
Part I

COMPUTER SCIENCE

BIT33 (1993), 354~371.

M O D E L I N G O F S U P E R S C A L A R I N S T R U C T I O N

S C H E D U L I N G A N D A N A L Y S I S O F A H E U R I S T I C

S C H E D U L I N G A L G O R I T H M

HONG CHICH CHOU and CHUNG PING CI-IUNG

Institute of Computer Science and Information Engineering
National Chiao-Tung University
Hsinchu 30050, Taiwan, R.O.C.

Abstract.

The problem of superscalar instruction scheduling is studied and an analysis of a heuristic scheduling
algorithm is presented. First, a superscalar architecture is characterized by k, the number of types of
functional units employed, m~, the number of type i functional units, P~j, the jth functional unit of type i,
and z, the maximal number of delay cycles incurred by the execution of instructions. A program trace to
be scheduled is modeled by a directed acyclic graph with delay on precedence relations. These two models
reflect most of the flavor of the superscalar instruction scheduling problem. A heuristic scheduling
algorithm called the ECG-algorithm is designed by compiling two scheduling guidelines. The perform-
ance of the ECG-algorithm is evaluated through worst-case analysis. Letting WECG denote the length of an
ECG-schedule and Wopt the length of an optimal schedule, we established the bound W~cG/Wopt
< k + 1 - 2/[max {ml}(z + 1)], which is smaller than other known bounds.

Classification CR: D.4.1, 1.3.1, 1.2.8, B.2.2

Keywords: Scheduling, Parallel processing, Heuristic methods, Worst-case analysis.

1. Introduction.

In contrast to vector processors, which are used to execute scientific programs,
superscalar processors are microprocessors which attempt to improve the execution
rate of non-scientific programs by executing, on average, more than one instruction
per clock cycle. Examples of superscalar architectures include the IBM RS/6000,
Intel i860, [1, 3], and DEC Alpha. The success of superscalar machines depends not
only on the vast hardware resources they provide, but even more importantly, on
how efficiently these resources can be used. Efficient use of resources and reduced
program execution time may be achieved through instruction scheduling. The

Received June 1992. Revised December 1992.

M O D E L I N G O F S U P E R S C A L A R I N S T R U C T I O N S C H E D U L I N G A N D . . . 3 5 5

objective of superscalar instruction scheduling is to rearrange instructions in such
a way that they are executed by hardware in an optimal (or near optimal) order (that
is, so that execution time is minimized). The problem of finding an optimal order is
intractable, however [10].

Superscalar instructions are characterized by their types and delay cycles. The
instructions may be classified into several types, such as fixed-point instructions and
floating-point instructions. Each type can only be executed on corresponding type
of functional unit. Though functional units are pipelined, not all instructions can
produce results in one cycle. For example, a load instruction needs an additional
cycle to deliver the fetched data to the waiting instructions. In this case, the load
instruction is said to have one delay cycle.

Instruction scheduling can be done by hardware or by software. The scheduling of
instructions by hardware was pioneered by Tomasulo [5], who designed a hardware
instruction issuing mechanism called reservation stations for the IBM 360 model 91.
Recent research can be found in [4]. To be fully functional, however, hardware
scheduling must solve several problems, including artificial dependencies caused by
register-file limitations, conditional branches, and imprecise interrupts. Solving all
these problems requires hardware that is complex, costly, and, more seriously, slow.

Because of the drawbacks of hardware scheduling, instruction scheduling is
mostly done by software, as in the case of the VLIW, IBM RS/6000, and Intel i860.
The VLIW machine [7] is an extreme case which relies in a complex way on software
instruction scheduling to keep functional units busy while avoiding any data
hazards [2]. In addition to identifying instructions that can be executed concurrent-
ly, the scheduling software also tries to optimize delay slots. Since software exposes
program parallelism to processors, the architecture can be greatly simplified by
assuming that the incoming instructions in each cycle can be executed simultaneous-
ly, as in the approach of the IBM RS/6000, or by setting one bit in the instructions to
notify the processor to execute the next instructions in parallel, as in the approach of
the Intel i860. A simple hardware design often implies a fast clock rate.

Scheduling algorithms are generally evaluated through benchmaking [8, 9]. The
execution times of the unscheduled and scheduled codes are compared as a perform-
ance criterion for the scheduling algorithms. However, benchmarking suffers from
a number of drawbacks: (1) it is costly, since it requires a simulator and a compiler to
generate code; (2) it is time-consuming; (3) it gives only statistical results and it fails to
analyze the nature of an algorithm; and (4) it is a form of post-analysis, which can be
done only after a processor has already been designed. Thus in this paper, instead of
using benchmarking, we evaluate a scheduling algorithm (the algorithm is given
below) from a mathematical point of view, using worst-case performance analysis to
reveal the performance limit of the algorithm.

356 HONG CHICH CHOU AND CHUNG PING CHUNG

2. Formal specifications.

2.1. Abstract models.

Since different superscalar machines have diverse types of organizations, to keep
our study universal and independent of particular machines, we define an abstract
machine model and a model for a trace of code to be scheduled. As can be seen from
currently available superscalar architectures and the demands of instruction sched-
uling, a superscalar architecture can be denoted by a 4-tuple (k, M, ~ , z), where:

• k _> 1 denotes the number of different types of processors employed in the
superscalar architecture.

• M = (ml, m2 , . . . ,ink), where m, denotes the number of type i processors, for
1 < i < k. The instruction set is also categorized into k types. Type i instructions
can only be executed on any of the m, type i processors.

• ~ ={Pii[1 < i < k, 1 < j <_ mi} denotes the set of processors. Pii denotes thej th
processor of type i.

• z > 0 denotes the maximum number of pipeline delay cycles required to execute
any instruction.

The above machine model is generalized enough to encompass a wide range of
superscalar architectures. For example, for the IBM RS/6000, k = 4, ml = m2 =
m3 = m4 = 1, and z = 6 (floating-point compare instruction delay).

By convention, an instruction is said to have no delay if its execution is completed
within one cycle and to have x cycles of delay if it needs x additional cycles to be

completed.
We formally denote a program trace to be scheduled by a 4-tuple (U, < , P f , D),

where:

• U = {11,12,. . . , li), is the aggregation of the instructions to be scheduled
• ~(is a transitive binary relation defined on U that specifies the precedence

relationships between instructions.
• P f i s a function, P f : U ~ {1, 2 , k}, specifying the type of processor on which

an instruction can be executed.
• D is a function, D : U ~ {0, 1 z}, specifying the number of delay cycles of each

instruction.

Precedence relations originate from true data dependencies, procedural depend-
encies, antidependencies, and output dependencies. If li -~ 1 i, this means that Ii must
be executed before Ij. It is unnecessary to distinguish among these dependencies
here, since they impose the same effect on instruction execution. Dependence and
precedence are used interchangeably in the following context.

It would be convenient to represent each (U, -<, P f , D) instance by a directed
acyclic graph (DAG). Figure 1 shows an instructions DAG with three types and
a maximum delay of two cycles. Nodes (Circles) in Figure 1 denote instructions. If
It ~(Ij, then there is a directed edge from node li to node 1 i in the graph (note that

M O D E L I N G OF SUPERSCALAR I N S T R U C T I O N S C H E D U L I N G AND . . . 357

Figure 1. A sample inst ruct ion D A G .

transitive edges are not shown in the figure). The number behind the slash in each
node indicates the type of that instruction, and the number besides each edge
denotes the number of delay cycles required by the predecessor. If//~(Ij, then Ij(I~) is
a successor (predecessor) of Ii(Ij). If there is no 1' such that Ii ~ 1' ~(1i, then Ij(Ii) is
said to be an immediate successor (predecessor) ofI~(Ij). P(IO is used to denote the set
of predecessors of It, and S(I~) the set of successors of I~ (not necessarily immediate in
both sets).

A function 2: U--} {1,2 } is a feasible schedule for a given (U, ~ , P f , D) on
a given (k, M, ~ , z), if 20 meets the following conditions:

1. VI~, 1 i ~ U, if I~ ~(Ij, then 2(Ig) + D(Ii) < 2(/j).
2. Vt > 1 /x i _< k, I {I e U r 2(1) = t and Pf(I) = i} [< m,.

Condition 1 requires that a schedule should observe the precedence relationships;
condition 2 requires that a schedule should not use more processors than available.
When an instruction Ii is said to be scheduled in time slot tl, this means that 2(10 = ti.
None of the successors of Ii can be issued until 2(//) + D(Ii) + 1. We define 2(//) +
D(I~) to be the completion time of I~ and use the function Len (I~) = D(I~) + i to denote
the length of an instruction. The time slots (2(Ii), 2(I~) + D(I~)) are said to be the seope
of I i. The length of a scope is also the length of that instruction. LenO is also used to
denote the length of a chain. A chain h = (11., I2., Ix,) is a sequence of dependent

358 HONG CHICH CHOU AND CHUNG PING CHUNG

instructions, such that Iv is an immediate predecessor of I(i+ 1)'- The length of a chain
is the sum of the lengths of all instructions in the chain. The length of a feasible
schedule is defined to be max {2(1) + O(l)}, ¥1 e U.

3. Heuristic algorithm.

Since it is not likely that an essential fast algorithm could be found for an NP-
complete problem, we propose a heuristic scheduling algorithm called the ECG-
algorithm. The algorithm is a List-scheduling-like algorithm. Each instruction is
given a label to reflect the scheduling priority of that instruction. The scheduling
discipline is as follows: Whenever a processor becomes idle, the instruction with the
largest label among the instructions ready to be issued is selected to be executed on
the idle processor.

Let e(I~) denote the label of I~. The ECG-algorithm is designed by the following
two scheduling guidelines. For a given (U, -<, Pf , D), we define two relations among
instructions, as follows:

DEFINITION t. Dominance relation on instructions. For li, Ij~ U and P f (I i)=
Pf(It), Ii is said to dominate I i, denoted as I~ D l~, i f S(Ii) ~ S(Ij) and P(Ii) c P(Ij) and
o(i,) >_ O(I;).

DEFINITION 2. Semi-dominance relation on instructions. For Ii, 1 t ~ U and P f (li) =
P f (Ig), and not li E Ij nor Ii S E I j nor IiD I g, li is said to semi-dominate I ;, denoted by
Ii S D Ij, i f li, I t satisfy one of the following conditions:

1. S(I~) ~_ S(I;) and D(Ii) >_ D(I~).
2. S(It) = 0 and L(Ii) >>_ D(Ij) + 1.

It can be proved that if Is DI t, It is scheduled no later than Ij is in an optimal
schedule [17]. However, no analogous property can be proven for the semi-domi-
nance relation. Nevertheless, if I~ S D I t, Ii is likely to be scheduled no later than Ij.
Thus in designing the ECG-algorithm, we adopt the following guidelines:

GI: If I~ DIj, then ~(Ii) > a(Ij).
G2: I f I~SDlj , then a(I,) > a(Ij).

The ECG-algorithm involves two major procedures: leveling and labelin(4. Let
L(I*) denote the level of 1", and N(I*) denote the decreasing sequence of integers
formed by ordering the set {7(I')1I' e S(I*)}. The leveling procedure is then as
follows:

ECG-algorithm-leveling procedure

/* input: instruction DAG */
/* output: leveled instruction DAG */

MODELING OF SUPERSCALAR INSTRUCTION SCHEDULING AND . . .

1. IfI~ has no successors, then L(Ii) = D(Ii) + 1;
2. Else L(I~) = max {L(I*)} + D(I~) + 1, VI* ~ S(Ii).

359

ECG-algorithm-labeling procedure

/* input: leveled instruction DAG */
/* output: labeled instructions DAG */
1. lv = 1 ; i = 1;
2. for lv = 1 to max-Level
3. Let R be the set of instructions of level lv;
4. while R ~ 0
5. Let I* be the instruction in R such that

N(I*) = min {N(I)}, VI ~ R (break tie at will);
6. ~(I*) = i;
7. R = R - {I*};
8. i = i + 1 ;
9. endwhile;
10. endfor;

The labels of the instruction in Figure 1 are denoted by the subscripts. Figure
2 shows an ECG-schedule of the DAG in Figure 1.

1 2 3 4 5 6 7 8 9

P l l h8 18

P21 121 h7 Is

P31 12s 12o I1 lie 114 Ilo h

P32 124 119 Ils h~ le 13

P ~ 123 12 112 17

P34 122 Il l 16

10 11 12

Figure 2. An ECG-schedule of the sample DAG.

It can be proved that instructions labeled by the ECG-algorithm satisfy guidelines
G1 and G2. Since the proof is not difficult, it is omitted here. Interested readers may
refer to 1-17]. Let Wec~ denote the length of an ECG-schedule and Wop~ the length of
an optimal schedule. For a given (k, M, ~ , z), the worst-case performance of the
ECG-algorithm is to find the value

max (WecG/Wop,).
'q'(U, . ~ , P f , D)

The significance of the heuristic algorithm is that its worst case bound is smaller
than the worst-case bound of other known scheduling algorithms.

360 HONG CHICH CHOU AND CHUNG PING CHUNG

4. Previous work.

In this section, we briefly review relevant known results concerning the above
problem. Some of these results concern UET task scheduling problems. We include
them because the task scheduling problem and the instruction scheduling problem
have some similarities. For scheduling UET tasks on m processors, the worst case of
an arbitrary greedy algorithm is bound by

Wgreedy/Wop t ~ 2 - 1/m.

If the tasks are typed, there is a best possible bound, established by Jaffe [11]:

wg,eeay/Wo e, _< k + 1 - 1/max (m~}

when k is the number of typed processors.
Hu [12] proved that executing the tasks in a highest-level-first order results in an

optimal schedule when precedence relations define an in-forest or out-forest. For an
arbitrary DAG, Hu showed that the bound is

wnu (4 /3 if m = 2 . - - <
Wopt 1 / m - - 1 if m > 2 .

Coffman and Graham [13] proposed an algorithm (the CG-algorithm) which is
optimal when m = 2. Lam and Sethi [14] explored the upper bound of the CG-
algorithm. They established a tight worst-case bound:

W c ~ / W o m < - 2 - 2 / m for m_>2.

Bernstein and Gertner [15] showed that optimal scheduling of expressions on the
machine (1, M = (ml),~, z = 1) can be carried out by a slightly modified CG-
algorithm. E. Lawler et al. [16] showed that the completion time of a schedule
constructed using a highest-level-first greedy heuristic is arbitrarily close to
2 - 2/(m(z + 1) + 1) times optimal. However, their assumption of equal delay cycles
is too restrictive for superscalar instructions. In this paper, we establish that the
bound value for the ECG-algorithm is

W~cG/Wop~ < k + 1 - 2 / [max{mi} (z + 1)].

Moreover, our model is very close to the actual superscalar instruction scheduling
problem.

5. Upper bound analysis.

The general steps for finding the upper bound are the following:
1. Given a DAG and its ECG-schedule with length W~c~, find the minimal length

Wop~ required to schedule the DAG;

MODELING OF SUPERSCALAR INSTRUCTION SCHEDULING AND . . . 361

2. find the number of instructions and the number of idlc cycles in the ECG-

schedule;
3. Then WEc~/Wopt < (no. of ins. + no. of idle cycles)/(no, of ins.).

The key point usually lies in finding Wop t.
To find wopt, we divided an ECG-schedule into segments, such that all the

instructions in one segment must be completed before any instruction in the next
segment can begin. Hence an optimal schedule corresponding to an ECG-schedule
will be no shorter than one that arranges the instructions in each segment optimally.
To identify segments, it would be easier first to identify the blocks which constitute
segments. The concepts of a segment and block are borrowed from [14].

5.1. Block and segment partitioning.

Assume that if a processor does not issue a new instruction in time slot t~, then it
issues a dummy instruction with label 0 in t~. Blocks Bi , Bo, for some i > 0, are
defined as follows:

Block partitioning procedure.
1. Let bo be the last finished instruction.
2. For i > 1, b~ is defined to be the most recent instruction issued by P , , such that

2(bi) + D(bi) = t~, ct(bi) > ~(bi-1) and there is no other instruction whose label
is greater than b~_ 1 and whose scope contains t~.

3. Repeat step 2 until no more bi can be found.
4. Block Bi-1 is the set of all instructions I* satisfying 2(bi) + D(b~) < 2(1") <

2(bi_ 1) + D(bi_ 1) and ~(I*) > c~(bi_ 1).

Suppose the above steps define bi for 0 < i < q and bq + 1 does not exist. Then Bq is
the set of instructions I* such that 2(1") < 2(bq) + D(bq) and ~(I*) __ ~(bq).

The block boundaries and block instructions of the sample ECG-schedule are
surrounded by bold lines in Figure 3. Instructions belonging to a block are called
block instructions. Unless otherwise specified, instructions mentioned in the rest of
this paper refer to block instructions.

After block partitioning, we may observe the following features:
1. There may be some instructions that fail to belong to any block. Such instruc-

tions are called extra instructions. For example, instruction 19 in Figure 3 is an
extra instruction.

2. The last time slot of Bi is in the scope ofbi only, the other slots are contained by at
least two instructions in B~.

3. All the instructions in B~ depend on b~+ 1. For example,/20 and Ilo precede all the
instructions scheduled behind them.

362 HONG CHICH CHOU AND CHUNG PING CHUNG

Pl l

P21

P32

P33

P34

b2

121

12S 120 I1

124 h9

12a 12

122

~ ' -B2 J

bl

ha

h7

hs 114 11o

115 h a 19

112

I l l

~ - B 1 J

b0

la

Is

17

le

14

13

Bo_.~

Figure 3. An ECG-schedule and its blocks of the sample DAG.

It is not always true that all instructions in one block precede all instructions in
the next block. For example, instruction 111 in B 1 does not precede every instruction
in Bo.

Next, blocks are used to form segments. Segments are formed by scanning blocks
from left to right. If any instruction in a block on the left does not precede all the
instructions in the next block on the right, then the two blocks are merged into one
segment, or else a segment is terminated and a new segment begun. The important
feature in forming segments is that when two blocks are to be merged, an extra
instruction can always be found. The extra instruction has to be counted into the
total number of instructions. For example, Figure 4 indicates the segments of the
sample ECG-schedule. There are two segments in the figure. Segment 1 consists of
block 2, since all the following instructions depend on every instruction in block 2.
Segment 2 consists of block 1 and block 0, since I~ ~ does not precede each instruction
in block 0. Since it is tedious to describe the procedure for forming segments and the
proof that extra instructions can always be found, we shall not do so here. Interested
readers may refer to [17].

5.2. Minimal length of segments.

After finding segments, we can obtain an optimal schedule of a set of instructions
by scheduling each segment optimally. So instead of calculating the worst-case ratio
of an entire schedule, we calculate the worst-case ratio of an optimal segment to an
ECG-segment.

For block instructions, an ECG-schedule includes three kinds of time slots: full
slots, partial slots, and delay slots.
• A full slot ty is a time slot in which all the processors of a certain type are issuing

new instructions. Time slots (1, 4, 5, 9) are such slots.
• A delay slot ta is a time slot in which all processors are idle. Time slots (3, 7, 8, 10,

11) are delay slots.
• A partial slot tp is a time slot in which at least one instruction is issued and at least

one processor of each type is idle. Time slots (2, 6) are partial slots.

MODELING OF SUPERSCALAR INSTRUCTION SCEIEDULING AND . . . 363

Plll

P21

P31

P3~"

P3~

P3~

1211 117

12s 12o I1 hs i114 110

124 ho hs ha 19

123 12 112

122 Ill

18

Is

17

la

14

la

W2

Figure 4. Segments of the sample ECG-schedule.

This classification of time slots is intended to reveal dependencies between
instructions. Since the maximal delay cycle is z and the scheduling discipline is
greedy, we have the following dependencies associated with partial and delay slots.

PROPERTY 1. In an ECG-schedule, all instructions scheduled after a delay slot ta

depend on at least one instruction scheduled in (ta - z, td -- 1).

PROPERTY 2. In an ECG-schedule, all instructions scheduled after a partial slot tp
depend on at least one instruction scheduled in (tp - z, tp).

LEMMA 1. Let W be a segment of an ECG-schedule. I f W contains d delay slots and

p partial slots, then Wovt >_ p + d + f ' , where f ' >_ 0 and p + f ' >_ d/z.

PROOF. This lemma can be proved by finding a chain h in W and showing that
Len(h) >_ p + d + f ' . Consequently, wovt >_ Len(h) >_ p + d + f ' .

Suppose h = (I r , lz,, . . . ,Ix,), then h can be constructed from the end of W by
chaining instructions to h one at a time until no more instructions can be chained.
The chain construction steps are as follows:
1. Let I~, be the last completed instructions in W..
2. Suppose i instructions have been chained for i >_ 1. I~_ ~), is selected in such a way

that I~x-~), is the rightmost (in terms of completion time) immediate predecessor
of I(~_ i + 1)' (break tie at will).

3. Repeat step 2 until no more instructions can be chained.

If we take W2 in Figure 4 as an example, the chain constructed by the steps above
is h = (I18,114, I1 o, I s) (notice that h is not unique in this case), which has a length of
8 cycles.

It can be proved that the scopes of the instructions in h cover all p partial and
d delay slots as well as any full slots. Thus Len(h) > p + d + f ' , where f ' > 0 denotes
the number of full slots covered by the scopes of h.

364 HONG CHICH CHOU AND CHUNG PING CHUNG

Next, we consider the minimal number of instructions in the chain. Since the
maximal delay cycle is z, there are no consecutive delay slots greater than z in W.
Thus for d delay slots, there must be at least Fd/z-]instructions in the chain and these
instructions reside in partial or full slots, so p + f ' >_ d/z (since p + f ' is integer, the
ceiling operation can be canceled). •

Pl l

P21

P31

P32

P33

P34

121

125 120 1 11

124 119

123 12

122

~ P K I

'ha

117

,h6

1'~5

114 11o

I1z 19

112

Il l

18

17

18

14

13

~ - - PK2 - J ~ PK1 --"

Figure 5. Packages of the ECG-schedule.

However, this minimum length may be underestimated. To explore a greater
minimum length of HI, we shall introduce the concept of packages. Packages are used
to expose the detailed dependence relationships inside a segment. Packages are
constructed by searching from right to left of W for partial or delay slots. Each time
a partial or a delay slot is found, that slot and the next z slots to its left form
a package. Let PKi be used to denote the ith package. Figure 5 indicates the
packages of the schedule in Figure 3. Since we start each package by finding a partial
or delay slot, all p partial and d delay slots are covered by packages. From Property
1 and Property 2, each instruction scheduled after a package must depend on at least
one instruction in that package. This fact encourages us to reexamine the minimal
length of W.. We categorize packages into three types:

• Al-type packages are packages containing only full and delay slots.
• A2-type packages are packages containing one full slot, one partial slot with only

one instruction scheduled in it, and any other full or delay slots.
• A3-type packages are the remaining cases, which include the following possibili-

ties:
1. one partial slot with one instruction and delay slots, or
2. one partial slot with two instructions and any other slots, or
3. two partial slots, each with one instruction, and any other slots.

For example, the types of the three packages in Figure 5 are as follows: P K 1 of W 1
is Al-type, since time slot 1 is a full slot, while PKI and PK 2 of W2 are A3-type.

LEMMA 2. Let W be a segment of an ECG-schedule with p partial and d delay slots.

MODELING OF SUPERSCALAR INSTRUCTION SCHEDULING AND . . . 365

tp l t f l

Ipl If1

If1

If1

If1

If1

PK1

Figure 6. An A2-type package con ta in ing a full s lot beh ind a par t ia l slot.

I f there are at A l-type packages and a 2 A 2-type packages in W, then wopt >- (P + d +
al + Va2/2q).

PROOF. From the proof of Lemma 1, we can find a chain h whose scopes cover all
p partial and d delay slots in W. But the length ofh equals p + d only when its scopes
cover just the p partial and the d delay slots. If the scopes of h cover any full slots,
these full slots have to be taken into account as contributing to the length of h.

First, we prove that A ~ type packages contribute to the minimal completion time
of W. Suppose PKi is an A1 type package containing only full and delay slots (by
definition). From the dependency properties, every instruction scheduled after PKi
must depend on at least one instruction in PKi, hence it must depend on an
instruction scheduled in a full slot. So if there are a l A 1-type packages, the scopes of
h cover al full slots. The minimal completion time of W is thus p + d + al cycles.

Next, we show that A2-type packages also contribute to the minimal completion
time of W, but the minimal contribution is Va2/27. Suppose without loss of generality
that there are only one full slot and one one-instruction partial slot in each A2-type
package. As indicated in Figure 6, let t:x denote the full slot, tpl the partial slot, 1:1
the set of the instructions scheduled in t:a, and Ip~ the only instruction scheduled in tpl.

C A S E 1. t f l > tpl.

Figure 6 shows such a case. Suppose tfl is not in the scopes ofh but tpl is. Since we
start each package by finding a partial or a delay slot, there must be a delay slot after
t:l. If the scopes of h terminated before t:t, the successors of Ipl could be scheduled
in the delay slot - a contradiction. If Ipl is the last instruction on h, its completion
time should cover t:l , otherwise Ipl could not be chosen when constructing h. So the
scopes of h must contain t:l.

CASE 2. t f l < tol.

366 HONG CHICH CHOU AND CHUNG PING CHUNG

t f l tp l

If1 Ipl

I l l

If1

If1

If1

If1

"--- PK1 ~ "

Figure 7. An Az-type package with a partial slot behind a full slot.

Figure 7 indicates this situation. We prove by induction that if there are a2
packages of this kind, they contribute Va2/2~ to the minimal length of W. Let
m denote any mi for 1 < i <_ k. We claim that when a2 is odd, there are (m + 1) x
[p + d + (a2 - 1)/2J-cycle chains or a [p + d + (a 2 + 1)/2J-cycle chain in W. In
both situations, W needs at least p + d + (a2 + 1)/2 cycles to be completed. When a 2
is even, there must be a [p + d + a2/2]-cycle chain in W.

First, let a2 -- 1. Taking Figure 7 as an example, we prove that there are (m + 1)
(p + d)-cycle chains or a (p + d + 1)-cycle chain in W. If t:l is in the scope of h, the
scope of h contain a full slot and a (p + d + 1)-cycle chain is found, so the proof is
completed. Suppose t:l is not in the scope of h. Since the scope of h terminates before
t:a, the only reason that prevents Ip from being scheduled in t:~ must be
e(I:l) > e(Ip), V I:i. From the scheduling discipline, L(l:l) > L(Ip) must hold. Now
consider the length of the chains going through 1:1. The chains cover all the partial
and delay slots before t:l. The level of I:l is not less than Iv, so in turn, it is not less
than the summation of the numbers of partial and delay slots after t:l. Therefore, the
lengths of the chains going through I:~ are at least (p + d)-cycles long. So there are
m + 1 (p + d)-cycle chains in W. W needs at least p + d + 1 cycles to be com-
pleted.

Second, let a2 = 2. We prove that there is a (p + d + 1)-cycle chain in W. Figure
8 illustrates this situation. PK1 and PK2 in Figure 8 are two A2-type packages. We
must suppose t:l and t:2 are not within the scope of h, otherwise the proof is
completed.

S ince P K 2 does not cause a block split, not all instructions after tp2 depend on Ipz
only. In other words, 1:2 ~ Ipl or I:z -< 1:1 must hold. IfI:2 <(Ipl, then the length of
the chain containing 1:2 and lp~ is p + d + 1, because its scope contains all the
p partial and d delay slots and the one full slot (tf2). If 1:2 "< 1:1, the scope of the
chain containing 1:1 and 1:2 cover all the partial and delay slots before 1:1 and the
one full slot (t:2). So the length of the chain is also p + d + 1.

For az > 2, similar arguments can be applied, so this part of the proof is omitted.
A complete proof can be found in [17].

MODELING OF SUPERSCALAR INSTRUCTION SCHEDULING AND . . . 367

tf2 tp2 tfl tp~

If2 Ip2 If1 Ipl

If2 In

If2 If1

If2 If1

If2 If1

If2 Ill

~ P K 2 ~ , / ~ - - PK1 ~,"

Figure 8. Two A2-type packages with partial slots behind full slots.

Finally, we compare the contribution of the A2-type packages in Case 1 and
Case 2. We see that the contribution is Faz/27 in Case 2 versus a2 in Case 1. So we
conclude that when there are a2 A2-type packages, the minimal length of W is
p + d + Fa2/2-]. The contributions of Al-type and A2-type packages to the minimal
length of W are independent. Thus their contributions can be added. •

LEMMA 3. Given segment W of an ECG-schedule, if there are az Az-type and
a3 A 3-type packages in W, the number of extra instructions plus instructions in partial
slots is not less than a2 + 2aa - 1.

PROOF. We first prove this lemma when W contains only one block. Then we
show that it is also true when W contains more than one block.

Assume that W contains only one block, and consider the number of instructions
in A3-type packages. Since W has only one block, there can be only one A3-type
package (P K1) that contains only one instruction. The other Aa-type packages must
contain at least two instructions in partial slots. For A2-type packages, by definition,
each A2-type package contains one instruction in a partial slot. Therefore the total
number of instructions scheduled in partial slots of W is at least a2 + 2a3 - 1
(Al-type packages have no partial slots).

If W contains B > 1 blocks, then there could be B A3-type packages which
contain one instruction only (the rightmost package of each block). But there are
B - 1 extra instructions to complement these one-instruction packages. So the
number of extra instructions plus the instructions in partial slots is still
a2 + 2a3 - 1. •

THEOREM 1. Given W, a segment of an EC G-schedule G on a (k, M, ~', z), let Weca be
the length of W and Wopt the length of an optimal schedule of W. Then weca/wopt <_
k + 1 - 2/(max{mi}(z + 1)).

368 HONG CHICH CHOU AND CHUNG PING CHUNG

PROOF. We see that the worst-case ration of WEc~/Wopt exists in optimal schedules
that contain no idle cycles. If an optimal schedule contains idle cycles, then these can
be eliminated by inserting some independent instructions into the original DAG to
fill up the idle cycles without affecting the length. This does not mean that the
worst-case ratio always exists in an optimal schedule without idle cycles. It means
that the search for the worst-case ratio can be narrowed down to those optimal
schedules which have no idle cycle. By the above argument, we conclude that the
first time slot of W must be a full slot; otherwise the optimal schedule will contain
idle cycles.

Let the number of partial slots in W be p, the number of delay slots be d and
~ / = ~ = 1 mi. Let there be al A 1-type, a2 A2-type and a3 A3-type packages in W and
let q = al + a2 + a3. Let Ui denote the set of type/instructions and Vii the set of type
i instructions scheduled in partial slots.

CASE 1. PKq (the leflmost package) contains the first time slot.

SUBCASE 1. PKq is a n A 1- or A2-type package.

In this subcase, the number of partial and delay slots in PKq must be no greater
than (z + 1)/2, since otherwise the optimal schedule of W will contain idle cycles.
Assume PKq have d' delay and p' = 1 partial slots i fPKq is A2-type, or p' = 0 i fPKq

is A3-type. All instructions scheduled after PKq are preceded by a chain at least
d' + p' long. Thus only the instructions in PKq can be scheduled in the first d' + p'
slots in the optimal schedule. Notice that PKq has at most one instruction in
a partial slot. If d' + p' > (z + 1)/2, the number of instructions in PKq is no more
than J#(z - 1)/2 + 1, which is obviously not enough to fill the first d' + p' >
(z + 1)/2 slots when J¢ > 1.

According to Lemma 2, the minimal length of Wis p + d + al + Fa:/27. Consider
the time-space product

k

< Jg(k - 1)Wop t - , / /g~ Vffmx + ~ V~

+ d//(p + d + al + [az/2] - al - Va2/2-] - ~] v~ + J/lWop,

WEca/Wop, <_ k + (p + d + al + [a2/27 -- al - Fa2/27 - ~ Vffmx)/Wow

Since p > ~ V~/m~,, the numerator of the rightmost term on the right-hand side of the
last equation is greater than zero, and Wop, > (p + d + al + ~az/2-]). Thus we have

WEc~/Wop~ <_ (k + 1) - (al + Va2/2~ + ~ Vi/m~)/(p + d + al + [a2/2~)

since (p + d + al + [az/2]) < (z(al + a2 - 1) + (z + l)/2 + (z + 1)a3 + a~ + ~a2/2]).

(al + ~az/2~ + (az + 2aa -- 1)/rex)
(1) WEc~/Wop~ < (k + 1)

z(al + a2 -- 1) + (z + 1)/2 + (z+ 1)a3 + aa + Faz/2q"

M O D E L I N G OF SUPERSCALAR I N S T R U C T I O N S C H E D U L I N G A N D . . . 369

0 ~ •

Q

F igure 9. A wors t -case D A G .

SUBCASE 2. P K ~ is an A3 type package. Using similar techniques we find

(2) Wec~/Wo., < (k + 1) -
(al + [a2/2-] + 1 + (a2 + 2a3 -- 1)/m~)

z(al + az) + (z + 1)a3 + a l -k ~az/2q -k 1"

CASE 2. Pgq does not contain the first slot. Again we use a cor responding
procedure; the result turns out to be the same as in (2).

T o find the upper bound of WEcG/Wop~, we mus t maximize the expressions 1 and 2,
tha t is, minimize the minus terms in them. Since the variables in these terms are all
integers we have to use slightly uno r thodox methods. In this way we find that these

two minus terms cannot be smaller than 2/(z + 1)rnx. Here al , a2 and a3 are variables
while z and rn~ are regarded as constants.

F o r expression 1:

(al + ~a2/2] + (a2 + 2a3 - 1)/mx)/(z(al + a2 - 1)

+ (z + 1)/2 + (z + 1)a 3 + ax + ~a2/2]) - 2/(z + 1)rex

= (al + [a22~ + (a2 + 2a3 - 1)/mx)(z + 1)m~ -

2(z(al + a2 - 1) + (z + 1)/2 + (z + l)a3 + al + [-az/2-])

= al (z + 1)(m~ - 2) + ~az/2](mx - 2) + Zmx~a2/2] - zaz + az - 2

> O, for m~ > 2.

370 HONG CHICH CHOU AND CHUNG PING CHUNG

a6n

I . . .

a2 a~ [

114 113

112

111

1~o

19 l s l 1~

18 14

17 13

16 12

21o 29 2S 2i

28 24

27! 23

261221
Figure 10. An ECG-schedule of the worst-case DAG.

al az a3

14

11 is

12 16

13 17

a4 a~

8

9 112

11¢ 113

111 21

a6 a7 ae

23 27 31

24 28 32

25 29 33

8.6f

132 136

/33 f37

n4 r18

I"15 139

114 21o

Figure 11. An optimal schedule of the worst-case DAG.

A similar approach can be applied to expression 2 to obtain the same result. So we
conclude that W~c~/Wop~ > k + 1 - 2/mx(z + 1). []

From the nature of segments, an optimal schedule can be found by scheduling
each segment optimally. So the result of Theorem 1 can be applied to a whole
schedule.

THEOREM 2. Let G be an ECG-schedule of a given (U, -<, Pf D) on a given
(k, M, ~ , z). Let WECG be the length of G and wop, be the length of an optimal schedule of
the same (U, -<, Pf D). Then WEcG/Wop~ --< k + 1 -- 2/max {mi}(z + 1).

To show that the bound is the best possible, we give an example for k = 2, z = 2,
and (ml = 1, m2 = 4). Consider the DAG in Figure 9. The DAG pattern contains 6n
type 1 instructions (denoted by ai) and 6n type 2 instructions (denoted by J~). The
type 1 instructions have no delay cycle but all type 2 instructions have two delay
cycles. The index of each instruction is a valid ECG-algorithm label. The ECG-
schedule of the DAG is shown in Figure 10, and an optimal schedule is shown in
Figure 11, in which the tail of the first pattern is overlapped with the next pattern. If
the DAG pattern is duplicated x times, the length of the ECG-schedule is
x(6n + 1 In), and the length of the optimal schedule is x(6n + 1) + 6n. The ratio is
thus

Wv~c~ x(17n) 17
Wopt x(6n + 1) + 6n 6

when x and n are large. This value is in agreement with Theorem 2.

MODELING OF SUPERSCALAR INSTRUCTION SCHEDULING AND . . . 371

6. Conclusion.

A heuristic instruction scheduling algorithm called the ECG-algorithm is pres-
ented, and its worst-case performance is explored. A new technique called package
partitioning is developed to expose the detailed dependence relationships between
instructions. A bound of at most (k + 1 - 2/max {mi} (z + 1)) times the length of an
optimal schedule is obtained. The bound is smaller than that of the highest-level first
algorithm.

REFERENCES

1. R. R. •eh•er and R. D. Gr•ves••BM R•SC System/6••• pr••ess•r architecture. •BM J• Research and
Development. 34 (1990), 23-36.

2. J. R. Ellis, Bulldog: A Compiler for VLIW Architecture, The MIT Press, 1986.
3. N. Margulis, 1860 Microprocessor Architecture. Mcgraw-Hill Press, New York, 1990.
4. V. Propescu, M. Schultz, J. Spracklen, G. Gibson, B. Lightner and D. Isaman, The megaflow

architecture. IEEE Micro. June (1991).
5. R. M. Tomasulo, An efficient algorithm for exploiting multiple arithmetic units, IBM Journal of

Research and Development 11 (1967) 25-33.
6. J. A. Fisher, Trace scheduling: A technique for global microcode compaction. IEEE Transaction on

Computers 30 (1981) 478-490.
7. J.A. Fisher, The VLIW Maehine: A multiprocessor for compiling scientific code. IEEE Computer 17,

July (1984) 45-53.
8. M. Johnson, Supersealar Microprocessor Design, Prentice Hall, London, 1990.
9. H.S. Warren, Jr., Instruction scheduling for the IBM RISC System/6000 processor. IBM J. Research

and Development 34 (1990) 85-92.
10. J. • Hennessy and T. R. Gr•ss• P•stpass ••de •ptimizati•n •f pipeline ••nstraints. ACM Transacti•n

on Programming Language and System 5 (1983) 442-448.
11. J. M. Jaffe, Bounds on the scheduling types task system. SIAM J. Computer 9 (1980) 541-551.
12. T. C. Hu, Parallel sequencing and assembly line problems. Operations Research 9 (1961) 841-884.
13. E. G. Coffman and R. L. Graham, Optimal scheduling for two-processor system. Acta Informatica

1 (1972) 200-213.
14. S. Lain and R. Sethi, Worst case analysis of two scheduling algorithm. SIAM J. Computer 6 (1977)

518-536.
15. D. Bernstein and Gertner• S•heduling expressi•ns •n a pipelined pr•cess•r with a maximal delay •f •ne

cycle. J. ACM Transactions on Programming Language and System 11 (1989) 57-66.
16. E. Law•er• J. K. Lenstra• C. Marte•• B. Sim•ns and L St•ckmeyer•Pipeline schedulin•: a survey. IBM

Research Report RJ 5738, 1987, San Jose, CA.
17. H. C. Chou and C. P. Chung, A Study of Supersealar Instruction Scheduling Problem, Ph.D.

dissertation, Institute of Computer Science and Information Engineering, National Chiao-Tung
University, Taiwan, 1992.

