 with respect to the orientation of the
piezoelectric phase. The thickness of the two phases is the
same. Figure 5 shows that the optimal is 2.77 V cm−1 Oe−1,
which is five times larger than that of the bilayer with the
normal cut LiNbO3 (0.51 V cm−1 Oe−1). The corresponding
optimal orientations are many and include Euler angles
(±60◦, 60◦, γ ) or (0◦,−60◦, γ ) for arbitrary γ . In figure 6, we
show the transverse magnetoelectric voltage coefficient αE,31

versus the orientation of the LiNbO3 layer. It is optimized
when LiNbO3 is poled with (α, β, γ ) = (0◦,−60◦,±90◦)
with a value of 6.02 V cm−1 Oe−1. Figure 7 shows the in-
plane longitudinal magnetoelectric voltage coefficient αE,11

versus the orientation of the LiNbO3 layer. It is optimized
when LiNbO3 is poled with (α, β, γ ) = (−45◦, 70◦, 0◦) or
(45◦,−70◦, 0◦) and the coefficient is −6.78 V cm−1 Oe−1.
This is as much as two times the value of −3.52 V cm−1 Oe−1

at the normal cut.
We have also investigated the effect of volume ratio

vp/vm on the longitudinal, transverse and in-plane longitudinal
magnetoelectric voltage coefficients. The piezoelectric
phase is poled along one of the optimized directions.

The variations of the three cases are very similar to the
conducting case, all increasing with the decreasing of the
thickness of the piezoelectric phase. The maximum value
of longitudinal coefficient αE,33 is 5.90 V cm−1 Oe−1 while
that of the transverse coefficient αE,31 is 13.10 V cm−1 Oe−1,
and that of the in-plane longitudinal coefficient αE,11 is
−15.15 V cm−1 Oe−1. All of these are evaluated at their
respective optimal orientation.

Finally, we replace the piezoelectric material by lead
zirconate titanate (PZT) which is uniaxial (i.e. 6mm). Now,
the optimal orientation is the normal cut (i.e. c axis out of
plane for αE,33 and αE,31 while in plane for αE,11) and the
maximum αE,33 is −2.00 V cm−1 Oe−1 while the maximum
αE,31 is 1.13 V cm−1 Oe−1 for the PZT/Terfenol-D bilayer at
equal volume fraction (figure 8). Further, the maximum αE,33,
αE,31 and αE,11 are 0.94, 2.02 and −2.11 V cm−1 Oe−1 for the
PZT/CoFe2O4 bilayer at their normal orientation (figure 9).

3.2. Piezoelectric and magnetostrictive bilayers

We now turn to the nonlinear magnetostrictive response. We
assume for simplicity that the saturation field is 2 kOe and

10
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(a) (b)

(c) (d)

(e) (f)

Figure 13. The magnetically induced electric field in a PZT/CFO bilayer due to the nonlinear magnetostrictive response of CFO. (a), (b) The
longitudinal field for various PZT orientations. (c), (d) The transverse field for various PZT orientations. (e), (f) The in-plane longitudinal
field for various PZT orientations.

study the induced electric field when this field is applied to
the laminate. The longitudinal and transverse induced electric
fields are shown in figure 10 as a function of orientation for
the case where the volume fractions are equal. We find that
the maximum induced electric field is −4.57 × 104 V cm−1

with (α, β, γ ) = (0◦,−50◦, γ ) or (±60◦, 50◦, 0◦) for the
longitudinal case and −3.25 × 104 V cm−1 with (α, β, γ ) =
(0◦, 40◦, 0◦), (±60◦,−40◦, 0◦) for the transverse case. For
the optimized volume fraction (vp → 0), the numbers are
−3.46 × 105 V cm−1 and −2.79 × 105 V cm−1, respectively.

11
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One may divide these number by 2 kOe to obtain the average
ME coefficient; however, this is not a physical value since the
response is highly nonlinear.

For the magnetically insulating case, the variation of
the longitudinally, transversely and in-plane longitudinal
induced electric field in the piezoelectric phase is shown
in figure 11. The maximum longitudinal induced electric
field is 4.31 × 103 V cm−1 with (α, β, γ ) = (0◦,−60◦, γ )

or (±60◦, 60◦, 0◦) while the optimized transversely induced
electric field is 2.53 × 103 V cm−1 with (α, β, γ ) =
(0◦, 50◦, 0◦) or (±60◦,−50◦, 0◦). The maximum in-plane
longitudinal induced electric field is 3.30 × 103 V cm−1 with
(α, β, γ ) = (−50◦,−20◦, 0◦) or (50◦, 20◦, 0◦). For the
optimized volume fraction (vp → 0), the numbers are 9.18 ×
103 V cm−1, 6.71 × 103 V cm−1 and 8.56 × 103 V cm−1,
respectively.

Finally, figures 12 and 13 show that, for the PZT
and the nonlinear magnetostrictive laminate, the maximum
longitudinal induced electric field is −14852 V cm−1 for the
PZT/Terfenol-D bilayer and 1464 V cm−1 for the PZT/CFO
case. Both of them are at their normal orientation. The
maximum transverse induced electric field for the conducting
case is −1473 V cm−1 at the optimal orientation (α, β, γ ) =
(α,±15◦, 0◦) and this is approximately the same as the
value of −1471 V cm−1 at the normal cut. All of these
increase significantly with thickness ratio in agreement with
Dong et al [9]. For the insulating PZT/CFO, the maximum
transverse induced electric field is 164 V cm−1 at (α, β, γ ) =
(α,±40◦, 0◦). This is approximately 40% higher than the
value of 115 V cm−1 at the normal cut. The maximum in-plane
longitudinal induced electric field is 983 V cm−1 at the normal
cut.

4. Concluding remarks

In this work, we have proposed a simple framework
to compute the effective magnetoelectric response of a
piezoelectric–magnetostrictive bilayer. We have used it to
show that, for anisotropic materials as in single crystals, the
optimal ME response is obtained for non-trivial orientations.
For the LiNbO3/Terfenol-D bilayer, the highest transverse
magnetoelectric voltage coefficient αE,31 at vp/vm = 1
is 8.72 V cm−1 Oe−1, which is 17 times larger than that
of a laminate made with the normal cut type LiNbO3

single crystal. The longitudinal magnetoelectric voltage
coefficient αE,33, on the other hand, can be increased
around seven times to −6.17 V cm−1 Oe−1. For the
LiNbO3/CoFe2O4 bilayer, the transverse and longitudinal
magnetoelectric voltage coefficients can be increased around
five times compared to the normal orientation. The in-plane
longitudinal magnetolelectric voltage αE,11 can be increased
around two times. The dependence of the magnetostrictive
voltage coefficient with respect to the volume ratio vp/vm was
also determined when the lithium niobate was poled along the
optimized direction. The coefficient varied with the volume
ratio and was optimized when the thickness of the piezoelectric
layer approaches zero.

In our model, we neglect flexure. A bilayer, especially of
the structure shown on the left of figure 1, may have significant
bending and this may also give rise to an additional ME effect
especially when driven resonantly [32]. However, bending is
a higher-order effect (bending strains scale as the third-power
thickness while extensional strains considered here scale as
thickness). Further, the coupling occurs through longitudinal
strains similar to the situation studied here. So we anticipate
that the optimal orientations will be close to those studied here.
At the same time, since the strains are not uniform, the analysis
becomes significantly more involved. This remains an issue for
future work.
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