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We propose a parametric class of phylogenetic diversity (PD) measures that are sensitive to
both species abundance and species taxonomic or phylogenetic distances. This work extends
the conventional parametric species-neutral approach (based on ‘effective number of species’ or
Hill numbers) to take into account species relatedness, and also generalizes the traditional phylo-
genetic approach (based on ‘total phylogenetic length’) to incorporate species abundances. The
proposed measure quantifies ‘the mean effective number of species’ over any time interval of
interest, or the ‘effective number of maximally distinct lineages’ over that time interval. The pro-
duct of the measure and the interval length quantifies the ‘branch diversity’ of the phylogenetic
tree during that interval. The new measures generalize and unify many existing measures and
lead to a natural definition of taxonomic diversity as a special case. The replication principle
(or doubling property), an important requirement for species-neutral diversity, is generalized to
PD. The widely used Rao’s quadratic entropy and the phylogenetic entropy do not satisfy this
essential property, but a simple transformation converts each to our measures, which do satisfy
the property. The proposed approach is applied to forest data for interpreting the effects of
thinning.

Keywords: doubling property; Hill numbers; phylogenetic diversity; replication principle;
species-neutral diversity; taxonomic diversity
‘We are all blind men (and women) trying to describe a

monstrous elephant of ecological and evolutionary

diversity. . . ’

(Nanney 2004, p. 721)

‘Phylogenetic measures are better indicators of conser-

vation worth than species richness, and measures

using branch-lengths are better than procedures

relying solely on topology. . . ’

(Crozier 1997, p. 243)
1. INTRODUCTION
An enormous number of diversity measures have
been proposed, not only in ecology but also in gen-
etics, economics, information science, linguistics,
physics and social sciences, among others (e.g.
Pielou 1975; Magurran 2004). Until recently, most
of these measures were species-neutral, treating
all species as if they were equally distinct. However,
as Pielou (1975, p. 17) was the first to notice,
the concept of diversity could be broadened to con-
sider taxonomic differences between species. Many
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biologists (see Vellend et al. 2010 for a review) have
recognized that, all else being equal, an assemblage
of phylogenetically divergent species (say, eagle,
magpie and dunlin) is in an important sense more
diverse than an assemblage consisting of closely
related species (magpie, blue magpie and tree pie).
Since there was never real agreement among
biologists about the simpler base concept of species-
neutral diversity (e.g. Hulbert 1971; Routledge
1979; Patil & Taillie 1982; Purvis & Hector 2000;
Jost 2007; Jost et al. 2010), and since there is even
less agreement about how to incorporate phylogenetic
differentiation (e.g. Crozier 1997; Faith 2002;
Cavender-Bares et al. 2009; Pavoine et al. 2009;
Vellend et al. 2010), we now face a hyperdiverse
and rapidly increasing assemblage of non-neutral
diversity measures.

We show below that most of these non-neutral
measures lack an essential mathematical property
implicit in biological reasoning about diversity. Con-
clusions based on these measures will often be
invalid, especially in conservation applications
(Hardy & Jost 2008). We derive a general class of
measures that take into account both species abun-
dances and species phylogenetic differences, and that
possess all the mathematical properties implicit in
standard biological reasoning about diversity. The
new measures behave more intuitively than previous
measures. Many of the previous measures can be
transformed into this new class.
This journal is q 2010 The Royal Society
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2. PREVIOUS NON-NEUTRAL MEASURES
Most of the non-neutral measures that have been pro-
posed are generalization of the classic species-neutral
ecological diversity measures: species richness, the
Shannon entropy and the Gini–Simpson index. The
pioneering work of Vane-Wright et al. (1991) general-
ized species richness to take into account cladistic
diversity (CD), based on the total nodes in a taxo-
nomic tree. Subsequent important work was done by
Faith (1992, 1994), Crozier (1992, 1997), Weitzman
(1992, 1998) and Warwick & Clarke (1995). Faith
(1992) defined the phylogenetic diversity (PD) as the
sum of the branch lengths of the phylogeny connecting
all species in the target community. This concept of
PD is essentially a measure of the total amount of evol-
utionary history embodied in an assemblage since the
time of the most recent common ancestor of the
assemblage. The branch lengths may be proportional
to time of divergence, or they may be proportional to
the number of base changes in a given gene or may
use some other measures of change. If the branch
lengths are proportional to divergence time, all
branch tips are the same distance from the tree base
(the first node). Such trees are called ‘ultrametric
trees’ and have particularly simple mathematical
properties.

These generalizations of species richness do not
take into account species relative abundances, because
nearly all early studies were based on a coarse spatial
scale, and data were mostly collected from museum
specimen records; thus, relative abundances could
not be reliably estimated. These measures are still
useful in many conservation purposes or in cases
where species abundances are difficult to count, such
as micro-organisms or clumped plants. However,
species abundances, if available, provide a more com-
plete description of the ecosystem, and it seems
reasonable from the perspective of community ecology
to weigh a lineage by the numerical importance of its
descendants. There is also a strong practical motiv-
ation for using measures that weigh species by their
abundance. In many ecosystems, most species are
rare, and unreasonable or impossible effort is required
to detect them all. Species richness is therefore very
difficult to estimate reliably. By contrast, most abun-
dance-based diversity measures can be reliably
estimated from small samples.

Diversity measures combining both phylogeny and
abundances have been proposed in the literature
(Rao 1982; Solow et al. 1993; Solow & Polasky
1994; Warwick & Clarke 1995; Izsák & Papp 2000;
Webb 2000; Ricotta & Szeidl 2006, 2009; Weikard
et al. 2006; Hardy & Senterre 2007; Hardy & Jost
2008; Allen et al. 2009; Pavoine et al. 2009; Cadotte
et al. 2010). Rao’s quadratic entropy (Rao 1982), a
generalization of the Gini–Simpson index, is the
most well-developed of these. When pairwise differ-
ences between species are specified, Rao’s Q gives
the mean phylogenetic distance between any two
randomly chosen individuals in the community:

Q ¼
X

i;j

dijpipj ; ð2:1Þ
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where dij denotes the phylogenetic distance between
species i and j, and pi and pj denote species relative
abundance of species i and j. Ricotta & Szeidl (2009)
proposed a transformation of Q if distances are
normalized to the range of [0, 1]:

Q̂ ¼ 1

1�Q
: ð2:2Þ

The advantages of this transformation will become
clear in the following sections.

Allen et al. (2009) generalized the Shannon entropy
to take into account phylogenetic differences. For a
rooted tree, their phylogenetic entropy Hp is

Hp ¼ �
X

i

Liai log ai ; ð2:3Þ

where the summation is over all branches, Li is the
length of branch i, and ai denotes the abundance des-
cending from branch i. This measure includes the
Shannon entropy as a special case.

For ultrametric trees, Pavoine et al. (2009) inte-
grated Faith’s PD, Allen et al.’s Hp and Rao’s Q into
a parametric class of measure called Iq. The parameter
q corresponds to the order in the Tsallis (1988) gener-
alized entropy. The three named measures correspond
to the orders q ¼ 0, 1 and 2; I0 ¼ Faith’s PD minus the
tree height; I1 ¼ Hp and I2 ¼ Q.
3. THE REPLICATION PRINCIPLE
While biologists have traditionally used the Shannon
entropy and the Gini–Simpson index to quantify
diversity, this practice is inconsistent with their own
rules of inference about diversity. For example, users
of these measures often judge the compositional simi-
larity of two or more groups by taking the ratio of
mean within-group diversity to total (pooled) diversity.
If the within-group diversity is close to the total diver-
sity, biologists infer that the groups are similar in
composition. Yet, when used with the Shannon
entropy or the Gini–Simpson index, this ratio does
not directly reflect compositional similarity. When
within-group diversity is high, the ratio approaches
unity, supposedly indicating that the groups are
nearly identical in composition, even if the groups
are in fact completely distinct (no shared species).

Conservation biologists use diversity measures to
judge the impact of human activities or to design con-
servation strategies. Yet, the Shannon entropy and the
Gini–Simpson index can be very misleading when
judging human impacts, and are logically self-contra-
dictory when used to assess conservation plans (Jost
2009), because of their nonlinearity with respect to
increasing diversity. We conclude that these measures,
in spite of their popularity, do not capture biologists’
notions of diversity. The forms of reasoning that biol-
ogists apply to diversity lead to invalid conclusions
when used with these measures. These common
forms of reasoning about diversity implicitly assume
that diversity obeys the ‘replication principle’. The
replication principle for species-neutral diversity
states that if we have N equally large, equally diverse
groups with no species in common, the diversity of
the pooled groups must be N times the diversity of a
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single group. Many authors (MacArthur 1965, 1972;
Whittaker 1972; Peet 1974; Routledge 1979; Jost
2006, 2007, 2009; Jost et al. 2010) have shown that
only diversity measures that satisfy this replication
principle or ‘doubling property’ (Hill 1973; Jost
2007, 2008, 2009; Ricotta & Szeidl 2009) give math-
ematically, logically and intuitively correct results.
The replication principle is best known in economics,
where it has long been recognized as an important
property of concentration and diversity measures
(Hannah & Kay 1977).

To see the importance of this property, compare the
behaviour of the Gini–Simpson index 1�

P
i p2

i with
that of the inverse Simpson concentration 1=

P
i p2

i ,
which does obey the replication principle. Consider
an archipelago of 20 equally large, equally diverse
islands, each with completely distinctive tree floras.
There are no shared species among islands. Assume
the tree floras have the frequency distributions of the
trees of Barro Colorado Island, Panama. To measure
the compositional similarity among the islands, ecolo-
gists will take the mean diversity of the islands (0.95)
and divide it by the diversity of the archipelago as a
whole (0.998). For this example, the ratio is 0.95/
0.998 ¼ 0.95, near unity, supposedly indicating that
the islands are nearly identical in composition, even
though the islands are actually completely distinct
(no shared species). This ratio does not reflect compo-
sitional similarity. Doing the same with the inverse
Simpson concentration gives a ratio of 20.3/406 ¼
1/20, the smallest possible value for a set of 20 equally
large islands, correctly showing that they are comple-
tely distinct in composition. The same problems
apply to the Shannon entropy, and are resolved by
using the exponential of Shannon entropy.

Since the Shannon entropy and the Gini–Simpson
index do not obey the replication principle, neither do
their phylogenetic generalizations—Rao’s quadratic
entropy, Allen et al.’s phylogenetic entropy and
Pavoine’s generalized Tsallis entropy family. Though
each of these has a useful interpretation, they cannot
be applied directly to judge efficacy of conservation
plans, magnitudes of human impacts or compositional
similarity among groups. These considerations motiv-
ate our search for a family of PD measures that are
sensitive to species relative abundances and that obey
the replication principle.

Species-neutral diversity measures that do obey the
replication principle (the ‘true’ diversity defined by
Jost 2007) include species richness, the exponential
of Shannon entropy and the inverse Simpson concen-
tration. These are special cases of a general class of
measures, known as Hill numbers (Hill 1973):

qD ¼
XS

i¼1

p
q
i

 !1=ð1�qÞ

; ð3:1Þ

where S is the number of species, pi is the relative
abundance of the ith species and the parameter q,
called the ‘order’ of the diversity measure, determines
its sensitivity to species frequencies. The measure 0D
corresponds to species richness and 2D corresponds
to the inverse Simpson concentration, giving roughly
Phil. Trans. R. Soc. B (2010)
the number of ‘very abundant’ species in a community
(Hill 1973). The measure is undefined when q ¼ 1,
but the limit as q approaches unity exists and equals

1D ¼ lim
q!1

qD ¼ exp �
XS

i¼1

pi log pi

 !
; ð3:2Þ

which is the exponential of Shannon entropy. Roughly,
1D measures the number of ‘common’ (or ‘typical’)
species in a community. Hill numbers provide a
unified framework for the three most popular groups
of diversity measures, q ¼ 0, 1 and 2.

The Hill numbers are interpreted as the ‘effective
number of species’ or ‘species equivalents’
(MacArthur 1965, 1972; Hill 1973; Jost 2006,
2007). For any community, if we obtain a value
qD ¼ w, then the diversity of this community is the
same as that of a community with w equally abundant
species. Hill numbers will be the basis for our phylo-
genetic generalization. We give the appropriate
phylogenetic generalization of the replication principle
in §6.
4. PHYLOGENETIC DIVERSITY MEASURES
(a) Conceptual framework

To emphasize the conceptual simplicity of our frame-
work, we first explain it verbally, and then derive the
corresponding formulae. We start by considering a
phylogenetic tree that uses divergence times to place
the nodes (so that the tree is ultrametric). At any
given moment t, we can find the species by slicing
the tree as in figure 1a. We can find their ‘abundances’
by summing the abundances of their descendants in
the present-day assemblage. These abundances are
not estimates of the actual abundances of these ances-
tral species at time t, but rather measures of their
importance for the present-day assemblage. The lin-
eage diversity at time t can be found by dividing
these abundances by the total abundance at this time
t, and inserting these relative abundances into the
equation for Hill numbers of order q, equation (3.1).
We call this qD(t).

We can average the diversities qD(t) of the phyloge-
netic tree over any time interval of interest. We will be
interested in the time interval from 2T years to the
present time. While previous phylogenetic studies
have focused on T as the age of the first node (root),
we do not make this restriction, because we may
want to compare diversities of systems with different
ages of the first node. Also, how diversity varies
with time for any individual tree provides important
information about evolution.

The average diversity of order q over the interval
[2T, 0] incorporates information about the tree’s
branching pattern, its relative branch lengths and the
relative abundances flowing through each of its
branch segments. For a given present-day diversity,
this average will be large when there are many deep
branches, each well represented in the present-day
assemblage. It will be small when all branches
emerge recently and/or when older branches are
poorly represented in the present-day assemblage.
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Figure 1. (a) A hypothetical ultrametric rooted phylogenetic tree with four species. Three different slices corresponding to
three different times are shown. For a fixed T (not restricted to the age of the root), the nodes divide the phylogenetic tree
into segments 1, 2 and 3 with duration (length) T1, T2 and T3, respectively. In any moment of segment 1, there are

four species (i.e. four branches cut); in segment 2, there are three species; and in segment 3, there are two species. The
mean species richness over the time interval [2T, 0] is (T1/T ) � 4 þ (T2/T ) � 3 þ (T3/T ) � 2. In any moment of segment
1, the species relative abundances (i.e. node abundances correspond to the four branches) are f p1; p2; p3; p4g; in segment
2, the species relative abundances are fg1; g2; g3g ¼ fp1; p2 þ p3; p4g; in segment 3, the species relative abundances are
fh1; h2g ¼ f p1 þ p2 þ p3; p4g. (b) A hypothetical non-ultrametric tree. Let �T be the weighted (by species

abundance) mean of the distances from root node to each of the terminal branch tips.
�T ¼ 4� 0:5þ ð3:5þ 2Þ � 0:2þ ð1þ 2Þ � 0:3 ¼ 4. Note �T is also the weighted (by branch length) total node abundance
because �T ¼ 0:5� 4þ 0:2� 3:5þ 0:3� 1þ 0:5� 2 ¼ 4. Conceptually, the ‘branch diversity’ is defined for an assemblage
of four branches: each has, respectively, relative abundance 0:5=�T ¼ 0:125, 0:2=�T ¼ 0:05, 0:3=�T ¼ 0:075 and
0:5=�T ¼ 0:125; and each has, respectively, weight (i.e. branch length) 4, 3.5, 1 and 2. This is equivalent to an assemblage

with 10.5 equally weighted ‘branches’: there are 4 branches with relative abundance 0:5=�T ¼ 0:125; 3.5 branches with rela-
tive abundance 0:2=�T ¼ 0:05; 1 branch with relative abundance 0:3=�T ¼ 0:075 and 2 branches with relative abundance
0:5=�T ¼ 0:125.
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It is always less than or equal to the present diversity
of order q.

There are many ways to take this average. If we want
the replication principle to be valid in its strongest
possible form, then we must average the diversities
qD(t) according to Jost’s (2007) derivation of the for-
mula for the mean (a) diversity of a set of equally
weighted assemblages. This mean diversity over the
time interval [2T, 0] will be called q �DðTÞ (mean diver-
sity of order q over T years). With this choice of mean,
when N maximally distinct trees with equal mean
diversities (for fixed T ) are combined, the mean diver-
sity of the combined tree is N times the mean diversity
of any individual tree. The branching patterns, abun-
dances and richnesses of the N trees can all be
different, as long as each of the trees is completely dis-
tinct (all branching off from the earliest point in the
tree, at or before time T ). Some choices of averaging
formulae obey weaker versions of the principle, and
these may be useful for some purposes. We discuss
an alternative choice of mean in §8.

We may want to consider not just the mean diversity
but the branch or lineage diversity of the tree as a
whole, over the interval from –T to present. At any
point within a branch, the abundance or importance
of each branch lineage is the sum of the abundances
of the present-day species descending from that
point, as described above. Then the total diversity of
Phil. Trans. R. Soc. B (2010)
all the ‘species’ that evolved in the tree during the
time interval [2T, 0] is found by taking the Hill
number of this entire virtual assemblage of ancestral
species. The Hill numbers depend only on the relative
abundances of each species, so we need to divide the
abundances by the total abundance of all the species
in the tree. If each branch is weighted by its corre-
sponding branch length, then we show below that
this diversity depends only on the branching pattern
and on the relative abundances of the species in the
present-day assembly. We call this measure ‘phyloge-
netic diversity of order q through T years ago’ or ‘branch
diversity’ and denote it by qPD(T ). This turns out
to be just the product of the interval duration T
and the mean diversity over that interval, q �DðTÞ. For
q ¼ 0 (only species richness is considered), and T ¼
the age of the first node, this branch diversity is just
Faith’s PD.

Instead of using time as the metric for a phylo-
genetic tree, we often want to use a more direct
measure of evolutionary work, such as the number of
base changes at a selected locus, or the amount of
functional or morphological differentiation from a
common ancestor. The branches of the resulting tree
will then be uneven, so the tree will not be ultrametric.
However, we can easily apply the idea of branch diver-
sity to such non-ultrametric trees. The branch lengths
are calculated in the appropriate units, such as base
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changes. In non-ultrametric cases, the time T is replaced
by �T, the mean of the distances from root node to each
of the terminal branch tips (i.e. the mean evolutionary
change per species); see figure 1b for a numerical
example. Thus, we can obtain the total effective
number of ‘changes’ based on Hill numbers.

(b) Formulae

To make the above discussion precise and derive
formulae from it, we need to introduce some notation.
Assume that for any fixed time T the phylogenetic tree
is divided as k segments with duration T1, T2, . . . , Tk

and species richness S1, S2, . . . , Sk as in figure 1a.
Note that S1¼ S, the present-day species richness.
Each branching point must form a segment boundary,
so that the species richness in any given segment is a
constant. Our derivation and formulae would be
unchanged by making finer segment divisions. To
obtain the formulae for 0 �DðTÞ, assume there are Si

species (i.e. Si branches cut) in the ith segment.
Then, 0 �DðT Þ (mean diversity of order 0 over T years) is

0 �DðTÞ ¼ T1

T
� S1 þ

T2

T
� S2 þ � � � þ

Tk

T
� Sk

¼
0PDðTÞ

T
: ð4:1Þ

When T is the time corresponding to the root, then
0PD(T ) is Faith’s PD measure. Our equation (4.1)
connects Faith’s PD to the mean species richness
over the time interval from the terminal tips to
the root.

At each moment within a given segment, the
set of species relative abundances is constant. In
segment 1, the species relative abundances are
f p1; p2; . . . ; pS1

g;
PS1

i¼1 pi ¼ 1. Assume that in
segment 2 the relative abundances are
fg1; g2; . . . ; gS2

g;
PS2

i¼1 gi ¼ 1, . . . , and in segment k
the relative abundances are fh1; h2; . . . ; hSk

g;PSk

i¼1 hi ¼ 1 (figure 1a). Without loss of generality,
we can assume T1, T2, . . . , Tk are all positive integers,
because the mean diversity q �DðTÞ is invariant to
the units of time. Weighing each moment in time
equally, we can conceptually imagine that there
are T1 assemblages with abundance vector
f p1; p2; . . . ; pS1

g, T2 assemblages with abundance
vector fg1; g2; . . . ; gS2

g . . . , and Tk assemblages with
abundance vector fh1; h2; . . . ; hSk

g. There are a total
of T1 þ T2 þ � � � þ Tk ¼ T assemblages, and each is
given the same weight 1/T. Jost (2007) showed
that, in the context of calculating alpha diversity for
equally weighted assemblages, the alpha diversity
should be obtained by first averaging the sums ofP

p
q
i ;
P

g
q
i , . . . , and

P
h

q
i , and then converting this

average to a ‘true’ diversity by raising it to the power 1/
(1 2 q). We use this same kind of average to obtain the
formula for q �DðTÞ (mean diversity of order q over T years)

q �DðTÞ¼ T1

T

XS1

i¼1

p
q
i þ

T2

T

XS2

i¼1

g
q
i þ���þ

Tk

T

XSk

i¼1

h
q
i

( )1=ð1�qÞ

:

ð4:2Þ

When q¼ 0, equation (4.2) reduces to equation (4.1).
The same formula (4.2) may be computed more
Phil. Trans. R. Soc. B (2010)
easily by numbering every branch in the time interval
[2T, 0]. Denote the set of all branches in this time inter-
val by BT. Then, q �DðTÞ can be calculated as

q �DðT Þ ¼
X
i[BT

Li

T
a

q
i

( )1=ð1�qÞ

¼ 1

T

X
i[BT

Li
ai

T

� �q

( )1=ð1�qÞ

; ð4:3Þ

where Li is the length (duration) of branch i in the set BT

and ai is the total abundance descended from branch i.
This diversity may also be interpreted as the effective
number of maximally distinct lineages (or species)
during the interval [2T, 0]. For maximally distinct
species we have all branch lengths equal to T, and thus
q �DðT Þ reduces to Hill numbers qD in equation (3.1).
This gives a simple reference tree for a value of
q �DðT Þ ¼ z, i.e. the observed mean diversity in the time
period [2T, 0] is the same as the mean diversity of a
community consisting of z equally abundant and maxi-
mally distinct species with branch length T.

The effective diversity of the whole tree during the
interval [2T, 0] is the product of the effective
number of lineages during the interval and the duration
of the interval. We denote this measure by qPD(T )
(phylogenetic diversity of order q through T years ago):

qPDðT Þ ¼ T � q�DðT Þ ¼ T �
X
i[BT

Li

T
a

q
i

( )1=ð1�qÞ

¼
X
i[BT

Li
ai

T

� �q

( )1=ð1�qÞ

: ð4:4Þ

This has dimensions of ‘effective number of lineage
years’. If q ¼ 0, this equals 0PD(T ) as defined above,
regardless of branching pattern or abundances. If all
species are maximally distinct and equally common,
and if T is the age of the highest node, this equals
Faith’s PD for all q.

For an ultrametric tree, we can express the time
parameter T as T ¼

P
i[BT

Liai. Therefore, the time
length T can also be interpreted as the total abun-
dance (weighted by branch lengths) in the time
interval [2T, 0] and ai /T represents the relative
abundance of the ith branch. Using this idea,
equation (4.4) suggests that instead of dividing the
tree into several segments and treating the mean
diversity as the alpha diversity of several assemblages,
we could conceptually think of all the branch seg-
ments in the interval [2T, 0] as forming a single
assemblage consisting of relative abundances
fai=T ; i [ BTg, with each branch weighted by its
corresponding branch length. (Equivalently, we can
also think for each i that there are Li equally weighted
‘branches’ with the relative abundance ai/T.) Then
the Hill number of order q for this assemblage is
exactly the branch diversity qPD(T ) given in equation
(4.4). Dividing this Hill number by T, we obtain
q �DðT Þ given in equation (4.3).

For the extension to non-ultrametric trees, let B�T

denote the set of branches connecting all focal species
with mean base change �T . The total node abundance
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weighted by branch lengths is �T ¼
P

i[B�T
Liai, which

also represents the weighted (by species abundance)
mean evolutionary change per species (figure 1b). (In
ultrametric trees, �T ¼ T .) Based on the assemblage
consisting of all branches with relative abundance set
fai=�T ; i [ B�Tg and under the assumption that each
branch is weighted by its corresponding branch
length (figure 1b), parallel derivation gives the follow-
ing measures, which are exactly the same as those in
equations (4.3) and (4.4), except that the parameter
T there must be replaced by the mean quantity �T :

q �Dð�T Þ ¼
X
i[B�T

Li

�T
a

q
i

( )1=ð1�qÞ

¼ 1
�T

X
i[B�T

Li
ai

�T

� �q
( )1=ð1�qÞ

ð4:5Þ

and

qPDð�TÞ ¼
X
i[B�T

Li
ai

�T

� �q
( )1=ð1�qÞ

: ð4:6Þ

We thus can conclude that the diversity of a non-
ultrametric tree with mean evolutionary change �T
(however this might be measured) is exactly the
same as that of an ultrametric tree with time par-
ameter �T . Therefore, for non-ultametric trees, if
q �Dð�T Þ ¼ z, then the diversity is the same as the diver-
sity of an ultrametric tree consisting of z equally
abundant and maximally distinct species with
branch length �T .
(c) Relationship with Rao’s Q and phylogenetic

entropy Hp

In the limit as q approaches unity, the formula q �Dð�T Þ
in equation (4.5) equals

1 �Dð�T Þ ¼ exp �
X
i[B�T

Li

�T
ai log ai

" #
: ð4:7Þ

The measure 1 �Dð�T Þ has the following simple relation-
ship with the phylogenetic entropy Hp:

1 �Dð�T Þ ¼ expðHp

�T
Þ or logð1 �Dð�T ÞÞ ¼ Hp

�T
: ð4:8Þ

When q ¼ 2, from equation (4.5), we have

2 �Dð�T Þ ¼
X
i[B�T

Li

�T
a2

i

( )�1

: ð4:9Þ

After some algebra, we have the relationship between
2 �Dð�T Þ and Rao’s quadratic entropy Q:

2 �Dð�T Þ ¼
�T

�T �Q
¼ 1

1�Q=�T
: ð4:10Þ

Formula (4.10) represents the equivalent number of
completely distinct species (of age �T ) for the assem-
blage. Ricotta & Szeidl (2009) derived a similar
formula, given in equation (2.2), for the special case
in which the pairwise distance between any two species
is normalized to the range of [0, 1]. While their
Phil. Trans. R. Soc. B (2010)
formula is identical to our equation (4.10) for ultra-
metric trees when our time parameter T is scaled to
1, for non-ultrametric trees, our theory leads to the
conclusion that the equivalent number of species for
Q should be 1=ð1�Q=�TÞ.

We give an example to illustrate this point. Consider
a non-ultrametric tree in which three equally
abundant species are maximally distinct with
branch lengths 1, 1 and 0.2, respectively, from a
divergence point. The pairwise distances between
the three species are d12 ¼ 1, d13 ¼ 0.6 and d23 ¼

0.6. We have Rao’s Q ¼ 4.4/9 ¼ 0.489 and
�T ¼ ð1=3Þ � ð1þ 1þ 0:2Þ ¼ 2:2=3 ¼ 0:733. Based
on our equivalent number of species formula, we
have 1=ð1�Q=�T Þ ¼ 3 maximally distinct species
with equal branch lengths of 0.733, and the total
length ¼ 0.733 � 3 ¼ 2.2, which is Faith’s PD. How-
ever, based on the Ricotta & Szeidl (2009) formula,
we obtain 1=ð1�QÞ ¼ 1:957, implying there are
1.957 maximally distinct species with branch length
of 1. The total length is thus 1.957 � 1 ¼ 1.957,
which is not Faith’s PD.
5. TAXONOMIC DIVERSITY
Rather than using time or the number of base
changes at a locus as our measure of evolutionary
work, we might want to use a more holistic measure
of evolutionary work, such as a phylogenetic tree
based on the classical Linnaean taxonomic categories.
Consider the special case in which each Linnaean
taxonomic category is given unit length, and assume
all species are classified in all levels. Our formulae
above can be easily applied to this ultrametric tree,
with T replaced by an integer representing the
number of taxonomic categories needed to character-
ize the assemblage. We thus change the continuous
time parameter T to an integer parameter L (level )
to distinguish taxonomic diversity from the general
PD measures q �DðT Þ and qPD(T ). If we use species
and genus, then L ¼ 2; if we use species, genus and
family, then L ¼ 3. Additional intermediate levels,
such as subgenus or subfamily, may be appropriate
depending on the group. Notice that in a taxonomic
tree, the total length is identical to the total number
of nodes. Setting all the segment lengths Li to unity
in equations (4.3) and (4.4), we have the following
mean diversity of order q for L taxonomic levels, q �DðLÞ,

q �DðLÞ ¼
P

i a
q
i

L

� �1=ð1�qÞ

¼ 1

L

X
i

ai

L

� �q

( )1=ð1�qÞ

; ð5:1Þ

where i is over all nodes in the L levels taxonomy
tree. The measure q �DðLÞ quantifies ‘the mean effec-
tive number of cladistic nodes per level in a
taxonomic tree of L levels’. The diversity of a taxon-
omy tree with q �DðLÞ ¼ z is the same as the diversity
of a community consisting of z equally abundant
species, with each species classified in its own genus
and family, so that there are z species, z genera and
z families.



Table 1. A summary of species-neutral and phylogenetic diversity measures and their interpretations; all satisfy the

replication principle. CD, cladistic diversity (total number of nodes) by Vane-Wright et al. (1991); PD, phylogenetic diversity
(sum of branch lengths) by Faith (1992); Q, quadratic entropy, equation (2.1); Hp, phylogenetic entropy, equation (2.3).

diversity types
species-neutral
diversity

taxonomic classification
(L levels)

ultrametric phylogenetic
tree

non-ultrametric phylogenetic
tree

diversity or
mean
diversity of
general

order q

qD: equation (3.1),
Hill numbers
(effective number
of species)

q �DðLÞ: equation (5.1),
mean effective
number of cladistic
nodes per level

q �DðTÞ: equation (4.3),
mean effective number
of species (or lineages)
over T years

q �Dð�TÞ: equation (4.5), mean
effective number of
species (or lineages) over
�T mean base changes

q ¼ 0 species richness CD/L PD/T PD/�T
q ¼ 1 exp(entropy) exp(Hp/L) exp(Hp/T ) expðHp=�TÞ
q ¼ 2 1/Simpson 1/[1 2 (Q/L)] 1/[1 2 (Q/T )] 1=½1� ðQ=�TÞ�

branch (or

lineage)
diversity

q �DðLÞ � L: equation

(5.2), effective
number of cladistic
nodes for L levels

q �DðTÞ � T : equation

(4.4), effective number
of lineage lengths over
T years

q �Dð�TÞ � �T : equation (4.6),

effective number of base
changes over �T mean base
changes
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The taxonomic diversity of order q for L levels, qTD
(L), is the product of q �DðLÞ and the level L. This
measure quantifies ‘the effective number of total
cladistic nodes in a taxonomic tree of L levels’ and
has the formula

qTDðLÞ ¼ L � q�DðLÞ ¼
X

i

ai

L

� �q

( )1=ð1�qÞ

: ð5:2Þ

In the special case L ¼ 1, the measure q �DðLÞ ¼ qD.
When q ¼ 0, 0TD(L) ¼ total number of nodes,
which is Vane-Wright’s CD. Equations (4.8) and
(4.10) reduce to the following transformations:
1 �DðLÞ ¼ expðHp=LÞ and 2 �DðLÞ ¼ 1=½1� ðQ=LÞ�; see
table 1 for a summary of all proposed measures
and their relationships with conventional measures.
The decomposition of taxonomic diversity into
diversity of each level is provided in the electronic
supplementary material.
6. REPLICATION PRINCIPLE FOR
PHYLOGENETIC DIVERSITY
Some basic properties of our proposed measures
(table 1) are summarized in the electronic supplemen-
tary material; details of the proofs are provided in
Chiu (2010) and Jost & Chao (in preparation). In this
section, we only refine the concept of the replication
principle for phylogenetic trees, and prove its validity
for the most general case (i.e. non-ultrametric case),
implying that it is valid for all measures in table 1.

Suppose we have N completely distinct assemblages
(no shared lineages), all with the same mean branch
length �T (hence same T in the case of ultrametric
trees) and the same mean PD q �Dð�T Þ ¼ X. Then we
can prove the following strong replication principle:
if these assemblages are pooled in equal proportions,
the pooled assemblages have mean PD N � X.
Proof. Suppose in tree k, the branch set is B�T ;k

(we omit �T in the subscript and just use Bk in the fol-
lowing proof for notational simplicity) with branch
lengths fLik; i [ Bkg and the corresponding
nodes abundances faik; i [ Bkg, k ¼1, 2, . . . , N.
The N trees have the same mean diversity X, implying
Phil. Trans. R. Soc. B (2010)
P
i[Bk
ðLik=�T Þ a

q
ik ¼ X1�q for all k ¼1, 2, . . . , N. When

the N trees are pooled with equal weight for each tree,
each node abundance aik in the pooled tree becomes
aik/N. Then, the q �Dð�TÞ measure for the pooled tree
becomes

XN
k¼1

X
i[Bk

Lik

�T

aik

N

� �q

( )1=ð1�qÞ

¼ fN1�q �X1�qg1=ð1�qÞ

¼ N �X :

In our proof of this replication principle, the N assem-
blages must have the same average quantity �T, but may
have different numbers of species if q . 0, and the tree
structures of the N assemblages can be totally
different.
7. EXAMPLES
To show the general behaviour of our proposed
measures, we give two simple hypothetical examples
in the electronic supplementary material. Here, we
apply the proposed q �DðTÞ and qPD(T ) measures to
the real forest data discussed by Shimatani (2001),
who collected data from the over-storey tree species
in the Fred Russ experimental forest in Michigan.
For illustrative purpose, we only consider the abun-
dance data of block 4 in his paper for two sites: CT
(thinned site) and CU (un-thinned site). Both sites
were 28-year-old (in 1999) secondary forests. The
two sites were dominated by oak trees. No thinning
was conducted for the CU site after clear cutting in
1971, while thinning was done for non-oak species
in the site CT in 1982 and 1996.

Shimatani (2001) proposed a four-level (species,
genus, family, subclass) taxonomic measure based on
the Simpson index, and concluded that the traditional
diversity indices and the taxonomic diversity consider-
ing species relatedness give different conclusions about
the effect of thinning. We constructed the phylogeny
trees for species in each site by using the software
PHYLOMATIC (from http://www.phylodiversity.net/phy-
lomatic; Webb & Donoghue 2004). The phylogenetic
tree for the species in the two sites, and the two sets
of species relative abundances, are shown in figure 2.

http://www.phylodiversity.net/phylomatic
http://www.phylodiversity.net/phylomatic
http://www.phylodiversity.net/phylomatic
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Populus grandidentata
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Ulmus americana

Ulmus rubra

Celtis occidentalis
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Acer rubrum

Acer saccharum

Fraxinus american

Figure 2. The combined phylogenetic tree for the species in
the site CT (grey line) and site CU (black line). The age of
the root for the CT site is 116.6 units and 142.3 units for the
CU site and the pooled site. The species relative abundance

(%) in the two sites CT and CU are shown in the last two
columns (abundance data are from Shimatani 2001).
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We calculated three types of diversities: (i) the mean
diversity q �DðT Þ and the phylogenetic diversity
qPD(T ) based on the phylogeny trees and the relative
abundances in figure 2, (ii) the taxonomic diversity
q �DðLÞ based on taxonomic classification in fig. 1 of
Shimatani (2001), and (iii) the species-neutral diver-
sity based on Hill numbers (qD) in equation (3.1) for
q ¼ 0, 1 and 2.

In figure 3, the profile of q �DðTÞ and qPD(T ) when
0 , T , 150 is shown for q ¼ 0, 1 and 2. For ultra-
metric trees, the two measures give consistent
comparison as clearly seen in figure 3. We focus on
comparing the measure q �DðT Þ, which gives the mean
effective number of species as a function of evolution-
ary time T. Based on species richness (q ¼ 0), the
diversity q �DðT Þ of the thinned site CT dominates
that of un-thinned site CU for all values of T. But for
the common species (q ¼ 1) and very abundant species
(q ¼ 2), we have the reverse conclusion. When abun-
dance is taken into account, the un-thinned CU site
is more diverse than the thinned CT site for all
values of T, except for a very small interval in the
case of q ¼ 2.

Table 2 shows the three types of diversity
(q �DðT Þ;q �DðLÞ and qD) for three orders of q (0, 1
and 2). All these three measures are in the same
units of species. The q �DðT Þ measure is only shown
for T ¼ 142.3, which is the age of the root in the
pooled phylogenetic tree. The taxonomic measure
q �DðLÞ is computed for L ¼ 4 level classifications. For
any fixed order q, we had proved that qD is always
greater than or equal to q �DðT Þ and q �DðLÞ, and this is
seen numerically in table 2.

Based on table 2, we confirm the finding of
Shimatani (2001) that the traditional Simpson diver-
sity measure 2D implies that the thinned site is less
diverse. A similar implication is also valid for the 1D
measure, whereas species richness 0D shows that the
thinned site is more diverse. Based on q �DðLÞ, the taxo-
nomic diversity of the thinned site for all three orders is
greater, but the difference is not large. Shimatani thus
concluded that the thinning operation contributed to
an increase in taxonomic diversity.
Phil. Trans. R. Soc. B (2010)
In contrast to Shimatani’s conclusion, our results
based on q �DðTÞ for q ¼ 1 and 2 imply the opposite
conclusion, as shown in figure 3, and our results are
consistent with those based on the species-neutral
diversity. Our conclusion may be understood intui-
tively by noting that thinning concentrates the
abundance into a few species of intermediate phyloge-
netic distinctiveness (figure 2), while in the un-thinned
site, abundance is spread more equitably throughout
the phylogenetic tree. The plots in figure 3 provide
additional insights about the thinning effect when
both evolutionary history and species abundances
(q ¼ 1 and 2) are considered.
8. CONCLUDING REMARKS AND DISCUSSION
(a) Advantages of the new measures

We have proposed a unified class of PD measures that
are based on Hill numbers and that obey the replica-
tion principle (§§3 and 6). Most previous PD
measures that take into account species abundances,
such as Rao’s (1982) quadratic entropy Q, Allen
et al. (2009) phylogenetic entropy Hp and Pavoine
et al. (2009) generalized phylogenetic entropy Iq, do
not obey the replication principle.

Measures that do not obey the replication principle
give self-contradictory results in conservation analyses
(Jost 2009). Furthermore, for such measures, the
commonly used ratio of within-group to total ‘diver-
sity’ does not reflect the compositional similarity of
the groups, since it always approaches unity when
diversity is high (§3 and Hardy & Jost 2008). Finally,
it is difficult to use such measures to judge the magni-
tude of human or natural impacts on the environment.
The problem with these measures is their nonlinearity
with species addition. A numerical example is pro-
vided in the electronic supplementary material. Our
measures solve these problems.

If a dendrogram can be constructed from a trait-
based distance matrix using a clustering scheme
(Petchey & Gaston 2002), then we can apply our pro-
posed measures to quantify functional diversity; see
Chao & Jost (2011) for interpretation. Our proposed
approach can also be extended to the case of multiple
communities. The formulations of phylogenetic alpha,
beta and gamma diversities as well as the construction
of similarity (or differentiation) measures are devel-
oped in Chiu (2010). These results will be reported
in forthcoming papers.

(b) Interpretation of the new measures

For ultrametric trees, the mean diversity (in unit of
species) q �DðT Þ, defined in equation (4.3), quantifies
‘the mean effective number of species from the present
to T time units ago’. Here the parameter q determines
the diversity’s sensitivity to node (or branch segment)
abundances; high values of q emphasize those nodes
with high relative abundances. The product of q �DðTÞ
and T is the phylogenetic diversity measure qPD(T ),
defined in equation (4.4), and quantifies the ‘effective
branch diversity’ of the phylogenetic tree. For a
non-ultrametric tree, the only difference is in the
replacement of T by the mean evolutionary change �T
(the mean of the distances from root node to each of
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Table 2. Comparison of three types of diversities (q �DðTÞ, q �DðLÞ and qD) for q ¼ 0, 1 and 2. The q �DðTÞ value is computed at

T ¼ 142.3, which is the age of the root of the pooled tree. See figure 3 for other values of q �DðTÞ.

order q

site CT (thinned site) site CU (un-thinned site)

q �DðT ¼ 142:3Þ q �DðL ¼ 4Þ qD q �DðT ¼ 142:3Þ q �DðL ¼ 4Þ qD

q ¼ 0 5.402 7.25 10 5.338 6.750 9
q ¼ 1 2.660 3.951 4.967 2.797 3.904 5.664
q ¼ 2 1.940 3.187 3.809 2.054 3.012 4.548
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the terminal branch tips.). See table 1 for a summary
of the proposed measures.

For ultrametric trees, the most complete picture of
PD is provided by graphing it as a function of T. We
recommend three profiles for q ¼ 0, 1 and 2
(figure 3) and a range of time between 0 and a maxi-
mum value T (such as the age of the first node or
the age at which the group of interest diverges from
other groups or the time of origin of life). Profiles
may also be taken for fixed T (using the T values just
described, for example) as a function of q. Such pro-
files will show the effect of taking abundances into
account (q ¼ 0 gives no abundance accounting, while
high q takes into account only the most abundant
species). For non-ultrametric trees, similar recommen-
dations can be made based on the mean base change.

Species-neutral diversity measures discussed in this
paper are featured in the program SPADE (Chao &
Shen 2010), which can be freely downloaded from
the website http://chao.stat.nthu.edu.tw/softwareCE.
html. The new PD measures will be featured in the pro-
gram PhD (phylogenetic diversity) in the same website.

(c) Alternative formulation

We have developed our new measures to obey the
strongest possible version of the replication
Phil. Trans. R. Soc. B (2010)
principle, facilitating decomposition into independent
within- and between-group components. This was
accomplished by taking the average of qD(t) over the
time interval T using the mean derived by Jost
(2007). However, some other kinds of means may
also yield useful results. If we had used the ordinary
mean of qD(t) over the time interval T, we would
obtain the expectation value of qD(t) over the interval
T. Multiplying this by T would give a measure of the
amount of evolutionary history embodied by the
tree in this interval, or the amount of evolutionary
work done on the assemblage during this interval.
This product would be monotonically increasing in T,
an advantage over the formulation we have developed
above. However, this alternative mean does not obey
the strong version of the replication principle, but only
the following weaker one: when N maximally distinct
trees with equal diversities at each time t, and equal
total abundances, are combined, the mean diversity of
the combined trees is N times the mean diversity of
any individual tree. When this weaker version of the
replication principle is deemed sufficient, the alternative
formulation may be useful in some applications.

This paper is dedicated to Ross Crozier, a pioneer in the
phylogenetic research and in the study of genetics in social
insects. Ross unfortunately passed away in November

http://chao.stat.nthu.edu.tw/softwareCE.html
http://chao.stat.nthu.edu.tw/softwareCE.html
http://chao.stat.nthu.edu.tw/softwareCE.html
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