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Unusually large and compressively strained Si in nanoheterostructures of Ni silicide/Si/Ni silicide,
in which the strain of the Si region can be achieved up to 10%, has been produced with point contact
reactions between Si and Ni nanowires in an ultrahigh vacuum transmission electron microscope.
The growth rate and relationships between the strain and the spacing of the Si region have been
measured. Based on the rate and relationships, we can control the Si dimension and, in turn, the

strain of remaining Si

can be tuned with appropriate spacing. Since one-dimensional

nanoheterostructures may have potential applications in nanoelectronic devices, the existent strain
will further affect carrier mobility and piezoresistance coefficients in the Si region. Electrical
measurements on the nanodevices from such nanoheterostructures show that the current output
closely correlates with the Si channel length and compressive strain. © 2010 American Institute of

Physics. [doi:10.1063/1.3515421]

Semiconductor nanowires are attractive components for
future nanoelectronics since they can exhibit a range of de-
vice functions and serve as bridging wires that connect to
larger scale metallization.'™ Recently, heterostructure forma-
tion in one-dimensional nanostructures (nanowires) is
equally important for their potential applications as efficient
light emitting sources and field effect transistor.*

For strain engineering, it is now considered to be one
of the most promising strategies for developing high-
performance sub-10-nm silicon devices.” Furthermore,
strained Si technology has become the leading approach to
further improve the metal-oxide-semiconductor field effect
transistor performance as the continuous device scaling faces
its physical limitation.'*"2 By introducing strain in the Si
channel region, the carrier mobility is enhanced, and the
transistor drive current is improved.12

To realize this potential, we fabricate NiSi/Si/NiSi nano-
wire heterostructures utilizing in situ point contact reactions
between Ni and Si nanowires in a high-resolution transmis-
sion electron microscope (TEM). In situ TEM is a powerful
technique which is well suited to answer many questions
about nanostructures.>>* In this paper, we report that the
giant existent strain in the remaining Si of NiSi/Si/NiSi
nanowire heterostructure was observed. By choosing appro-
priate imaging conditions, the remaining length of the Si
region can be controlled with atomically flat NiSi/Si
interfaces.”’

Silicon nanowires were prepared on a p-type Si wafer by
the vapor-liquid-solid method using nano-Au dots as nucle-
ation sites. The resultant single-crystal Si nanowires are
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along a [111] growth direction™*° and with thin surface ox-
ide (~1-5 nm thick). Polycrystalline Ni nanowires were
synthesized via the anodic aluminum oxidation method and
stored in isoproponal.26 The Ni nanowires and Si nanowires
with lengths of a few microns ranged in diameter from 10 to
40 nm.

To prepare point contact samples, we put droplets of
both solutions on Si grids with a square opening covered
with a window of a glassy SisN, film. The thickness of the
SizNy film is about 20 nm so that it is transparent to the
electron beam and does not interfere with the imaging of the
nanowires. The samples were dried under light bulbs. TEM
examinations were conducted in a Japan Electron Optics
Laboratory (JEOL) 2000 V ultrahigh vacuum TEM (UHV-
TEM) under a base pressure of 3 X 10719 Torr, where a
sample can be heated to 1000 °C. Upon heating in UHV-
TEM, Ni atoms would diffuse into Si nanowires to form NiSi
nanowires. Phase identification was carried out by diffraction
pattern and energy dispersion x-ray spectrometer (EDS)
analysis.

From the point contact reaction, Ni atoms dissolve and
diffuse interstitially in Si (Ref. 27) and stop at the ends of the
Si nanowire, thereby nucleatinég the growth of Ni silicide to
form a Ni silicide nanowire.”"** Figure 1 shows a TEM im-
age of the formation of nickel silicide from both ends of a Si
nanowire at 700 °C annealing. If annealing is stopped before
the entire nanowire transforms into NiSi, a Ni silicide/Si/Ni
silicide nanoheterostructure is formed. From high-resolution
TEM images, selected area diffraction patterns, and EDS
analysis, we identified the structure of the silicide to be
single-crystal NiSi."** The darker regions at the two ends
are NiSi and the lighter region in the middle is Si. Notably,
since the annealing temperature was 700 °C and volatile ma-
terials existed in the sample, the vacuum would be degraded

© 2010 American Institute of Physics
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FIG. 1. TEM image of the NiSi/Si/NiSi heterostructure. The bright area is Si
and the dark area is NiSi.

to 1078 Torr as the annealing occurred; under such condi-
tions, the surface oxide surrounding the Si was still stable
enough to confine the diameter of the silicide grains.

Figures 2(a)-2(c) show a set of high-resolution TEM
images of the atomically flat NiSi/Si interface taken as the
interface advances into the Si. The interface is parallel to the
(111) plane of Si. From the high-resolution TEM images, we
can measure the dimension of the Si region, count the num-
ber of the Si atomic layers inside, and then calculate the
average interplanar spacing. As a consequence, it was found
that the average interplanar spacing decreased as the two
NiSi/Si interfaces moved closer. The remaining Si with av-
erage lattice spacing of 0.301, 0.296, and 0.292 nm is shown,
respectively. There is already compressive strain of 7% in
comparison with the original lattice spacing.

Figure 3 shows the relationship between the compressive
strain compared with the average interplanar spacing of Si
(111) without annealing and the spacing of the Si region in
the NiSi/Si/NiSi nanoheterostructure. It is surprising that the
remaining Si exhibited unusually large and compressive
strain which increased as the dimension of the remaining Si
decreased. On the basis of the results from Figs. 2 and 3, it
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FIG. 2. In situ high-resolution TEM image sequence of the growth of NiSi/
Si/NiSi heterostructures. The bright and dark portions of the lattice images
correspond to; St and NiSi, respectively.
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FIG. 3. (Color) Plot of the compressive strain vs the spacing of Si region in
the nanoheterostructure NiSi/Si/NiSi.

can be inferred that as the dimension continues to shrink, the
compressive strain of the Si region would be up to 10%.
According to previous studies, as the remaining Si dimension
is down to less than 2 nm, the lattice strain can be up to
12%.2

In the process of NiSi formation, the diffusion of Ni
atoms into Si lattice could have led to volume expansion.
However, due to the difference in the interplanar spacing of
Si and NiSi across the epitaxial interface, Si would be
stretched radially at the interface. Thus, on the basis of Pois-
son’s ratio,”® Si will be compressed axially. On the other
hand, for fixed strain energy, the average energy distributed
per atomic layer in the Si would be larger in a smaller Si
region; as a consequence, the strain increased when the di-
mension of the Si region decreased.

It is well known that Ni is the dominant diffusion species
in the interfacial reactions between Ni and Si,” which leads
to the fact that Ni atoms diffuse into the Si lattice and tend to
separate Si atoms a little bit. As the distance among Si atoms
is extended, the diameter of a nanowire will be extended. We
can calculate it theoretically based on the crystal structures
of Si and NiSi. As we know the crystal structures, lattice
constants, and the number of Si atoms per unit cell, the vol-
ume occupied by per Si atom can be obtained.

The strain of the heterostructures is mainly attributed to
the mismatch between the two lattices; also, as the thickness
reaches critical thickness, there would be dislocations gener-
ated, contributing to strain relaxation. Therefore, most of the
strains are within 10%.*

In our previous studies, we have investigated the inter-
faces of the heterostructures by high-resolution TEM, finding
that there is no generation of dislocations at the interface.
The main reason is that it is very difficult for dislocations to
nucleate at such diameter.*! Additionally, the existence of the
epitaxial growth at the interface lowers the chances of dislo-
cation generation. Thus, without dislocation relaxation, com-
pressive strain increases as the remaining Si region de-
creases.

As for the amount of strain, based on previous studies,
lattice mismatch of 5.6% exists at the NiSi/Si interface.
Since volume strain is about three times of linear strain, there
is about 17% change in the volume of NiSi as Si is converted
to NiSi, which is close to around 20% by lattice constant
calculation,32 believed to be the strain limit. Moreover, the
strain found in the Si region may not reflect all the strain
energy since part of the strain energy may be abserbed by the
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FIG. 4. (Color) Ni silicide/Si/Ni silicide devices of variable channel length

from solid-state reactions and the corresponding transport measurements.

Si oxide. Therefore, the existence of this large strain is rea-
sonable for the unique approach.

Figure 4 shows the electrical properties of the devices
based on the Ni silicide/Si/Ni silicide nanoheterostructures,
indicating that the current output increased as the Si channel
length decreased and the compressively strain has risen. The
current output is related to the channel length as shown be-
low,

A
L
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s

x|~
°

p, A, and L are the conductivity, cross-sectional area, and
channel length of the nanowires, respectively.33 Theoreti-
cally, the current output should have increased eight times as
the channel length shrank from 40 to 5 nm; however, prac-
tically, the current output increased only around twice since
the compressively strain may have decreased the carrier mo-
bility.

Understanding the fundamentals of nanowire growth is
of great importance to optimize nanowire positioning. In the
previous works, we can control the remaining length of the
Si region between the two NiSi regions,21 and in turn, the
strain of remaining Si can also be tuned with appropriate
spacing. The properties of the nanostructure electronics are
expected to be significantly impacted by the existent strain
for potential applications of one-dimensional nanohetero-
structures in nanoelectronic devices.

In conclusion, we have demonstrated that the NiSi/Si/
NiSi nanoheterostructures contain highly strained Si by in
situ TEM observation. Counting the number of (111) lattice
planes in the Si region, we can determine the strain and we
find that the Si is highly compressed. From the growth rate,
we are able to control the formation of nanoheterostructures
of silicide/Si/silicide down to a few nanometers or even
atomic scale. Additionally, knowing the relationship between
strain and spacing of the Si region, we can control the strain
of the remaining Si. Furthermore, correlation among the cur-
rent output, the Si channel length, and the compressive strain
has been found in our electrical measurements on the nan-
odevices from such nanoheterostructures. We may tune the
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current output by controlling the Si channel length and the
compressive strain based on this study.
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