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Let T be a Henon-type map induced from a spatial discretization of a reaction–diffusion
system. With the above-mentioned description of T , the following open problems were
raised in [V.S. Afraimovich, S.B. Hsu, Lectures on Chaotic Dynamical Systems, AMS
International Press, 2003]. Is it true that, in general, h(T ) = hD(T ) = hN (T ) = h�(1),�(2)

(T )?
Here h(T ) and h�(1),�(2)

(T ) (see Definitions 1.1 and 1.2) are, respectively, the spatial entropy
of the system T and the spatial entropy of T with respect to the lines �(1) and �(2), and
hD (T ) and hN (T ) are spatial entropy with respect to the Dirichlet and Neuman boundary
conditions. If it is not true, then which parameters of the lines �(i) , i = 1,2, are responsible
for the value of h(T )? What kind of bifurcations occurs if the lines �(i) move? In this
paper, we show that this is in general not always true. Among other things, we further
give conditions for which the above problem holds true.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Consider a discrete version of the reaction–diffusion

u j(n + 1) − u j(n) = β
(
u j+1(n) − 2u j(n) + u j−1(n)

) + αh
(
u j(n)

)
,

where j ∈ Z is a spatial coordinate, n ∈ Z+ is the discrete time, α > 0 and β > 0 are parameters and the nonlinearity is of
the form

h(u) = u(u − a)(1 − u), 0 < a < 1.

The steady-state solutions u j(n) = u j , j ∈ Z, satisfy the equation

0 = β(u j+1 − 2u j + u j−1) + αh(u j) (1.1a)

or

u j+1 = 2u j − α

β
h(u j) − u j−1. (1.1b)
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If we set u j−1 = x j , u j = y j , then (1.1a,b) can be re-written as the trajectory of a two-dimensional map T of the form

(x j+1, y j+1) = T (x j, y j) =
(

y j,2y j − α

β
h(y j) − x j

)
.

A map T of the form

T (x, y) = (
y, F (y) − b

)
, (1.2)

where F (y) is a polynomial of degree n with negative leading coefficient and distinct real roots, will henceforth be called
an nth-degree Henon-type map. If F (y) is replaced by n piecewise affine terms, then the corresponding map T is called an
nth-degree Lozi-type map. Any bounded trajectory

. . . , (x j, y j), (x j+1, y j+1), . . .

of T corresponds to a bounded solution

. . . , u j(= y j), u j+1(= y j+1), . . .

of Eq. (1.1a,b). System (1.1a,b) is infinitely extended, i.e., −∞ < j < ∞. We shall next consider solutions (u j)
n
j=1 of (1.1a,b)

on a finite lattice, 1 � j � n, where

u j+1 = 2u j − α

β
h(u j) − u j−1, 1 � j � n. (1.3a)

We impose the Robin’s boundary conditions of the form

u1 = m1u0 + k1, (1.3b)

and

un+1 = m2un + k2. (1.3c)

Here mi and ki , i = 1,2, are real numbers. Note that (m1,k1) = (∞,0) and (m2,k2) = (0,0) (resp., (m1,k1) = (m2,k2) =
(1,0)) correspond to the Dirichlet (resp., Neumann) boundary conditions. It is then natural to ask how the behavior of
solutions of (1.3a,b,c) is related to that of solutions of (1.1a,b). One quantity measuring such relationship is “spatial entropy”.
We next define the spatial entropy of the infinite system as well as that of the finite system. The following notion of the
entropy of the system (1.1a,b) was introduced by Mallet-Paret and Chow [1]. Let n ∈ N and k ∈ Z be given, set Γn,k(T ) to
be the number of elements in the solution set Sn,k , where Sn,k = {{ui}n+k−1

i=k }: {ui}∞i=−∞ is a bounded steady-state solution
of (1.1a,b)}. Note that if {ui}∞i=−∞ is a steady state solution of (1.1a,b), so is {ui+k}∞i=−∞ for any k ∈ Z. Hence Γn,k(T ) is
independent of the choice of k. Thus, we may write Γn,k(T ) as Γn(T ).

Definition 1.1. The spatial entropy h(T ) of system (1.1a,b) or the map T is defined to be the limit

h(T ) = lim
n→∞

lnΓn(T )

n
.

Inspired by the open problems raised in [2], we are led to define the following notion of the spatial entropy for the finite
system. To this end, we first define the line �(m,k) as

�(m,k) = {
(x, y) ∈ R

2: y = mx + k
}
. (1.4a)

Here

�(∞,k) is interpreted as
{
(x, y) ∈ R

2: x = k
}
. (1.4b)

Denote by N (n, �(m1,k1), �(m2,k2), T ) the number of points on the intersection of

T n�(m1,k1) ∩ �(m2,k2). (1.5)

Should no ambiguity arise, we will write �(mi ,ki) as �(i) . We next elaborate on the meaning of the intersection T n�(m1,k1) ∩
�(m2,k2) . If (s, t) ∈ T n�(m1,k1) ∩ �(m2,k2) , then there exists a point (u0, u1) ∈ �(m1,k1) such that (s, t) = T n(u0, u1) := (un, un+1) ∈
�(m2,k2) . Moreover, the finite sequence un = (ui)

n+1
i=0 satisfies (1.3). Thus, each distinct point in T n�(m1,k1) ∩ �(m2,k2) generates

a distinct and finite pattern satisfying (1.3). Hence, N (n, �(m1,k1), �(m2,k2), T ) denotes the number of solutions satisfying (1.3).
We are now in a position to define the entropy of the finite system.
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Definition 1.2.

(1) The spatial entropy of a finite n-lattice system (1.1a,b) is defined to be

hn,�(1),�(2)
(T ) = ln N (n, �(1), �(2), T )

n
.

(2) The spatial entropy h�(1),�(2)
(T ) of T with respect to lines �(1) and �(2) is defined to be the limit of the entropy of the

finite system, that is,

h�(1),�(2)
(T ) = lim

n→∞
ln N (n, �(1), �(2), T )

n
. (1.6)

Notation 1.1. In the case of Dirichlet (resp., Neumann) boundary conditions, we write h�(1),�(2)
(T ) = hD(T ) (resp., hN(T )).

In case that the growth rate of N (n, �(1), �(2), T ) is super exponential, h�(1),�(2)
(T ) is defined to be ∞. Suppose T is a local

holomorphic mapping, preserving the origin, and two lines �(1) and �(2) passing the origin. Suppose all the images T n�(1) are
smooth [3] or that everything is algebraic (see [4,5]). Then h�(1),�(2)

(T ) exists and is finite. In our case, N (n, �(1), �(2), T ) � 3n

(see Section 2). The following open problems were then raise in [2].

(P1) Is it true that, in general, h(T ) = hD(T ) = hN (T ) = h�1,�2 (T )?
(P2) If it is not true, then which parameters mi and ki , i = 1,2, are responsible for the values of h(T ). What kind of

bifurcations occurs if the lines �(1) and �(2) move?

The problems (P1) and (P2) are not easy to answer. It is then natural to replace the cubic nonlinearity in h(u) by piece-wise
linearity. Consequently, a Henon-type map T becomes a Lozi-type map T . Specifically, we consider a two-dimensional map
T of the form

T (x, y) = (
y, F (y) − bx

)
, (1.7a)

where

F (y) =
⎧⎨
⎩

a1 y + ā1, if y � 1,

a0 y + ā0, if |y| � 1,

a−1 y + ā−1, if y � −1,

(1.7b)

where ā1, ā0 and ā1 are so defined that F (y) is continuous.
The purpose of this paper is then to study spatial entropies of a cubic Lozi-type map T , which, in turn, answer some

questions related to two problems (P1) and (P2) for T being given as in (1.7). Specifically, under some mild conditions,
we show that for any �(1) and n ∈ N, except possibly a few pieces of T n�(1) , T n�(1) is contained in an N-shaped tube
for which its boundary points are ω-limit points of T (�(1)). Moreover, we show under a stronger condition, as in (3.4),
that the entropy h�(1),�(2)

(T ) of T with respect to �(1) and �(2) is independent of the choice of �(1) . It is also shown that
hD(T ) = hN (T ) = ln 3, and that h�(1),�(2)

(T )(= h�(2)
(T )) take on two distinct values ln 3 and 0. The necessary and sufficient

conditions on �(2) for which h�(2)
(T ) = ln 3 are also obtained. Those results are recorded in Section 3. We remark that the

problem of the asymptotic behavior of the number of points on the intersection f k L1 ∩ L2, where L1, L2 are submanifolds
of a smooth manifold, and f is a smooth map, is said to be a problem of dynamics of the intersection. These problems arise
from various branches of analysis. There are some general results [3] obtained for such topics. However, no approaches are
available to solve specific problems.

To conclude the introductory section, we describe some rich dynamical behaviors of Lozi maps [6]. A proof of the
existence of strange attractions for Lozi maps was first obtained by Misiurewicz [7]. The existence of the Bowen–Ruelle
measure for a class of Lozi-type maps were independently studied by Young [8], and Collet and Levy [9]. More recently,
Soma and Kiriki proved that Lozi family has some shadowing property near its strange attractors [10].

2. Dynamics of certain maps induced from T n�(m,k)

To address the problems (P1) and (P2), we need to solve the dynamics of intersections as in (1.5). The first step, is to
understand certain dynamics of �(m,k) under T . To this end, we begin with the calculation of T �(m,k) . Now, for m �= 0,

T
(
x′,mx′ + k

) = (
mx′ + k, F

(
mx′ + k

) − bx′).
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Setting x = mx′ + k, y = F (mx′ + k) − bx′ , we obtain that

y = F (x) − b(x − k)

m
=

⎧⎪⎪⎨
⎪⎪⎩

(a1 − b
m )x + (ā1 + bk

m ), if x � 1,

(a0 − b
m )x + (ā0 + bk

m ), if |x| � 1,

(a−1 − b
m )x + (ā−1 + bk

m ), if x � −1.

(2.1)

From (2.1), we see immediately that T consists of three dynamics. Each dynamics acts on the following regions:

R1 = {
(x, y): x � 1

}
, R0 = {

(x, y): |x| � 1
}

and R−1 = {
(x, y): x � −1

}
. (2.2)

The dynamics on regions Ri , i = 1,0,−1, are to be termed the ith dynamics, respectively. Given a straight line/line
segment/half-line �, the image of � consists of possibly two half-lines/line segments �1 and �−1 and one line segment �0.
That is,

T � =
⎧⎨
⎩

�1, if (x, y) ∈ � and (x, y) ∈ R1,

�0, if (x, y) ∈ � and (x, y) ∈ R0,

�−1, if (x, y) ∈ � and (x, y) ∈ R−1.

(2.3a)

Note that some of �1, �0, or �−1 could be empty. We then define the notations �i1,i2,...,in−1,in , i j ∈ {−1,0,1}, j = 1,2, . . . ,n,
inductively as follows.

T �i1,i2,...,in−1 =

⎧⎪⎨
⎪⎩

�i1,i2,...,in−1,1, if (x, y) ∈ �i1,i2,...,in−1 and (x, y) ∈ R1,

�i1,i2,...,in−1,0, if (x, y) ∈ �i1,i2,...,in−1 and (x, y) ∈ R0,

�i1,i2,...,in−1,−1, if (x, y) ∈ �i1,i2,...,in−1 and (x, y) ∈ R−1.

(2.3b)

Therefore, T n�(m,k) = T n� contains possibly 3n pieces of half-lines and line segments. Using the above notations, we have

T n� = {
�i1,i2,...,in : u j ∈ {−1,0,1}, j = 1,2, . . . ,n

}
. (2.4)

To understand T n�, it is natural to first consider the cases that i1 = i2 = · · · = in . That is the case that � has been applied by
same dynamics repeatedly. To this end, we define, via (2.1), the following two-dimensional maps of the form

Gi(x, y) =
(

ai − b

x
, āi + b

x
y

)
=: (gi,1(x), gi,2(x, y)

)
. (2.5)

We call gi,1(x), i = 1,0,−1, the slope maps of T . Since gi,1(x), i = 1,0,−1, denote, respectively, the slopes of �i . Here
� = �(x,y) . Moreover, gi,2(x, y) are to be termed the intercept maps. Because if we let �(x,y) = �, then gi,2(x, y) denote,
respectively, i = −1,0,1, the y-intercepts of �i . We next consider the dynamics of the slope and intercept maps gi,1 and
gi,2, i = 1,0,−1.

Proposition 2.1. Let b > 0, ai > 2
√

b, i = 1,−1 and −a0 > 2
√

b. Then

(i) For i = 1,−1, m±
i,∞ := ai±

√
a2

i −4b

2 are two fixed points of the slope maps gi,1 . For i = 0, m−
0,∞ := a0+

√
a2

0−4b

2 and m+
0,∞ :=

a0−
√

a2
0−4b

2 are two fixed points of the slope map g0,1 .
(ii) Moreover, the attracting interval of m+

i,∞ , i = 1,0,−1, is R − {m−
i,∞}. That is to say if x ∈ R − {m−

i,∞}, then, for i = 1,0,−1,

limn→∞ gn
i,1(x) = m+

i,∞ .

(iii) Suppose ai = 2
√

b. Then m+
i,∞ = m−

i,∞ is the globally attracting fixed point of gi,1 , i = 1,0,−1.

(iv) If x /∈ (m−
i,∞,m+

i,∞), i = 1,−1 (resp., x /∈ (m+
0,∞,m−

0,∞)), then gi,1(x), i = 1,0,−1, converge to m+
i,∞ uniformly. That is, given

ε > 0, there exists an Nε , independent of x, such that |gn
i,1(x) − m+

i,∞| < ε whenever n � Nε .

Proof. We illustrate only i = 1. Clearly, two fixed points of g1,1 are m±
1,∞ . The attracting interval of g1,1 can be easily

concluded by using graphical analysis in Fig. 2.1. To prove (iv), let x = a1. For ε > 0, then there exists an N such that
|gn

1,1(a1) − m+
1,∞| < ε whenever n � N . Let x ∈ (m+

1,∞,a1), clearly, for ε > 0, |gn
1,1(x) − m+

1,∞| < |gn
1,1(a1) − m+

1,∞| < ε when-

ever n � N . Now for x ∈ (−∞,m−
1,∞) ∪ (a1,∞), we see that g3

1,1(x) ∈ (m+
1,∞,a1). Thus, the assertion of Proposition 2.1(iv)

for i = 1 holds by choosing Nε = N + 3. The other part of the proof is similar and is thus omitted. �
Remark 2.1. Given �(m,k) = �, we see from Fig. 2.1, that the slopes of �i1,i2,...,in remain positive (resp., negative) for all n � 3.
Here i1, i2, . . . , in ∈ {−1,1} (resp., ∈ {0}).
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Fig. 2.1.

Proposition 2.2. Suppose

b > 0, ai > 1 + b, i = 1,−1 and −a0 > 1 + b. (2.6)

For fixed x = m+
i,∞ , i = 1,0,−1, the intercept maps gi,2(m

+
i,∞, y) have fixed points ki,∞ := m+

i,∞āi

m+
i,∞−b

, which are globally attracting.

Proof. It suffices to show that 0 < b
m+

i,∞
< 1, i = 1,−1, and −1 < b

m+
0,∞

< 0. We illustrate only i = 1. Now,

0 <
b

m+
1,∞

= 2b

a1 +
√

a2
1 − 4b

=
a1 −

√
a2

1 − 4b

2
< 1. (2.7)

The last inequality is justified by the fact that a1 > 1 + b � 2
√

b > 0. �
Theorem 2.1. Suppose (2.6) holds.

(i) The two-dimensional map Gi , as defined in (2.5), i = 1,0,−1, have two fixed points (m±
i,∞,

m±
i,∞āi

m±
i,∞−b

) =: A±
i .

(ii) Moreover, the attracting regions of A+
i , i = 1,0,−1, are R

2 − {(x, y): x = m−
i,∞}. That is to say, for any (m,k) ∈ R

2 −
{(x, y): x = m−

i,∞}, i = 1,0,−1, limn→∞ Gn
i (m,k) = A+

i .

Proof. We only illustrate i = 1. The cases for i = 0,−1 are similar. Set gn
1,1(m) = m1,n . Let m �= m−

1,∞ . Given ε > 0, there
exists an Nε ∈ N such that for every n � Nε , we have

m+
1,∞ − ε < m1,n < m+

1,∞ + ε. (2.8)

It follows from (2.8) that for any k ∈ R, and n sufficiently large,

min

{
ā1 + bk

m+
1,∞ − ε

, ā1 + bk

m+
1,∞ + ε

}
< ā1 + bk

m1,n
< max

{
ā1 + bk

m+
1,∞ − ε

, ā1 + bk

m+
1,∞ + ε

}
. (2.9)

It follows from (2.7) and Proposition 2.2 that for all sufficiently small ε > 0, limn→∞ gn
1,2(m

+
1,∞ ± ε,k) exists and equals to

ā1(m
+
1,∞ ± ε)

m+
1,∞ ± ε − b

=: k1±ε,∞. (2.10)

Using (2.9), we see inductively that

min
{

gn
1,2

(
m+

1,∞ + ε,k
)
, gn

1,2

(
m+

1,∞ − ε,k
)}

< gn
1,2(m1,n,k) < max

{
gn

1,2

(
m+

1,∞ + ε,k
)
, gn

1,2

(
m+

1,∞ − ε,k
)}

. (2.11)

However, it is easy to see that the single limits limn→∞ gn
1,2(m

+
1,∞ ± ε,k) and limε→0 gn

1,2(m
+
1,∞ ± ε,k) exist and the con-

vergence of limn→∞ gn
1,2(m

+
1,∞ ± ε,k) is uniform for all sufficiently small ε > 0. So the double limit and both iterated limits

of gn (m+ ± ε,k) exist and all three limits are equal. However, limε→0 limn→∞ gn (m+ ± ε,k) = limε→0 k1±ε,∞ = k1,∞ .
1,2 1,∞ 1,2 1,∞
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Fig. 3.1.

Taking the double limit on (2.11), we see that the double limit of gn
1,2(m

+
1,n,k) exists and equals to k1,∞ . It is then easy to

see that, for (m,k) ∈ R
2 − {(x, y): x = m−

i,∞}, limn→∞ Gn
1(m,k) = (m+

1,∞,k1,∞). We thus complete the proof of theorem. �
It then follows from Theorem 2.1 that for any � = �(m,k) , m �= m−

i,∞ , i = 1,0,−1, the notations �i,i,...,i,... , applying the ith
dynamics on � infinitely many times, are well defined. The resulting images are denoted by �i∞ , where, for i = 1,0,−1,

�i∞ = �(m′,k′),
(
m′,k′) = A+

i . (2.12)

3. Boundary influence on the spatial entropy of the finite system

In Section 2, we are able to understand the behavior of �(m,k) under the same dynamics. However, T n�(m,k) , as indicated
in (2.4), consists of more images that are obtained via combinations of various dynamics. In this section, we begin with es-
tablishing some comparison principles, as in Proposition 3.1, to get a better understanding of T n�(m,k) . The following lemma
is very useful in determining how the order of the line segments and half-lines �i1,i2,...,in , i j ∈ {−1,0,1}, j = 1,2, . . . ,n, is.
The proof is trivial and, thus, skipped.

Lemma 3.1. Let b > 0. For fixed y, if x1 � x2 , then the y-coordinate of T (x1, y) is no greater than that of T (x2, y).

Remark 3.1. Since our objective here is to study how the number of points in the intersection T n�(m1,mk) ∩ �(m2,k2) grows
as n increases, we may assume from here on by Remark 2.1 that the slopes of �1 and �−1 are positive and that of �0 is
negative.

Proposition 3.1 (Comparison principles). Suppose (2.6) holds.

(1) Let � and k be lines or line segments or half-lines, and � ∩ k = ∅. Suppose k is to the right of �. Then so are ki to �i , for i = 1,−1.
But, �0 is to the right of k0 . Here ki , �i , i = 1,0,−1 are defined in (2.3a).

(2) Let {im}n
m=1 and { jm}n

m=1 be two distinct finite sequences, im and jm ∈ {1,0,−1}, m = 1,2, . . . ,n. Suppose k is the first index
such that i� = j� for all � � k. Then �i1,i2,...,in is to the right of � j1, j2,..., jn provided that either (a) or (b) holds.
(a) ik = 1 or −1, and ik−1 > jk−1 .
(b) ik = 0 and ik−1 < jk−1 .

Proof. Using Remark 3.1, Lemma 3.1 and the fact that T is one-to-one, we have the first comparison principle of the
proposition. See Fig. 3.1 for one special case. The second comparison principle of the proposition follows inductively from
the first comparison principle. �

Note that the reverse of the ordering in k0 and �0 is due to the fact that, in R0, F (y) has a negative slope. We next show
that all �i1,i2,...,in , except 6 possibly line segments/half-lines, lie in an N-shaped tube whose boundaries are given in Fig. 3.2,
where �i∞ , i = 1,0,−1, are defined in (2.12) and �i∞, j , j = 1,0,−1, mean the jth dynamics being applied to �i∞ .

Proposition 3.2. Suppose (2.6) holds. For any straight line � and n ∈ N, we have that �i1,i2,...,in , i j ∈ {−1,0,1}, j = 1,2, . . . ,n, lie
in the N-shaped tube, except possibly for those �1,...,1,in , �−1,...,−1,in , in = 1,0, or −1. Here the boundaries of the N-shaped tube are
�1∞ , �1∞,0 , �1∞,−1 , �−1∞ , �−1∞,0 and �−1∞,1 . See Fig. 3.2.
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Proof. Assume �i1,i2,...,in−1,1 �= �1,1,...,1. Let j be the index for which i j �= 1 and ik = 1, for all j < k � n − 1. Then
�i1,i2,...,i j−1,i j ∈ R−1 or R0. Thus, �i1,i2,...,i j is to the left of �1∞ . Therefore, it follows from the second comparison princi-
ple that �i1,i2,...,i j ,i j+1,...,in−1,1 is to the left of �1∞,1,...,1 = �1∞ . Hence, all �i1,i2,...,in−1,1, i j ∈ {1,0,−1}, 1 � j � n − 1, are to
the left of �1∞ except possibly �1,1,...,1. The proof for the other parts of (2) is similar. �

We note that the boundary points of the N-shaped tube are ω-limit points ω(�1; T ) of T (�1). That is, if B ∈ ω(�1; T ),
then there exist an A ∈ �1, and a sequence {nk}∞k=1, nk ∈ N, such that T nk (A) → B as k → ∞.

To ensure that each of �i1,i2,...,in , i j ∈ {1,0,−1}, 1 � j � n, is nonempty, we need the following lemma.

Lemma 3.2. Let

b > 0, min{a1,a−1} � −a0 > 1 + 4b, and ā0 is sufficiently small. (3.1)

Then the y-coordinate (�−1∞,0 ∩ �−1∞,1)y of (�−1∞,0 ∩ �−1∞,1) is less than −1, and (�1∞,−1 ∩ �1∞,0)y > 1.

Proof. We illustrate only (�1∞,−1 ∩ �1∞,0)y > 1. The other assertion is similarly obtained. Note that the equation of the line

�1∞ is y = m+
1,∞x + k1,∞ . Letting y = −1, we have that x = −k1,∞−1

m+
1,∞

. Clearly,

(�1∞,−1 ∩ �1∞,0)y = the y-coordinate of T

(−k1,∞ − 1

m+
1,∞

,−1

)
= −a0 + ā0 + b(k1,∞ + 1)

m+
1,∞

=: t. (3.2)

Now, taking ā0 = 0, we have

0 <
−k1,∞ − 1

m+
1,∞

<
−k1,∞
m+

1,∞
= a1 − a0

m+
1,∞ − b

� 2a1

m+
1,∞ − b

� 4a1

a1 + (

√
a2

1 − 4b − 2b)

� 4.

Thus, for ā0 = 0, we have

t � −a0 − 4b > 1. (3.3)

We just completed the proof the lemma. �
Remark 3.2. Since our objective is to study the spatial entropy of the system, without loss of generality, we may assume,
via Proposition 3.2 and Lemma 3.2, that all �i1,i2,...,in , i j ∈ {1,0,−1}, 1 � j � n, are nonempty provided that (3.1) holds.

We next give stronger conditions on ai , i = 1,0, or −1, so as to ensure that for any fixed j ∈ N, �i1,i2,...,i j ,...,in+ j , where
i j = · · · = i j+n = 1 or i j = · · · = i j+n = −1 become unbounded as n grows larger.

Lemma 3.3. Suppose

b > 0,
1

min{a1,a−1} � −a0 � 3 + 4b and that ā0 is sufficiently small. (3.4)

2
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Let A, as indicated in Fig. 3.2, be any point in the line segment for which its both endpoints are �−1∞ ∩ �−1∞,0 and �1∞,−1 ∩ �1∞,0
(resp., �1∞ ∩ �1∞,0 and �−1∞,0 ∩ �−1∞,1). Then the limit of both coordinates of T n(A) approaches to +∞ (resp., −∞).

Proof. We first note that T has a fixed point B = (
a1−a0−ā0
a1−1−b ,

a1−a0−ā0
a1−1−b ) in R

2 for which its stable (resp., unstable) direction

is (1,
a1−

√
a2

1−4b

2 ) (resp., (1,
a1+

√
a2

1−4b

2 )). Since (�−1∞ ∩ �−1∞,0)y > (�1∞,−1 ∩ �1∞,0)y > 1, it suffices to show, via Lemma 3.2,
that T n(�1∞,−1 ∩�1∞,0) → (+∞,+∞) as n → ∞. To this end, we need to show that T (�1∞,−1 ∩�1∞,0) = T (−1, t), t as given
in (3.2), lies on the upper half of the stable line

(
y − a1 − a0 − ā0

a1 − 1 − b

)
= m−

1,∞
(

x − a1 − a0 − ā0

a1 − 1 − b

)
,

or, equivalently,

F (t) + b − a1 − a0 − ā0

a1 − 1 − b
− m−

1,∞t + m−
1,∞

a1 − a0 − ā0

a1 − 1 − b
=: h(ā0) > 0.

Now,

h(0) = a1t + a0 − a1 − a1 − a0

a1 − 1 − b
+ b − m−

1,∞t + m−
1,∞

a1 − a0

a1 − 1 − b
. (3.5)

We also have that with ā0 = 0,

b − m−
1,∞t = b − 2b

a1 +
√

a2
1 + 4b

t � b − 2b

a1 +
√

a2
1 + 4b

(−a0)

� b − b(−a0)

a1
> 0, (3.6)

and

a1 − a0

a1 − 1 − b
� a1 − a0. (3.7)

It then follows from (3.3), (3.5), (3.6) and (3.7) that

h(0) > a1(−a0 − 4b) + 2(a0 − a1) = a1(−a0 − 4b − 2) + 2a0 � a1 + 2a0 � 0.

We thus complete the proof of the lemma. �
The first main results of the paper are stated in the following.

Theorem 3.1. Let (3.4) hold.

(i) Suppose a1 > a−1 . Let �(2) be a line satisfying the following:
(a) (�(2) ∩ �(∞,1))y � (�1∞ ∩ �1∞,0)y , where �(∞,1) is defined in (1.4b).

(b) m+
−1,∞ � m � m+

1,∞ , where m+
−1,∞ and m+

1,∞ are defined in Proposition 2.1 and m is the slope of �(2) .
Then h�(1),�(2)

(T ) = 0 for any �(1); otherwise, h�(1),�(2)
(T ) = ln 3.

(ii) Suppose a1 < a−1 . Let �(2) be a line satisfying the following:
(c) (�(2) ∩ �(∞,−1))y � (�−1∞ ∩ �−1∞,0)y .

(d) m+
1,∞ � m � m+

−1,∞ .
Then h�(1),�(2)

(T ) = 0 for any �(1); otherwise, h�(1),�(2)
(T ) = ln 3.

(iii) Suppose a1 = a−1 . Let �(2) = �(a1,k̄) with k̄ � k−1,∞ or k̄ � k1,∞ , where k1,∞ and k−1,∞ are defined in Proposition 2.2. Then
h�(1),�(2)

(T ) = 0 for any �(1); otherwise, h�(1),�(2)
(T ) = ln 3.

(iv) h�(1),�(2)
(T ) is independent of the choice of �(1) .

Proof. Let a1 > a−1. We will break down �(2) into four cases.

(1) (�−1∞,0 ∩ �−1∞,1)y > (�(2) ∩ �(∞,1))y > (�1∞ ∩ �1∞,0)y . See Fig. 3.3.

(2) (�(2) ∩ �(∞,1))y � (�−1∞,0 ∩ �−1∞,1)y .
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(3) (�(2) ∩ �(∞,1))y � (�1∞ ∩ �1∞,0)y and m > m+
1,∞ or m < m+

−1,∞ .

(4) �(2) satisfies (a) and (b).

For the first case, we note, via Proposition 2.1(iv) and comparison principles, that for N sufficiently large, �0,i2,...,iN , where
i2 = i3 = · · · = iN = 1, we have that

(�(2) ∩ �(∞,1))y > (�0,i2,...,iN ∩ �(∞,1))y for any �. (3.8)

In particular, the natural number N is independent of the choice of �. Therefore, for any n � N , by identifying � =
� j1, j2,..., jn−N , we see that

� jn−N+1,..., jn = � j1, j2,..., jn−N+1,..., jn , where jk ∈ {1,0,−1}, for 1 � k � n − N,

jn−N+1 = 0 and jn−N+2 = · · · = jn = 1, satisfying (3.8). (3.9)

Hence, �(2) must intersect with � j1, j2,..., jn−1,0, where j1, . . . , jn−1 are given as in (3.9). See Fig. 3.3 for clarification. Thus, for
any n � N , the number N (n, �(1), �(2), T ) of intersections of T n�(1) ∩ �(2) satisfies

3n−N � N (n, �(1), �(2), T ) � 3n.

It then follows that h�(1),�(2)
(T ) = ln 3. If case (2) or case (3) holds, then �(2) must intersect with �−1∞ and �1∞,−1 or

�−1∞,0 and �1∞,0 or �−1∞,1 and �1∞ . Upon using Lemma 3.3, we conclude that h�1,�2 (T ) = ln 3. For the last case, we see
immediately, via Proposition 3.2, N (n, �(1), �(2), T ) is smaller or equal than 6. Consequently, h�(1),�(2)

(T ) = 0. The proof for
a1 < a−1 is similar and thus omitted. The case for a1 = a−1 is obvious and thus omitted. The last part of the theorem is a
direct consequence of the first three parts of the theorem. �
4. Spatial entropy of the infinite system

In this section, we will study the entropy of system (1.1a,b). We begin with the following lemma. To make sure that
a1,a−1,−a0 and b are all positive, we shall assume that a > 1.

Lemma 4.1. Suppose

b > 0, −a0 > 2 + 4b, min{a1,a−1} > max{−a0,4 + 7b} and ā0 is sufficiently small. (4.1)

Then T (−1, t) = T (�1∞,−1 ∩ �1∞,0) (resp., T (�−1∞,0 ∩ �−1∞,1)) stays above (resp., below) the line y = x, where t is given as in (3.2).
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Fig. 4.1. Here we denote by K1 = T (K ). We use similar notations to denote points under the first iteration of T .

Proof. We only illustrate the proof of the first assertion of the lemma. To this end, we first note that (4.1) implies (3.1). We
then need to show that

F (t) + b > t. (4.2)

Letting ā0 = 0, (4.2) becomes

(a1 − 1)t + a0 − a1 + b := L > 0. (4.3)

Using (3.3), we see, via (4.1), that

L � (a1 − 1)(−a0 − 4b) + a0 − a1 + b = (−a0 − 1 − 4b)(a1 − 2) − 2 − 7b > 0.

The proof of the theorem is thus complete. �
Let S be a square defined as

S = {
(x, y) ∈ R

2: |x| � p, |y| � p
}
,

where p > 1. Then T (S) ∩ S = S−1 ∪ S0 ∪ S1. See Fig. 4.1.
Inductively, we see that T n(S) ∩ S consists of 3n nested pieces of Si1,i2,...,in , i j = 1,0,−1, j = 1,2, . . . ,n. Likewise,

backward iterations: T −n(S) ∩ S will produce 3n nested pieces of S̄ i1,i2,...,in , i j = 1,0,−1, j = 1,2, . . . ,n with each piece
S̄ i1,i2,...,in crossing the east and west sides of the rectangle S . Let A be a point in R

2. T (A) is denoted by A1. Let K = (p, p),
L̄ = (p,−1), N̄ = (−p,1) and M = (−p,−p). If

K1 and L̄1 stay above y = p, (4.4a)

and

N̄1 and M1 stay below y = −p, (4.4b)

then each of Si1,i2,...,in is nonempty. The following lemma gives a sufficient condition on the parameters ai , i = 1,0,−1 and
b so that (4.4) holds.
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Lemma 4.2. Suppose

b > 0, (−a0 − 1 − b)
(
min{a1,a−1} − 2(1 + b)

)
> 2(1 + b)2 and ā0 is sufficiently small. (4.5)

Then there exists a p > 1 such that the following results hold.

F (p) − bp > p, (4.6a)

F (1) + bp < −p, (4.6b)

F (−1) − bp > p, (4.6c)

and

F (−p) + bp < −p. (4.6d)

Proof. Eq. (4.6) is equivalent to

min

{−a0 + ā0

1 + b
,
−a0 − ā0

1 + b

}
> p > max

{
a1 − a0 − ā0

a1 − 1 − b
,

a−1 − a0 + ā0

a−1 − 1 − b

}
. (4.7)

Letting ā0 = 0, (4.7) reduces to

−a0

1 + b
> p > max

{
a1 − a0

a1 − 1 − b
,

a−1 − a0

a−1 − 1 − b

}
. (4.8)

Clearly, − a0
1+b > 1. Thus, if

−a0

1 + b
> max

{
a1 − a0

a1 − 1 − b
,

a−1 − a0

a−1 − 1 − b

}
, (4.9)

then there exists a p > 1 such that (4.8) holds. However, the assumptions (4.5) would yield (4.9). The proof of the lemma is
thus complete. �
Remark 4.1. Note that T −1(x, y) = ( 1

b F (x) − y
b , x). Replacing ai with ai

b , b with 1
b and ā0 with ā0

b , we see that (4.5) is

invariant. That is (− a0
b − 1 − 1

b )(min{ a1
b

a−1
b } − 2(1 + 1

b )) > 2(1 + 1
b )2 and ā0

b is sufficiently small if and only if (4.5) holds.
Thus, (4.5) is not only to ensure that each of Si1,i2,...,ın is nonempty but also that each of S̄ i1,i2,...,ın is nonempty.

To show that T has a Smale–Horseshoe, we need to show that each of Si1,i2,...,in or S̄ i1,i2,...,in shrinks to a line segment as
n → ∞. To this end, we first need the following notations. Let the slope and intercept pairs of two straight lines � and �̄ are
(m,k) and (m, k̄), respectively. Here k �= k̄. We further assume that the slope and intercept pairs of �i and �̄i , i ∈ {1,0,−1},
are, respectively, (mi,ki) and (mi, k̄i). Define

d0,i = |k − k̄|, i = 1,0,−1, (4.10a)

and

d1,i = |k1,i − k̄1,i |, i = 1,0,−1. (4.10b)

Lemma 4.3. Let m > m+
i,∞ , i = 1,−1, and m < m+

0,∞ , respectively. Suppose

b > 0, ai � 1 + 2b, i = 1,−1, and −a0 � 1 + 2b, respectively. (4.11)

Then, respectively,

d1,i � 1

2
d0,i, i = 1,0,−1. (4.12)

Consequently, each of Si1,i2,...,in, i j ∈ {1,0,−1}, 1 � j � n, shrinks to a line segment as n → ∞.

Proof. We illustrate only the case i = 1. Using (2.5), we see that

dn+1,1 = b

mn,1
dn,1 � b

m+
1,∞

dn,1.

The inequality above is justified by the fact that mn,1 > m+ for all n ∈ N. See Fig. 2.1 for clarification. However,
1,∞
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b

m+
1,∞

= 2b

a1 +
√

a2
1 − 4b

� 2b

1 + 2b + √
1 + 4b2

= 2

1
b + 2 +

√
1

b2 + 4
� 1

2
,

we thus complete the proof of the first part the lemma. It then follows from Remarks 2.1 and 3.1, and (4.12) that the size
of each of Si1,i2,...,in, shrinks by a factor no greater than 1

2 as one applies the ith dynamics, i = 1,0,−1, on them. �
Remark 4.2. Replacing ai with ai

b , b with 1
b , and substituting the corresponding quantities into (4.11), we have that the

resulting inequalities become

b > 0, ai � 2 + b, i = 1,−1 and −a0 � 2 + b. (4.13)

Thus, as in Remark 4.1, (4.13) ensures that each of S̄ i1,i2,...,in shrinks to a line segment as n → ∞. Consequently, if

min{a1,a−1,a0} � max{1 + 2b,2 + b}, (4.14)

then the size of each of Si1,i2,...,in or S̄ i1,i2,...,in shrinks to a line segment as n → ∞.

We are now in the position to state the second main results of the paper.

Theorem 4.1.

(i) Suppose (3.1) holds. Then hD(T ) = ln 3.
(ii) Suppose (4.1) holds. Then h(T ) = hN (T ) = hD(T ) = ln 3.

Proof. Suppose (3.1) holds. The first assertion of the theorem follows from Lemma 3.1. Suppose (4.1) holds. Let Γn = the
number of intersections points of �i1,i2,...,in , i j ∈ {1,−1}, 1 � j � n, and the line y = x. We see, via Lemma 4.1, that 3n − 4 �
Γn � 3n . Thus, hN (T ) = ln 3. To prove h(T ) = ln 3, we first note that if (4.1) holds, then (4.5) and (4.14) are satisfied. Applying
Lemmas 4.2 and 4.3, we see that

⋂∞
n=−∞ T n(S) ∩ S =: Λ3 is a Cantor set of infinite points. Let Σ3 be the space the two

sided sequences of 0’s, 1’s and −1’s. Define the itinerary map i : Λ3 → Σ3

i(P ) = (. . . s−2s−1s0s1s2 . . .),

where

P ∈ Λ3 and s j = k if and only if T j(P ) ∈ Sk.

Impose a metric on Σ3 by defining

d
[
(si)

∞
i=−∞, (ti)

∞
i=−∞

] =
∞∑

i=−∞

|si − ti|
3|i| .

Define the shift map σ by

σ
(
(si)

∞
i=−∞

) = (ti)
∞
i=−∞, where ti = si+1.

It is then not difficult to show, as in e.g., Devaney [11] and Robinson [12], that the dynamics of T on the invariant set Λ3
is conjugate to the shift map on Σ3. Note that any trajectory of T in Λ3 is a bounded solution of (1.1a,b). We just complete
the proof of the theorem. �

In summary, it is shown that the problem raised by Afraimovich and Hsu [2] is in general not true. Sufficient conditions
under which the problem holds true are also given. We conclude the paper with the following remarks.

(1) Is the open problem still true whenever the spatial entropy h�(1),�(2)
(T ) of the finite lattice system with respect to

Robin’s boundary conditions is positive?
(2) It is also of interest to study the boundary influence on the spatial entropies of Henon-type maps, such as when F ,

defined in (1.2), is a cubic polynomial or a quadratic map for which the resulting T is a Henon map.
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