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Abstract
The properties and design concepts of air-defect symmetric and asymmetric directional
couplers (DCs) made of photonic crystal slabs (PCSs) are investigated by the tight-binding
theory. We give criteria in both cases for determining the specific frequency, named as the
decoupling point, at which the even (-like) and odd (-like) parities of eigenmodes should
switch. Two dispersion curves will cross in symmetric DCs but not in asymmetric DCs
because eigenfrequencies of isolated photonic waveguides (PCWs) are different in asymmetric
DCs. In the dielectric-rod PCS, the decoupling point of the DC is located almost at the same
wave vector as a two-dimensional (2D) DC with only a blue shift in its frequency. Therefore,
2D simulation can give a primary result in designing a dielectric-rod DC. On reducing the
radius of the defect rods, the increase in coupling coefficients leads to a faster group velocity
and a longer coupling length. On the other hand, the dispersion curves of the air-hole PCS DC
are no longer parallel to those of the 2D DC so that performing a 3D simulation is necessary in
designing an air-hole PCS DC with enlarged air holes. Moreover, the dispersion curve of the
single PCW is no longer located at the centre of the curves of the symmetric DC and the group
velocity may become negative which is not observed in the dielectric-rod PCS. The simulation
results indicate that the coupling length of an air-defect DC can be achieved as short as 5 lattice
constants, which is much smaller than that made of dielectric defects in air-hole PCS DCs.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A photonic crystal slab (PCS) is a practical structure in
which the dielectric media are arranged periodically in two
dimensions and a finite size in the other dimension [1, 2]. As
a row of dielectric rods or air holes in the PCS is removed or
replaced by a new row with a different radius of rods (holes) or
other geometric structures [3], the electromagnetic wave will
be guided along this line defect or photonic crystal waveguide

4 Authors to whom any correspondence should be addressed.

(PCW) [4–6]. When another waveguide is sculptured in the
PCS separated by one or several line(s) of partition rods or
holes, an optical coupler can be designed to act as a beam
splitter, switch, demultiplexer or filter [7–11].

The PCWs of a directional coupler (DC) are usually
made by removing the air holes in the dielectric substrate
[7, 9] due to the less scattering loss caused by structural
disorder [12] and easy fabrication. However, these PCWs can
guide multimode. In order to prevent from operating with
multimode propagation, DCs have been designed with three
rows of partition holes [13, 14]. As a result, their coupling
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lengths are quite long with 20–30a, where a is the lattice
constant, and their operation frequencies are limited in the
low-frequency region of the photonic band gap. On the other
hand, when the PCWs are made by reducing the radius of
dielectric rods or enlarging the radius of air holes, i.e. creating
air defects, the PCW allows a single-mode propagation and
the operation frequency of the DC could cover the entire band
gap. Therefore, the air-defect structure seems to be a better
choice to design a DC with a short coupling length although it
may not tolerate manufacture disorder leading to the scattering
loss.

Generally, a three-dimensional (3D) numerical analysis
focuses mainly on the single PCW made of PCS with the plane
wave expansion method (PWEM) or the finite difference time
domain (FDTD) method [3]. Analyses of DCs in the PCS are
rare or are focused on a two-dimensional (2D) case in which
the height of the slabs are supposed to be infinite [15, 16].
However, in practical applications, the height of the slab should
be comparable to the lattice constant of the photonic crystal
(PC). Therefore, the effective index method [17, 18] has been
used to simplify the simulation of the dielectric-defect PCW
made of a PCS into a 2D case, but the effective index obtained
from the perfect dielectric slab is not suitable to describe the
air-defect PCS because the effective index in the waveguides
is smaller than that in the surroundings.

Furthermore, the simulation results obtained from either
PWEM or FDTD cannot provide analytic equations to realize
the physical properties or to give the design concepts of the
DC. The tight-binding theory (TBT) [19, 20], widely used to
describe the 2D wave propagating in the coupled resonant
optical waveguides [21], has been extended to describe the
2D PCWs made of chains of continuous point defects [22, 23].
Because the electric field is not so localized in PCWs, the
extended TBT which considers the coupling beyond the
nearest-neighbour point defects should be used [15]. Although
we have used this TBT to describe wave propagation in the
symmetric and asymmetric DC in a 2D PC made of dielectric
rods [16, 22, 24], there are still no reports about the PCS DCs
made of both dielectric rods and air holes. Therefore, it is
still necessary to derive more general equations to describe the
electric field propagation in these practical cases and to give
design concepts for these PCS DCs.

In this paper, we first use the TBT to derive the
coupled equations to describe the dispersion relation and mode
distributions of the symmetric and asymmetric couplers made
of a triangular lattice PCS. Second, the physical properties of
the PCS DCs are discussed. Third, the 3D simulation done
by the PWEM is used to verify our theoretical analyses and
to discuss, in more detail, the properties of dielectric-rod and
air-hole PCS DCs. Finally, the design concepts of PCS DCs
are given by comparing the results obtained with different
structures as well as with 2D and 3D simulations.

2. Tight-binding theory

We consider a PCS in which the lattice constant is a. When the
radius of a row of dielectric rods (air holes) in a PCS is reduced
(enlarged), a PCW is created and it consists of a sequence of

Figure 1. Structures of the couplers made of (a) dielectric rods and
(b) air holes. Pi and Qi are the coupling coefficients within single
photonic crystal waveguides (PCW1 and PCW2) separated by a row
of partition rods or holes; α and β are the nearest-neighbour and the
second nearest-neighbour coupling coefficients between two
waveguides.

identical single-mode defects. As another PCW is carved into
this PCS, two PCWs labelled PCW1 and PCW2 are separated
by a row of partition rods (holes) to form a DC, as shown in
figure 1. The eigenfrequency and the electric field distribution
of the isolated point defect in PCW1 are assumed to be ω1 and
E1(r), and those in PCW2 to be ω2 and E2 (r), respectively.
The total electric fields in PCW1 and PCW2 can be expressed
as the superposition of the point-defect fields. Under the
tight-binding approximation, the equations for describing the
electric field propagation in the isolated PCW1 and PCW2
are [24]

i
∂

∂t
un = (ω1 − P ′

0)un −
3∑

m=1

P ′
m(un+m + un−m), (1)

i
∂

∂t
vn = (ω2 − Q′

0)vn −
3∑

m=1

Q′
m(vn+m + vn−m). (2)

Here un and vn are the field amplitudes of site n in these two
PCWs; m is an integer; P ′

m and Q′
m are the coupling coefficients

with the mth nearest-neighbour defects within the isolated
PCW1 and PCW2. We consider here only the coupling up
to the third nearest-neighbour defect (m = 3) in each PCW
because the fourth nearest-neighbour coupling coefficient is
three orders of magnitude smaller than the nearest-neighbour
one. Therefore, the dispersion relations of these PCWs have
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the forms

ω′
1(k) = ω1 − P ′

0 −
3∑

m=1

2P ′
m cos(mka), (3)

ω′
2(k) = ω2 − Q′

0 −
3∑

m=1

2Q′
m cos(mka), (4)

where k is the wave vector of the incident wave. As these
two waveguides are arranged close enough, the coupling both
within each of the PCWs and between two PCWs must be
considered simultaneously. Therefore, the evolution equations
for describing the coupled PCWs become

i
∂

∂t
un = (ω1 − P0)un

−
3∑

m=1

Pm(un+m + un−m) − αvn − β(vn+1 + vn−1), (5)

i
∂

∂t
vn = (ω2 − Q0)vn

−
3∑

m=1

Qm(vn+m + vn−m) − αun − β(un+1 + un−1). (6)

The coupling coefficient (Cij
m ) between the site n of the ith

PCW and the site n + m of the j th PCW is defined as

Cij
m = ωi

∫ ∞
−∞ dv�ε(r)Ein · Ejn+m∫ ∞

−∞ dv[µ0|Hin|2 + ε|Ein|2]
(7)

with�ε(r) = ε′(r)−ε(r)being the difference of the perturbed
and unperturbed permittivity and Cii

0 representing a small shift
in frequency arising from the presence of the neighbour defects
or cavities. Therefore, Pm or P ′

m = C11
m , Qm or Q′

m = C22
m ,

α = C12
0 = C21

0 and β = C12
±1 = C21

±1. �Pm = Pm − P ′
m or

�Qm = Qm − Q′
m is the difference in coupling coefficients

within the individual PCW arising from the presence of the
other PCW. In general, �Pm is approximately equal to 0 in
the dielectric-rod PCS; however, |�Pm| may become large in
the air-hole PCS due to the less localized electric field in the
defects. In other words, the coupling coefficients within the
individual PCW will be influenced by the other PCW in the air-
hole DC. In addition, in the 2D DC with dielectric rods [24],
the eigenfield of the DC is a complete transverse electric wave
so that only Ez needs to be taken into consideration and the 2D
integral in equation (7) is sufficient. However, in the PCS cases,
three components of the electric field should be considered and
the integral should also be 3D.

As a monochromatic wave with frequency ω and wave
vector k is incident on the DC with um = U0e(ikma−ωt) and
vm = V0e(ikma−ωt), we can substitute these terms into the
coupled equations (5) and (6) and obtain these characteristic
equations of the DC as [24]

(ω − ω̄1)U0 + g(ka)V0 = 0, (8)

(ω − ω̄2)V0 + g(ka)U0 = 0. (9)

Here g(ka) = α + 2β cos(ka); ω̄1(k) and ω̄2(k) are as follows:

ω̄1(k) = ω1 − P0 −
3∑

m=1

2Pm cos(mka), (10)

ω̄2(k) = ω2 − Q0 −
3∑

m=1

2Qm cos(mka). (11)

As�Pm = �Qm ≈ 0 is achieved, ω̄1(k) and ω̄2(k) are reduced
to the dispersion relations of PCW1 and PCW2 as ω̄1(k) ≈
ω′

1(k) and ω̄2(k) ≈ ω′
2(k). In other cases, the dispersions

should be modified accordingly. The eigenfrequencies of
equations (8) and (9) are

ω±(k) = (ω̄1 + ω̄2)

2
±

√
�2 + (g(ka))2, (12)

where � = (ω̄2 − ω̄1)/2. The amplitude ratios χ± (V0/U0)
corresponding to frequencies ω±(k) are

χ± = (V0/U0)
± = −� ±

√
�2 + (g(ka))2

g(ka)
. (13)

In the symmetric DC with identical PCWs, namely ω̄1 = ω̄2,
equations (12) and (13) become

ω±(k) = ω̄1 ∓ g(ka) = ω̄1 ∓ [α + 2β cos(ka)] (14)

and χ± = ±1. We must note that only the optical field with
its eigenfrequency on the dispersion curves of equation (12)
lying under the light line will be confined in the PCS. We thus,
from now on, consider only the PCS DC with confined modes.

3. Dielectric-rod PCS

Observing the eigenmode of the point defect in a triangular
lattice in figures 2(a)–(d), we find that the Ez component of
the field is centred and localized within the rod, whereas E‖
(Ex or Ey) with odd parity is localized in the air. The coupling
coefficient contributed by E‖ is much smaller than that by Ez.
Therefore, although E‖ exists in the eigenmode of the point
defect, only Ez needs to be taken into consideration.

Equation (3) describes the dispersion relation of a PCW
in which the coupling coefficient P ′

1 ≈ P1 is positive and
can be estimated from equation (7). That is, in the air defect
�ε is negative and z component of the electric field E1(r)
in the point defect has an opposite sign as it extends to the
nearest defect (i.e. EinEin+1 < 0 or E1z(r)E1z(r − ax) < 0).
Similarly, the second nearest-neighbour coupling coefficient
P2 is negative and generally one order of magnitude smaller
than the nearest-neighbour one (P1) because the electric field
around the nearest-neighbour rod is much smaller than that
around the second nearest-neighbour rod. When neglecting
P2 for a simple estimation, we can find that the slope of the
dispersion curve or the group velocity must be positive or zero.

In the asymmetric coupler, ω̄1 �= ω̄2 or � �= 0, the
dispersion curves will never cross even if g(ka) = 0. By
varying the magnitude of � caused by a difference in the
refractive index or radius of the defect rods in each waveguide,

3



J. Phys. D: Appl. Phys. 43 (2010) 465103 C-H Huang et al

Figure 2. Electric field distribution of Ez for a reduced-rod point defect (rd = 0.14a) in which the radius, dielectric constant and height of
the perfect rods are 0.2a, 12 and 2.0a at the planes of (a) z = 0 and (b) y = 0. Distribution of E‖ at the planes of (c) z = 0.8a and
(d) y = 0. Distribution of Ex for an air-hole point defect (rd = 0.44a) in which the radius of perfect air holes, dielectric constant and height
of the slabs are 0.3a, 12 and 0.55a at the planes of (e) z = 0 and (f ) x = 0. Distribution of Ey at the planes of (g) z = 0 and (h) y = 0.

we can design not only the separation of two dispersion curves
but also the mode ratios χ as indicated in equations (12) and
(13). When � becomes larger, the mode ratio |χ | departs
further from 1, which means the mode parities become more
asymmetric. In addition, α and β are both negative because
the electric field of the point defect has the same sign as
it extends to its nearest and second nearest point defects in
the other PCW, namely E1z(r)E1z(r − √

3ay) > 0 and
E1z(r)E1z(r − √

3ay − ax) > 0. Therefore, at low k, g(ka)
is negative and χ+ corresponding to the eigenfrequency ω+(k)

represents the even-like parity of the eigenmode; whereas χ−

corresponding to the eigenfrequency ω−(k) represents the odd-
like parity of the eigenmode. As k passes the g(kda) = 0
point, g(ka) becomes positive, and the parties of eigenmodes
will switch.

In the symmetric coupler with identical PCWs, when
g(kda) = 0, ω± = ω̄1 so that the dispersion curves cross
at this point. At this degenerate point, the coupling length of
the DC is infinite and the eigenmodes switch. We therefore
named this degenerate point as the decoupling point. The
criterion for satisfying g(ka) = 0 is twice the magnitude of
the second nearest-neighbour coupling coefficient (|β|) must
be larger than that of the nearest-neighbour coupling coefficient
(|α|), i.e. |2β| > |α|.

Comparing the field distribution (Ez) of a point defect in
a PCS at z = 0 with that in the 2D case shown in figure 3, we
found that the field distributions are similar so that the coupling
coefficients should also be similar. However, owing to the fact
that the electric field extends outside the slab in the z-direction,
the eigenfrequency (ω1) of the point defect in a PCS should be
larger than that in a 2D PC. Therefore, the dispersion curves
of the PCWs in these two structures would be almost parallel
to each other with only a blue frequency shift for the PCS. The
smaller the slab thickness, the larger the blue shift will be. A
similar ratio of coupling coefficients β to α makes the crossing
point of the couplers almost locate at the same wave vector but
with a higher frequency for the PCS case.

Figure 3. Field distributions of point defects along the x-axis in the
2D PC and the PCS in which the radius and the dielectric constant
of the perfect rods are 0.2a and 12, and the radius of the reduced rod
is 0.14a. The inset is the electric field distribution of the 2D point
defect.

4. Air-hole PCS

The field distributions of the point defects made of an air-hole
PCS in figures 2(e)–(h) show that only x and y components of
the electric field exist in the eigenmode which will contribute
to the coupling coefficients defined in equation (7). The
coupling coefficients, P ′

1 and P ′
2, of a single PCW are both

positive because �ε is negative for air defect and the electric
field has an opposite sign as it extends to the nearest or the
second nearest-neighbour defect sites along the x direction.
The dispersion relation of a single PCW in equation (3) can be
rewritten as ω′

1(k) = ω1 − P ′
0 − 2P ′

1 cos(ka) − 2P ′
2 cos(2ka)

when P ′
3 is neglected because of approximately two orders of

magnitude smaller than P ′
1. Under this circumstance, the slope

of the dispersion curve is 2aP ′
1 sin(ka) + 4aP ′

2 sin(2ka) and
the dispersion curve may bend downwards as ka > π/2 or
even have a negative group velocity if |P ′

2| is sufficiently large.
The negative group velocity does not happen at a dielectric-rod
PCW in which the sign of P ′

1 is positive and P ′
2 is negative.
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Figure 4. Dispersion relations of the (a) symmetric coupler and
(b) asymmetric coupler. The insets are the cross sections of the
structures and the eigenmodes of these couplers at z = 0.

In the air-hole DCs, because the electric field is not so
localized in the defect regions, we obtain �Pm = Pm − P ′

m �=
0 and ω′

1(k) �= ω̄1(k). From the definition of coupling
coefficients, one knows �P0 is negative whereas �P1 is
positive. At low wave vectors, the dispersion curve of a single
PCW locates below the centre of the dispersion curves of a
symmetric DC.

5. Simulation results and discussion

In order to verify the prediction made by the TBT, we first
consider a symmetric and an asymmetric DC in a triangular
lattice in which the radius, height and the dielectric constant of
the perfect dielectric rods are 0.2a, 2.0a and 12, respectively.
The radius of the dielectric-defect rods in the symmetric DC is
0.14a and those in the asymmetric DC are 0.138a and 0.14a,
respectively. From the simulation results of the PWEM [25],
the dispersion curves do degenerate into the frequency of
the single PCW in the symmetric DC made of a PCS at the
degenerate or decoupling point in which g(ka) = 0. In
addition, the eigenmodes switch at this degenerate point, i.e.
the parity of the low-frequency dispersion curve is switched
from odd to even, shown as figure 4(a). The energy remains
in the same PCW when one sets the operation frequency at the
decoupling point, but it does completely transfer into the other
PCW after propagating a coupling length (L = π/�k) on
operating at a frequency departing from the decoupling point,
where �k is the wave vector mismatch of two modes at the

operation frequency. On the other hand, for an asymmetric
DC, the dispersion curves will not cross, but the eigenmodes
do switch at the decoupling point at which the frequency
difference is the smallest, as shown in figure 4(b). The
eigenmodes localize mainly in one branch of the couplers as
the operation frequency is set very close to the decoupling point
that makes the lowest energy transfer around the decoupling
point.

On increasing the height of the slab, the dispersion curves
of the DCs or PCWs shift towards lower frequencies with
the same wave vectors of the crossing point due to the
similar electric field distribution of point defects as shown
in figure 5(a). In the 2D PC whose height is infinite, the
frequencies or dispersion curves are lower than those in the slab
because the fields that spread into the air-cladding layers would
lead to higher frequencies compared with the 2D PC [26].
Therefore, when one wants to design a decoupling point in
a coupler made of PCS, one can do it using a 2D simulation.
The dispersion curves will just shift towards higher frequencies
when reducing the height of the PCS.

For designing multiplexing/demultiplexing, a PCS made
of a triangular lattice is a better choice because the dispersion
curves should cross in this structure that provides infinite
coupling length at the designed decoupling point (frequency)
and a finite coupling length at the other operation frequency
departing from the decoupling point. The decoupling point
can also be moved by varying the radius of the dielectric defect
rods, as shown in figure 5(b). On reducing the radius of the
dielectric-defect rods, the electric field will be less localized
in the defects, which makes |2β/α| in equation (14) larger
so that the decoupling point moves towards the lower wave
vector. However, for a compact optical chip, square-lattice
PCS is a better choice because there is no crossing point in
this structure, as shown in figure 5(c). When a crossing point
exists in the dispersion curves of the DC, the lower dispersion
curve will bend down at a high wave vector. This makes the
choice of a frequency, with only one propagation wave vector
in each dispersion curve to realize a short coupling length,
more difficult.

On the other hand, we consider an air-hole slab made
of a triangular lattice with the dielectric constant, height of
the slab and radius of the perfect holes being 12, 0.55a and
0.3a, respectively. Here, we use only the symmetric DC as
a demonstration because a similar concept can be applied for
the asymmetric air-hole DC. When the radius of air holes in
a single PCW or DC is enlarged, the dispersion curve of the
single PCW does not locate exactly between those of the DC
particularly at a low wave vector, as shown in figure 6. Because
a large band gap exists in the triangular lattice rather than in
the square lattice, here we consider only an air-hole PCS with
a triangular lattice in which the dispersion curves of the DC are
always crossing. On enlarging the radius of the defect holes, as
shown in figure 6(a), the electric field becomes less localized
in the defects, which leads to an increased coupling coefficient
P1, a faster group velocity of the PCW and DC, and a shorter
coupling length.

Figure 6(b) shows that the dispersion curves of DCs have
a blue shift relative to the 2D case on decreasing the height

5
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Figure 5. Dispersion relation curves of DCs or single PCWs in (a),
(b) triangular lattices and (c) square lattices. The dielectric constant
and radius of perfect dielectric rods are 12 and 0.2a with (a) radius
of defect rods (rd) being 0.14a; the height of the slab being 1.7a,
2.0a and infinite for 2D case; (b) the height of the slab being 2a and
rd being 0.08–0.14a; (c) the height of the slab being 2a and rd being
0.12–0.16a.

of the slab because the fields have spread into the air-cladding
layers. However, they are no longer parallel to the dispersion
curves of the 2D coupler. The group velocity of a single 2D
PCW even becomes negative at a high wave vector, which
is not observed in the dielectric-rod PCW because the signs
of coupling coefficients P ′

2 are different in these two cases.
Therefore, an intensive 3D simulation is necessary in designing
an air-defect coupler made of an air-hole PCS.

Although the dielectric-rod PCS is more difficult to
fabricate compared with an air-hole PCS and the air-hole DC

Figure 6. Dispersion relation curves of DCs or single PCWs in
triangular lattices. The dielectric constant of the slab and radius of
perfect holes are 12 and 0.3a with (a) the height of the slab being
0.55a and radii of defect holes (rd) being 0.44–0.50a; (b) radius of
defect holes (rd) being 0.5a and slab height being 0.55a, 0.65a and
infinite for the 2D case. The inset in (a) is the cross section of
the LDC.

made by enlarging the radius of holes to support single mode
propagation faces significant scattering due to the disorder of
air holes as compared with the PCW made by removing the
air holes, the air-defect DCs possess a short coupling length
which is ∼5a for an air-hole PCS and ∼10a for a dielectric-
rod PCS. It is much shorter than that for the DC made of
dielectric defects. Moreover, two eigenmodes exist in a single
dielectric point defect. Based on the TBT, there would be
two dispersion curves in a single PCW due to the coupling of
these two point-defect eigenmodes. Therefore, there could be
four dispersion curves existing in the photonic band gap of the
PCS. The analyses become quite complex and it is not easy to
get a simple design concept in dielectric defects. As one can
reduce the manufacture disorder of air holes or dielectric rods
by making an air-defect DC, the air-defect DC will be a better
choice than the dielectric-defect DC.

6. Conclusion

We successfully used the TBT to derive the coupled equations
to describe the physical properties of an optical coupler and
PCW made of air-hole and dielectric-rod slabs. From these
derived coupled equations, we found although the dispersion
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curves can cross in symmetric couplers but never cross in
asymmetric couplers, the eigenmodes switch at the decoupling
point for both cases.

In dielectric-rod DCs, the coupling coefficients are
dominated mainly by the electric field parallel to the rods. The
field distributions of a point defect in the PCS and in the 2D PC
are almost the same but the former has a higher eigenfrequency.
Therefore, the dispersion curves of the coupler in the PCS will
be nearly parallel to that in a 2D PC only with a blue shift in its
frequency. In triangular lattices, the dispersion curves of the
DC are crossed and the crossing point can be tuned towards
a low vector by reducing the radius of the defect rods. For
a square lattice, the dispersion curves of a DC hardly cross,
which makes it easier to design a DC with a finite coupling
length.

In the air-hole PCS, we found that the dispersion curve
of the single PCW is no longer located at the centre of the
curves of the DC and the group velocity may become negative.
The dispersion curves in the slab are not parallel to those in
the 2D structures. Therefore, a 3D simulation is necessary
for designing air-defect waveguides. From the simulation
results, the coupling length of this DC is approximately 5 lattice
constants, which is much smaller than that made by removing
the air holes.
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