

Highly scaled charge-trapping layer of ZrON nonvolatile memory device with good retention

[C. Y. Tsai](http://scitation.aip.org/search?value1=C.+Y.+Tsai&option1=author), [T. H. Lee,](http://scitation.aip.org/search?value1=T.+H.+Lee&option1=author) [C. H. Cheng,](http://scitation.aip.org/search?value1=C.+H.+Cheng&option1=author) [Albert Chin,](http://scitation.aip.org/search?value1=Albert+Chin&option1=author) and [Hong Wang](http://scitation.aip.org/search?value1=Hong+Wang&option1=author)

Citation: [Applied Physics Letters](http://scitation.aip.org/content/aip/journal/apl?ver=pdfcov) **97**, 213504 (2010); doi: 10.1063/1.3522890 View online:<http://dx.doi.org/10.1063/1.3522890> View Table of Contents:<http://scitation.aip.org/content/aip/journal/apl/97/21?ver=pdfcov> Published by the [AIP Publishing](http://scitation.aip.org/content/aip?ver=pdfcov)

Articles you may be interested in

[Formation of iridium nanocrystals with highly thermal stability for the applications of nonvolatile memory](http://scitation.aip.org/content/aip/journal/apl/97/14/10.1063/1.3498049?ver=pdfcov) [device with excellent trapping ability](http://scitation.aip.org/content/aip/journal/apl/97/14/10.1063/1.3498049?ver=pdfcov) Appl. Phys. Lett. **97**, 143507 (2010); 10.1063/1.3498049

[Device characteristics of HfON charge-trap layer nonvolatile memory](http://scitation.aip.org/content/avs/journal/jvstb/28/5/10.1116/1.3481140?ver=pdfcov) J. Vac. Sci. Technol. B **28**, 1005 (2010); 10.1116/1.3481140

[Optical capacitance-voltage characterization of charge traps in the trapping nitride layer of charge trapped](http://scitation.aip.org/content/aip/journal/apl/91/22/10.1063/1.2819092?ver=pdfcov) [flash memory devices](http://scitation.aip.org/content/aip/journal/apl/91/22/10.1063/1.2819092?ver=pdfcov) Appl. Phys. Lett. **91**, 223511 (2007); 10.1063/1.2819092

[Impact of high-pressure deuterium oxide annealing on the blocking efficiency and interface quality of metal](http://scitation.aip.org/content/aip/journal/apl/91/19/10.1063/1.2812570?ver=pdfcov)[alumina-nitride-oxide-silicon-type flash memory devices](http://scitation.aip.org/content/aip/journal/apl/91/19/10.1063/1.2812570?ver=pdfcov) Appl. Phys. Lett. **91**, 192111 (2007); 10.1063/1.2812570

[Memory characteristics of silicon nitride with silicon nanocrystals as a charge trapping layer of nonvolatile](http://scitation.aip.org/content/aip/journal/apl/86/25/10.1063/1.1951060?ver=pdfcov) [memory devices](http://scitation.aip.org/content/aip/journal/apl/86/25/10.1063/1.1951060?ver=pdfcov) Appl. Phys. Lett. **86**, 251901 (2005); 10.1063/1.1951060

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 140.113.38.11 On: Wed, 30 Apr 2014 09:54:25

[Highly scaled charge-trapping layer of ZrON nonvolatile memory device](http://dx.doi.org/10.1063/1.3522890) [with good retention](http://dx.doi.org/10.1063/1.3522890)

C. Y. Tsai,¹ T. H. Lee,¹ C. H. Cheng,¹ Albert Chin,^{1[,a](#page-1-0))} and Hong Wang² 1 *Department of Electronics Engineering and Institute of Electronics, National Chiao-Tung University, Hsinchu 30010, Taiwan*

2 *School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798*

(Received 2 August 2010; accepted 5 November 2010; published online 24 November 2010)

We have fabricated the TaN– $\left[SiO_2$ –LaAlO₃ $\right]$ –ZrON– $\left[LaAlO_3-SiO_2\right]$ –Si charge-trapping flash device with highly scaled 3.6 nm equivalent- $Si₃N₄$ -thickness. This device shows large 4.9 V initial memory window, and good retention of 3.4 V ten-year extrapolated retention window at 85 °C, under very fast 100 μ s and low ± 16 V program/erase. These excellent results were achieved using deep traps formed in ZrON trapping layer by As⁺ implantation that was significantly better than those of control device without ion implantation. © *2010 American Institute of Physics*. [doi[:10.1063/1.3522890](http://dx.doi.org/10.1063/1.3522890)]

As listed in *International Technology Roadmap for Semiconductors*, the metal-oxide-nitride-oxide-Si $(MONOS)$ charge-trapping flash (CTF) devices^{1–[15](#page-3-1)} have high potential to replace the poly-Si floating-gate flash memory for future generation nonvolatile memory (NVM) due to the discrete charge-trapping property and simpler planar process. Nevertheless, one fundamental drawback for CTF device is the distributed trap energy in $Si₃N₄$ (Ref. [11](#page-3-2)) as compared with the deep 3.15 eV energy in poly-Si floating-gate memory, where charge stored in shallower traps may escape and degrade the retention characteristics.^{12[–15](#page-3-1)} Such degraded retention is one of the major challenges in fewer electrons stored in highly scaled NVM device.¹ Although improved retention can be achieved by increasing tunnel oxide thickness, this is traded off the intolerable slow erase time (10– 100 ms).

One method to improve the retention is to use a deep conduction band energy (E_C) high- κ trapping layer.^{12[–16](#page-3-4)} Significant retention improvement has been realized by using high- κ Al(Ga)N in the MONOS CTF that was also listed in ITRS as a key technology for $CTF¹$. To further lower the program/erase (P/E) voltage, higher κ HfON trapping layer MONOS has been fabricated, 14 but the shortcoming is the lower trapping efficiency in HfON with a smaller memory window.¹⁴ To improve the memory window, dual trappinglayer HfON–Si₃N₄ CTF was used,¹⁵ but adding the lower κ Si₃N₄ limits further down-scaling the equivalent-nitride thickness (ENT). However, scaling ENT to 3-4 nm is needed for future CTF NVM.¹ Alternatively, lower trapping energy can also be reached by forming nanocrystal in CTF using ion implantation.^{17[–20](#page-3-7)} In this paper we have used both higher- κ deep- E_C ZrON and As⁺ implantation to improve the CTF performance. At a 3.6 nm ENT trapping layer, this device has an initial 4.9 V memory window and good retention of 3.4 V extrapolated ten-year retention window at 85 °C, under fast 100 μ s and low \pm 16 V P/E. This is the thinnest ENT CTF device that meets ITRS scaling target to tenth nanometer.

The TaN– $\left[SiO_2 - LaAlO_3\right]$ –ZrON– $\left[LaAlO_3 - SiO_2\right]$ –Si devices were fabricated on standard 6 in. *p*-type Si wafers. The double tunnel oxide layers of 2.5 nm thermal $SiO₂$ were grown on Si substrates and 2.5 nm LaAlO₃ was deposited by physical vapor deposition (PVD). Then the 18 nm ZrON charge trapping layer was deposited by reactive PVD under mixed O_2 and N_2 . The As⁺-implantation into ZrON was applied at $3 \text{ keV}, 5 \times 10^{15} \text{ cm}^{-2}$ dose, and 60° titled angle, which was followed by 950 °C and 1 s rapid thermal annealing (RTA). It was reported that the memory window increases with increasing ion-implanted dose.²⁰ The As⁺-implant condition of 5×10^{15} cm⁻² and 3 keV dose were chosen to reach both the highest possible dose for manufacture and the lowest energy for the thinnest ENT. Next, 8 nm LaAlO₃ was deposited by PVD and 6 nm $SiO₂$ was deposited by chemical vapor deposition of tetraethyl orthosilicate $\left[Si(C_2H_5O)_4\right]$ to form the double blocking layers. Finally, 200 nm TaN was deposited by PVD, followed by gate definition, self-aligned 25 keV As⁺ implantation at 5 $\times 10^{15}$ cm⁻² dose, and 900 °C RTA to activate the dopant at source-drain region. The flatband voltage (V_{FB}) was obtained from the measured *C*-*V* data and quantum-mechanical *C*-*V* simulation.²¹ The threshold voltage (V_{th}) was determined from the interception of gate voltage (V_g) to zero drain current (I_d) of linear I_d - V_g curve.

Figure [1](#page-1-1) compares *C*-*V* hysteresis of ZrON CTF devices with and without the As⁺ implantation. Larger *C*-*V* hysteresis window of 8.1 V was obtained in As⁺-implanted CTF than

FIG. 1. *C-V* hysteresis of ZrON CTF devices with and without As⁺ implantation.

a)Electronic mail: albert_achin@hotmail.com.

FIG. 2. (Color online) (a). Cross-sectional TEM and (b) SIMS of ZrON–[LaAlO₃–SiO₂]–Si structure with As⁺ implantation.

the 5.7 V of control device under ± 16 V sweep and close capacitance density of \sim 2.6 fF/ μ m² for both devices. Since the area of C -*V* curve is the charge $(Q = CV)$, the increase of V_{FB} indicates that the As⁺-implanted ZrON has higher trap density for electron storage. The larger hysteresis window by $As⁺$ implantation may be due to the forming deep energy levels in ZrON trapping layer that exists even after 950 °C RTA. From the frequency-dependent *C*-*V* measurements, the V_{FB} shift (ΔV_{FB}) is independent on frequencies at 10–700 kHz. Thus, the hysteresis memory window is only from the ZrON trapping layer rather than the interface states between tunnel oxide and Si.

Figures $2(a)$ $2(a)$ and $2(b)$ show the cross-sectional transmission electron microscopy (TEM) and secondary ion-mass spectroscopy (SIMS) of $ZrON-[LaAlO₃-SiO₂]-Si$ structure with As⁺ implantation. The polygrains were found in ZrON after 950 °C RTA that leads to the higher κ value^{22[,23](#page-3-10)} with As⁺ implant. From the measured 18 nm ZrON thickness by TEM, an ENT of 3.6 nm was obtained from the ENT $=\kappa_{Si3N4}/\kappa_{ZrON}\times t_{ZrON}$, where the κ_{Si3N4} , κ_{ZrON} , and t_{ZrON} are the dielectric constant of $Si₃N₄$, dielectric constant of ZrON, and the thickness of ZrON, respectively. The concentration of implanted As decreases rapidly before entering the double tunnel layer of $LaAlO₃-SiO₂$. Such low energy tilted-angle As⁺ implantation is important to reduce the damage to tunnel oxide layer.

Figure 3 shows the x-ray diffraction (XRD) spectra of $ZrON-[LaAlO₃-SiO₂]-Si$ structure with and without $As⁺$ implantation. The strong diffraction peaks indicate the good ZrON crystallinity that is important to provide higher κ \sim 35 (Refs. [22](#page-3-9) and [23](#page-3-10)) with a smaller ENT of 3.6 nm. Besides, extra weak As peaks were also found in As+-implanted

FIG. 3. (Color online) XRD of ZrON– $[LaAlO₃-SiO₂]$ –Si structure with and without As⁺ implantation.

and 950 °C-annealed ZrON, with the same angles of clustered As-dots in As-rich GaAs.²⁴ This suggests the possibility to form the deep energy levels in ZrON due to large As work-function of 5.1 $eV₁²⁵$ which also explains the larger hysteresis shown in Fig. [1.](#page-1-1)

Data retention is one of the most importance parameters for NVM. Figure [4](#page-2-2) shows the retention characteristics at 85 °C. Under ± 16 V and 100 μ s P/E, the As⁺-implanted ZrON devices have a larger initial memory window of 4.9 V than the 2.9 V data of control device without $As⁺$ implantation, suggesting the higher trap density in As+-implanted ZrON trapping layer. The very fast $100 \mu s$ P/E speed is due to the additional conduction and valance band discontinuity $(\Delta E_C \text{ and } \Delta E_V)$ between LaAlO₃ and SiO₂, for easier electron and hole tunneling during program and erase, respectively. Still large ten-year extrapolated memory window of 3.4 V was obtained for As+-implanted ZrON CTF device and better than that of control device. The good retention is due to the physically thicker double $LaAlO₃ - SiO₂$ for carrier confinement, while the ΔE_C and ΔE_V in LaAlO₃/SiO₂ improve the program and erase speed. This large ten-year retention window with a small 3.6 nm ENT trapping layer also allows multilevel cell storage at $85 \degree \text{C}$.¹⁵

In summary, we have used both higher κ ZrON and As⁺ implantation to improve the device performance of MONOS CTF device. At record smallest 3.6 nm ENT, large 4.9 V initial memory window and good retention of 3.4 V ten-year extrapolated window at 85 °C were measured in this CTF

FIG. 4. Retention characteristics of ZrON MONOS CTF devices at 85 °C This articles, extra weak As peaks were also found in As^trimplanted subjections without Ast implantation, aip org/termsconditions. Downloaded to IP:

device, under very fast 100 $\,\mu s$ speed and low P/E voltage of ± 16 V.

The paper publication was supported by National Science Council of Taiwan under Project No. NSC99–2120–M-009–002

¹See <www.itrs.net> for The International Technology Roadmap for Semiconductors (ITRS), 2009.
²S_{-L} Minami and Y

²S.-I. Minami and Y. Kamigaki, [IEEE Trans. Electron Devices](http://dx.doi.org/10.1109/16.239742) 40, 2011 (1993) . (1993).
³M. H. White, Y. Yang, A. Purwar, and M. L. French, [IEEE Trans. Com-](http://dx.doi.org/10.1109/95.588573)

pon., Packag. Manuf. Technol., Part A **20**, 190 (1997).

⁴M. She, H. Takeuchi, and T.-J. King, Proceedings of the IEEE Nonvolatile Semiconductor Memory Workshop, 2003, p. 53.

5 C. H. Lee, K. I. Choi, M. K. Cho, Y. H. Song, K. C. Park, and K. Kim, Tech. Dig. - Int. Electron Devices Meet. 2003, 613.

 ${}^{6}C$. W. Oh, S. D. Suk, Y. K. Lee, S. K. Sung, J.-D. Choe, S.-Y. Lee, D. U. Choi, K. H. Yeo, M. S. Kim, S.-M. Kim, M. Li, S. H. Kim, E.-J. Yoon, D.-W. Kim, D. Park, K. Kim, and B.-I. Ryu, Tech. Dig. - Int. Electron Devices Meet. **²⁰⁰⁴**, 893. ⁷

M. Specht, R. Kommling, L. Dreeskornfeld, W. Weber, F. Hofmann, D. Alvarez, J. Kretz, R. J. Luyken, W. Rosner, H. Reisinger, E. Landgraf, T. Schulz, J. Hartwich, M. Stadele, V. Klandievski, E. Hartmann, and L. Risch, Symposium on VLSI Technology Digest (IEEE, New York, 2004), p. 244.

⁸X. Wang, J. Liu, W. Bai, and D.-L. Kwong, [IEEE Trans. Electron Devices](http://dx.doi.org/10.1109/TED.2004.824684) **51**, 597 (2004).

51, 597 (2004).
⁹Y. N. Tan, W. K. Chim, W. K. Choi, M. S. Joo, T. H. Ng, and B. J. Cho,

Tech. Dig. - Int. Electron Devices Meet. **2004**, 889. ¹⁰X. Wang and D.-L. Kwong, [IEEE Trans. Electron Devices](http://dx.doi.org/10.1109/TED.2005.860637) **53**, 78 (¹⁰X. Wang and D.-L. Kwong, IEEE Trans. Electron Devices 53, 78 (2006).
¹¹S. H. Gu, T. Wang, W. P. Lu, Y. H. Ku, and C. Y. Lu, [Appl. Phys. Lett.](http://dx.doi.org/10.1063/1.2360180) **89**,

163514 (2006).

- 12C. H. Lai, Albert Chin, K. C. Chiang, W. J. Yoo, C. F. Cheng, S. P. McAlister, C. C. Chi, and P. Wu, *Symposium on VLSI Technology Digest* (IEEE, New York, 2005), p. 210.
- 13Albert Chin, C. C. Laio, K. C. Chiang, D. S. Yu, W. J. Yoo, G. S. Samudra, S P. McAlister, and C. C. Chi, Tech. Dig. - Int. Electron Devices Meet. **2005**, 165.
- ¹⁴C. H. Lai, Albert Chin, H. L. Kao, K. M. Chen, M. Hong, J. Kwo, and C. C. Chi, Symposium on VLSI Technology Digest (IEEE, New York, 2006), p. 54.
- ¹⁵S. H. Lin, Albert Chin, F. S. Yeh, and S. P. McAlister, Tech. Dig. - Int. Electron Devices Meet. 2008, 843.
- ¹⁶K. H. Joo, C. R. Moon, S. N. Lee, X. Wang, J. K. Yang, I. S. Yeo, D. Lee, O. Nam, U. I. Chung, J. T. Moon, and B. I. Ryu, Tech. Dig. - Int. Electron Devices Meet. **2006**, 979.
- 17E. Kapetanakis, P. Normand, D. Tsoukalas, K. Beltsios, J. Stoemenos, S. Zhang, and J. van den Berg, [Appl. Phys. Lett.](http://dx.doi.org/10.1063/1.1328101) 77, 3450 (2000).
- 18S. M. Choi, H. D. Yang, M. Chang, S. K. Baek, H. S. Hwang, S. H. Jeon, J. Y. Kim, and C. W. Kim, [Appl. Phys. Lett.](http://dx.doi.org/10.1063/1.1951060) **86**, 251901 (2005).
- ¹⁹C. J. Park, K. H. Cho, W.-C. Yang, H. Y. Cho, S.-H. Choi, R. G. Elliman, J. H. Han, and C. Kim, [Appl. Phys. Lett.](http://dx.doi.org/10.1063/1.2175495) 88, 071916 (2006).
- 20 M. C. Kim, S. H. Hong, H. R. Kim, S. Kim, S.-H. Choi, R. G. Elliman, and S. P. Russo, [Appl. Phys. Lett.](http://dx.doi.org/10.1063/1.3097799) 94, 112110 (2009).
- 21 S. H. Lin, C. H. Cheng, W. B. Chen, F. S. Yeh, and A. Chin, [IEEE](http://dx.doi.org/10.1109/LED.2009.2027723) [Electron Device Lett.](http://dx.doi.org/10.1109/LED.2009.2027723) **30**, 999 (2009).
- 22 S. H. Lin, K. C. Chiang, A. Chin, and F. S. Yeh, [IEEE Electron Device](http://dx.doi.org/10.1109/LED.2009.2022775) [Lett.](http://dx.doi.org/10.1109/LED.2009.2022775) 30, 715 (2009).
- 23^2 C. Y. Tsai, K. C. Chiang, S. H. Lin, K. C. Hsu, C. C. Chi, and A. Chin, **[IEEE Electron Device Lett.](http://dx.doi.org/10.1109/LED.2010.2049636) 31, 749 (2010).**
- ²⁴R. R. Campomanes, J. Vilcarromero, J. C. Galzerani, and J. H. Dias Da Silva, [Appl. Phys. A: Mater. Sci. Process.](http://dx.doi.org/10.1007/s00339-004-2557-6) **80**, 267 (2005).
- Silva, Appl. Phys. A: Mater. Sci. Process. **80**, 267 (2005).²⁵H. B. Michaelson, [J. Appl. Phys.](http://dx.doi.org/10.1063/1.323539) **48**, 4729 (1977).