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Abstract—Distributed networked storage systems provide the storage service on the Internet. We address the privacy issue of the

distributed networked storage system. It is desired that data stored in the system remain private even if all storage servers in the

system are compromised. The major challenge of designing these distributed networked storage systems is to provide a better privacy

guarantee while maintaining the distributed structure. To achieve this goal, we introduce secure decentralized erasure code, which

combines a threshold public key encryption scheme and a variant of the decentralized erasure code. Our secure distributed networked

storage system constructed by the secure decentralized erasure code is decentralized, robust, private, and with low storage cost.

Index Terms—Networked storage system, distributed storage system, decentralized erasure code, threshold encryption, security.
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1 INTRODUCTION

STORING personal data, such as e-mails and photos, on the
Internet has become a common practice. Distributed

networked storage systems aim to provide the storage
service on the Internet. Current research on distributed
networked storage systems focuses on efficiency and
robustness of the storage systems, i.e., the methods for
accelerating the storing and retrieval processes with
minimal cost and maximal robustness. Since the Internet
is a public environment that anyone can freely access, it is
also important to consider the privacy issue of the stored
information of the users.

The purpose of distributed networked storage systems
[1], [2], [3] is to store data reliably over a very long period of
time by using a distributed accumulation of storage servers.
Long-term reliability requires some sort of redundancy. A
straightforward solution is simple replication; however, the
storage cost for the system is high. Erasure codes are
proposed in several designs for reducing the storage over-
head in each storage server [4], [5] after linear network codes
[6], [7] are proposed. A decentralized erasure code [8] is an
erasure code with a fully decentralized encoding process.
Assume that there are n storage servers in the networked
storage system, and k messages are stored into the storage
servers such that one can retrieve the k messages by only
querying any k storage servers. The method of erasure codes
provides some level of privacy guarantee since the stored
data in less than k storage servers are not enough to reveal all
information about the k messages. However, it is hard to
assure that only less than k storage servers are compromised
in an open network. We need a more sophisticated method to
protect the data in the storage servers, while the owner of the

messages can retrieve them even if only some storage servers
respond to the retrieval request.

In this paper, we propose a secure decentralized erasure
code, which combines the concepts of data encryption and
decentralized erasure codes. In this code, the messages are
stored in an encrypted form. Even if the attacker compro-
mises all storage servers, he cannot compute information
about the content of the k messages. In our storage system,
the owner shares his decryption key to a set of key servers
in order to mitigate the risk of key leakage. As long as less
than t key servers are compromised by the attacker, the
decryption key is safe. Furthermore, as long as t key servers
get ciphertexts from some storage servers to decrypt, the
owner can compute the messages back.

At first glance, we make contrary assumptions on storage
servers and key servers. We assume that the key servers are
more secure than the storage servers so that it is hard for the
attacker to compromise more than t key servers. In
cryptography, the security of a system lies on protection
of the secret key. Thus, the key servers that hold the secret
key are set up or carefully chosen by the owner. Due to their
importance, they are highly protected by various system
and cryptographic mechanisms, such as proactive crypto-
graphic methods [9], [10]. We can treat storage servers and
key servers as two different types of servers. The keys
servers are much more secure and their number is much
less. The storage servers provide large capacity of storage,
while they are prone to attacks.

To maintain the decentralized architecture while apply-
ing the data encryption, we present a new threshold public
key encryption scheme such that each key server can
independently perform the decryption. In traditional thresh-
old public key encryption schemes [11], [12], decrypting a set
of ciphertexts requires that each of the key servers decrypts
all of the ciphertexts. On the other hand, in our threshold
public key encryption scheme, decrypting a set of ciphertexts
only requires that each of the key servers decrypts one of the
ciphertexts. As a result, the distributed networked storage
system constructed by our secure decentralized erasure
code is secure and fully decentralized: each encrypted
message is distributed independently; each storage server
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performs the encoding process independently; and each key
server executes decryption independently.

The model. Fig. 1 provides an overview of our system.
There are kmessagesMi, 1 � i � k, to be stored inton storage
servers SSi, 1 � i � n. We could think that these messages
are the segments of a file. For those k messages, we assign a
message identifier. Each message Mi is encrypted under the
owner’s public key pk as Ci ¼ Eðpk;MiÞ. Then, each
ciphertext is sent to v storage servers, where the storage
servers are randomly chosen. Each storage server SSi
combines the received ciphertexts by using the decentralized
erasure code to form the stored data �i. The owner’s secret
key sk is shared among m key servers KSi, 1 � i � m, by a
threshold secret sharing scheme so that the key server KSi
holds a secret key share ski. To retrieve the k messages, the
owner instructs the m key servers such that each key server
retrieves stored data from u storage servers and does partial
decryption for the retrieved data. Then, the owner collects
the partial decryption results, called decryption shares, from
the key servers and combines them to recover the kmessages.

Our main result shows that for fixed k and m � k > 1,
when n ¼ ak3=2; v ¼ bk1=2 ln k, b > 5a, a >

ffiffiffi
2
p

, and u ¼ 2, the
probability that the owner retrieves the k messages is at
least 1� k=p� oð1Þ, where p is the size of the group used in
our system. The length of p is about 1,000 bit.

Road map. We propose our threshold public key
encryption and briefly describe the decentralized erasure
code in Section 2. Our construction of secure decentralized
erasure code is given in Section 3. In Section 4, we provide a
detailed analysis for the probability of successful retrieval
of our system in various parameter settings. Conclusion can
be found in Section 5.

2 PRELIMINARIES

In this section, we briefly describe bilinear maps and
propose our threshold public key encryption using bilinear
maps. We also give a short description for the decentralized
erasure codes.

2.1 Bilinear Map and Assumptions

Bilinear map. Let GG1;GG2 be the cyclic multiplicative
groups1 with prime order p and g 2 GG1 be a generator. A
map ~e : GG1 �GG1 ! GG2 is a bilinear map if it has the
bilinearity and nondegeneracy: for any x; y 2 ZZp; ~eðgx; gyÞ ¼
~eðg; gÞxy and ~eðg; gÞ is not the identity element in GG2. In fact,

~eðg; gÞ is a generator of GG2. Let Genð1�Þ be an algorithm
generating ðp;GG1;GG2; ~e; gÞ, where � is the length of p.

Let x 2R X denote that x is randomly chosen from the
set X.

Bilinear Diffie-Hellman assumption. Following the
above parameters, given g, gx, gy, gz, where x, y, and z are
randomly chosen from ZZp, the bilinear Diffie-Hellman
problem is to find ~eðg; gÞxyz. The assumption is that it is
hard to solve the problem with a significant probability in
polynomial time. Formally, for any probabilistic polyno-
mial-time algorithm A, the following probability is negli-
gible (in �):

Pr½Aðg; gx; gy; gzÞ ¼ ~eðg; gÞxyz : x; y; z 2R ZZp�:

Decisional Bilinear Diffie-Hellman assumption. This
assumption is that given g, gx, gy, gz, it is hard to distinguish
~eðg; gÞxyz from a random element from GG2. Formally, for any
probabilistic polynomial time algorithm A, the following is
negligible (in �):

jPr½Aðg; gx; gy; gz;QQbÞ ¼ b : x; y; z; r 2R ZZp;

QQ0 ¼ ~eðg; gÞxyz; QQ1 ¼ ~eðg; gÞr; b 2R f0; 1g� � 1=2j:

2.2 Threshold Public Key Encryption

A threshold public key encryption consists of six algo-
rithms: SetUp, KeyGen, ShareKeyGen, Enc, ShareDec,
and Combine. SetUp generates the public parameters of
the whole system, and KeyGen generates a key pair,
consisting of a public key pk and a secret key sk, for each
user. Each user uses ShareKeyGen to share his secret key
into n secret key shares such that any t of them can recover
the secret key. Enc encrypts a given message by a public
key pk and outputs a ciphertext. ShareDec partially
decrypts a given ciphertext by a secret key share and
outputs a decryption share. Combine takes a set of
decryption shares as input and outputs the message if
and only if there are at least t decryption shares.

We propose a threshold public key encryption scheme �
using bilinear maps as follows:

. SetUp(1�). To generate �, run Genð1�Þ and set
� ¼ ðp;GG1;GG2; ~e; gÞ.

. KeyGen(�). To generate a key pair for a user, select
x 2R ZZp and set pk ¼ gx, sk ¼ x.

. ShareKeyGen(sk, t, n). The secret key shares ski ¼
fðiÞ are derived by the polynomial fðzÞ, where

fðzÞ ¼ skþ a1zþ a2z2 þ � � � þ at�1zt�1 ðmod pÞ;

and a1; a2; . . . ; at�1 2R ZZp.
. Enc(pk;M). To generate a ciphertext C of the

message M 2 GG2, compute

C ¼ ð�; �; �Þ ¼ ðgr; h;M~eðgx; hrÞÞ;

where r 2R ZZp and h 2R GG1.
. ShareDec(ski; C). Let C ¼ ð�; �; �). By using the

secret key share ski, a decryption share �i of C is
generated as follows:

�i ¼ ð�i; �i; �0i; �iÞ ¼ ð�; �; �ski ; �Þ:

LIN AND TZENG: A SECURE DECENTRALIZED ERASURE CODE FOR DISTRIBUTED NETWORKED STORAGE 1587

Fig. 1. The model of our distributed networked storage system.

1. It can also be described as additive groups over points on an elliptic
curve.



. Combine(�i1 ; �i2 ; . . . ; �it ). It combines the t values
(�0i1 ; �

0
i2
; . . . ; �0it ) to obtain �sk ¼ �fð0Þ via Lagrange

interpolation over exponents:

�sk ¼
Y
i2S

ð�0iÞ
Q

r2S;r 6¼i
�i
r�i

� �
;

where S ¼ fi1; i2; . . . ; itg and �ij ¼ ð�ij ; �; ð�Þ
0
ij
; �ijÞ for

all 1 � j � t. The output message isM ¼ �=~eð�; �fð0ÞÞ.
When a fixed h is used for a set of ciphertexts, the set of

those ciphertexts is multiplicative homomorphic. The multi-
plicative homomorphic property is that given a ciphertext
for M1 and a ciphertext for M2, a ciphertext for M1 �M2 can
be generated without knowing the secret key x, M1, and M2.
Let C1 ¼ Encðpk;M1Þ and C2 ¼ Encðpk;M2Þ, where

C1 ¼ ðgr1 ; h;M1~eðgx; hr1ÞÞ and

C2 ¼ ðgr2 ; h;M2~eðgx; hr2ÞÞ:

A new ciphertext C which is an encryption of M1 �M2

under the public key pk is computed as follows:

C ¼ ðgr1gr2 ; h;M1~eðgx; hr1ÞM1~eðgx; hr2ÞÞ
¼ ðgr1þr2 ; h;M1M2~eðgx; hr1þr2ÞÞ:

Theorem 1. The above threshold public key encryption system is
chosen plaintext secure (CPA secure) under the decisional
bilinear Diffie-Hellman assumption in the standard model.

2.3 Decentralized Erasure Code

A decentralized erasure code [8] is a random linear code
with a sparse generator matrix. Let the message be ~I ¼
ðm1;m2; . . . ;mkÞ, the generator matrix G ¼ ½gi;j�1�i�k;1�j�n,
and the codeword be ~O ¼ ðw1; w2; . . . ; wnÞ. The elements of
~I and ~O and entries of G are all over a finite field IF of size p.
The generator matrix G constructed by an encoder is as
follows: First, for each row, the encoder randomly marks an
entry as 1 and repeats this process for an ln k=k times with
replacement (an entry can be marked multiple times),
where a is a constant. Second, the encoder randomly sets a
value from IF for each marked entry. The encoding process
is expressed as ~I �G ¼ ~O. As for the decoding, a decoder
receives k columns j1; j2; . . . ; jk of G and the corresponding

codeword elements wj1 ; wj2 ; . . . ; wjk . The decoding process
is computed as follows:

m1;m2; . . . ;mk½ �

¼ wj1 ; wj2 ; . . . ; wjk
� � g1;j1

g1;j2
� � � g1;jk

g2;j1
g2;j2

� � � g2;jk

� � � � � � � � � � � �
gk;j1

gk;j2
� � � gk;jk

2
6664

3
7775
�1

:

A decoding is successful if and only if the k� k
submatrix formed by the k-chosen columns is invertible.
Thus, the probability of a success decoding is the prob-
ability of the chosen submatrix being invertible. It has been
shown in [8] that the probability is at least 1� k=p� oð1Þ,
where the randomness is introduced by the random choices
for marked entries, the random values for marked entries,
and the random choices for k columns.

Since the decoder only requires k columns of G and their
corresponding codeword elements to decode, this code is
resilient to n� k erasure errors. Moreover, the code is
decentralized because each codeword element wi can be
independently generated by a different party, when an input
vector is given and a generator matrix is marked (but its
coefficients are not chosen yet). Consider the following
distributed networked storage system, where there are
n servers. The owner wants to store k messages Mi,
1 � i � k. For each Mi, the owner randomly selects v servers
with replacement and sends a copy of Mi to each of them.
Each server randomly selects a coefficient for each received
ciphertext and performs a linear combination of all received
ciphertexts. Those coefficients chosen by a server form a
column of the matrix and the result of the linear combination
is a codeword element. Because there are n servers, a k� n
generator matrix and a codeword are implicitly formed. Each
server can perform the computation independently. This
makes the code decentralized.

A variant of the decentralized erasure code. We fix a
cyclic multiplicative group GG with prime order p. The
message domain is GG. The generation of the generator matrix
G is the same as the above decentralized erasure code except
that the entries of G are over ZZp. The encoding process is to
generate w1; w2; . . . ; wn 2 GG, where wi ¼ mg1;i

1 m
g2;i

2 . . .m
gk;i
k .

An example is shown in Fig. 2. Two messages are stored
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Fig. 2. A storage system using a variant of the decentralized erasure code.



into three storage servers. The first step of the decoding
process is to compute the inverse of a k� k submatrixK ofG.
Let K�1 ¼ ½di;j�1�i;j�k. The second step of the decoding
process is to compute mi ¼ wd1;i

j1
w
d2;i

j2
. . .w

dk;i
jk

, where j1; j2;

. . . ; jk are the indices of columns of K in G. Therefore, a
sufficient condition for a success decoding of the variant
decentralized erasure code is that the k� k submatrix K is
invertible. Similar to the decentralized erasure code, the
probability of a success decoding is at least 1� k=p� oð1Þ.

3 SECURE DECENTRALIZED ERASURE CODES

We assume that there are n storage servers which store data
and m key servers which own secret key shares and perform
partial decryption. We consider that the owner has the public
key pk ¼ gx and shares the secret key x tom key servers with
a threshold t, where m � t � k. Let the k messages be
M1;M2; . . . ;Mk. We use hID ¼ HðM1kM2k � � � kMkÞ as the
identifier for this set of messages, where H : f0; 1g� ! GG1 is
a secure hash function.

The storage process and the retrieval process are
described in the following:

. Storage process. To store k messages, the storage
process is as follows:

- Message encryption. The owner encrypts all k
messages via the threshold public key encryp-
tion � with the same hID, where hID ¼
HðM1kM2k � � � kMkÞ is the identifier for the set
of messages M1;M2; . . . ;Mk. Let the ciphertext
of Mi be

Ci ¼ ð�i; �; �iÞ ¼
�
gri ; hID;Mi~e

�
gx; hriID

��
;

where ri 2R ZZp; 1 � i � k.
- Ciphertext distribution. For each Ci, the owner

randomly chooses v storage servers (with repla-
cement) and sends each of them a copy of Ci.

- Decentralized encoding. For all received cipher-
texts with the same message identifier hID, the
storage server SSj groups them as Nj. The
storage server SSj selects a random coefficient
gi;j from ZZp for each Ci 2 Nj and sets gi;j ¼ 0 for
Ci 62 Nj. This step forms a generator matrix G ¼
½gi;j�1�i�k;1�j�n of the decentralized erasure code.

Each storage server SSj computes the follow-
ing ðAj;BjÞ:

Aj ¼
Y
Ci2Nj

�
gi;j
i and Bj ¼

Y
Ci2Nj

�
gi;j
i ;

and stores

�j ¼ ðAj; hID; Bj; ðg1;j; g2;j; . . . ; gk;jÞÞ:

In fact, ðAj; hID; BjÞ is a ciphertext forQ
1�i�k M

gi;j
i since

ðAj; hID; BjÞ

¼
Y
Ci2Nj

ðgriÞgi;j ; hID;
Y
Ci2Nj

�
Mi~e

�
gx; hriID

��gi;j0
@

1
A

¼
 
g

Q
Ci2Nj

rigi;j
; hID;

 Y
Ci2Nj

M
gi;j
i

!
~e

 
gx; h

Q
Ci2Nj

rigi;j

ID

!!

¼
 
g~r; hID;

 Y
Ci2Nj

M
gi;j
i

!
~e
�
gx; h~r

ID

�!
;

where ~r ¼
Q

Ci2Nj
rigi;j.

. Retrieval process. To retrieve k messages, the retrieval
process is as follows:

- Retrieval command. The owner sends a com-
mand to the m key servers with the message
identifier hID.

- Partial decryption. Each key server KSi randomly

queries u storage servers with the message

identifier hID and obtains at most u stored data

�j from the storage servers. Then, the key server

KSi performs ShareDec on each received

ciphertext by its secret key share ski to obtain

a decryption share of the ciphertext. Assume

that KSi receives �j. KSi decrypts the ciphertext

ðAj; hID; BjÞ as a decryption share �i;j ¼ ðAj; hID;

hskiID ; BjÞ, and sends the following to the owner:

~�i;j ¼
�
Aj; hID; h

ski
ID ; Bj;

�
g1;j; g2;j; . . . ; gk;j

��
:

- Combining and decoding. The owner chooses
~�i1;j1

; ~�i2;j2
; . . . ; ~�it;jt from all received data ~�i;j

and computes hskID ¼ h
fð0Þ
ID ¼ hxID by the Lagrange

interpolation over exponents, where i1 6¼ i2 6¼
� � � 6¼ it and S ¼ fi1; i2; . . . ; itg:

hxID ¼
Y
i2S

�
hskiID

�Q
r2S;r6¼i

�i
r�i:

If the number of the received ~�i;j is more than
t, the owner randomly selects t out of them. If
the number is less than t, the retrieval process
fails. After having hxID, the owner reconsiders all
received data and chooses ~�i1;j1

; ~�i2;j2
; . . . ; ~�ik;jk

with j1 6¼ j2 6¼ � � � 6¼ jk. By using hxID, the owner
decrypts �i;j as wj for all ði; jÞ 2 fði1; j1Þ;
ði2; j2Þ; . . . ; ðik; jkÞg:

wj ¼
Bj

~eðAj; h
x
IDÞ
¼
Y
Cl2Nj

M
gl;j
l :

The owner then computes

K�1 ¼ ½di;j�1�i;j�k;

where K ¼ ½gi;j�1�i�k;j2fj1;j2;...;jkg. If K is not
invertible, the retrieval process fails. Otherwise,
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the owner successfully obtains Mi, 1 � i � k, by
the following computation:

w
d1;i

j1
w
d2;i

j2
� � �wdk;ijk

¼M
Pk

l¼1
g1;jl

dl;i

1 M

Pk

l¼1
g2;jl

dl;i

2 . . .M

Pk

l¼1
gk;jl dl;i

k

¼M	1
1 M

	2
2 . . .M	k

k

¼Mi;

where 	r ¼
Pk

l¼1 gr;jldl;i ¼ 1 if r ¼ i and 	r ¼ 0
otherwise.

An example is given in Fig. 3. In the ciphertext

distribution step, the ciphertext C1 is distributed to SS1,

SS2, and SS3. The ciphertext C2 is distributed to SS2 and SS3

only. After receiving ~�1;1, ~�1;2, ~�2;2, and ~�2;3, the owner

computes hxID from ~�1;1 and ~�2;2. By using hxID, the owner

computes the encoded messages, M
g1;2

1 M
g2;2

2 and M
g1;3

1 M
g2;3

2 ,

and decodes them to get messages M1 and M2.
Our design uses two techniques. First, for retrieving

messages, the decryption process can be performed before
the decoding process. Second, the decryption process can be
performed by the key servers independently. The first
technique comes from the multiplicative homomorphic
property of our encryption scheme. For those k messages,
a fixed message identifier hID is used. As a result, the set of
ciphertexts is multiplicative homomorphic. An encoding

result of ciphertexts C1; C2; . . . ; Ck is also an encryption of

an encoding result of messages M1;M2; . . . ;Mk. As for the

second key technique, the design of the encryption scheme

embeds the decryption power at the value hxID, while hID is

the message identifier. With hxID, the owner can decrypt all

ciphertexts marked with the message identifier hID. A key

server KSi can compute a share hskiID of hxID. With at least t

key servers, hxID can be computed.

4 ANALYSIS

We analyze the computation cost, the storage cost, and the

probability of a success retrieval. Let the bit length of the

element in the group GG1 be l1 and GG2 be l2.

4.1 Computation Cost

We measure the computation cost in the number of pairing

operations, modular exponentiations in GG1 and GG2,

modular multiplications in GG1 and GG2, and arithmetic

operations over GF ðpÞ. These operations are denoted as

Pairing, Exp1, Exp2, Mult1, Mult2, and Fp, respectively. We

consider the cost for k messages together since the storage

process and retrieval process are designed for a set of k

messages. The cost is listed in Table 1. In fact, Fp has much

lower cost than Mult1 and Mult2. One Exp1 is about

1:5dlog2 peMult1 on average (by using the fast square and
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Fig. 3. A storage system using the secure decentralized erasure code.

TABLE 1
Computation Cost of Each Step in Our Design

- Pairing: a pairing computation of ~e.
- Exp1 and Exp2: a modular exponentiation computation in GG1 and GG2, respectively.
- Mult1 and Mult2: a modular multiplication computation in GG1 and GG2, respectively.
- Fp: an arithmetic operation in GF ðpÞ.



multiply algorithm). That is, when p is about 1,000 bits, one
Exp1 is about 1;500 Mult1 on average. Similarly, Exp2 is
about 1:5dlog2 peMult2 on average.

Since, in practice, the coefficients can be chosen from a
smaller set, the measure of the computation cost of the Exp1

and Exp1 is an overestimation. Pairing is considered as a
more expensive operation than Exp. However, some
improved algorithms [13], [14] are proposed for accelerating
the pairing computation.

In the storage process, for each message encryption,
generating �i requires one Exp1, and generating �i requires
one Exp1, one Pairing, and one Mult2. Hence, in the message
encryption step for k messages, the cost is (k Pairing þ
2k Exp1 þ k Mult2). In the ciphertext distribution step, no
computation occurs. In the encoding step, each SSi encodes
all received messages. Here, we use a worse cast estimation
that each SSi receives k messages. To compute Ai, SSi
requires k Exp1 and ðk� 1Þ Mult1 while to compute Bi, the
cost is k Exp2 and ðk� 1Þ Mult2.

For the partial decryption step, each KSi performs one
Exp1 to get hskiID . For a success retrieval, t key servers would be
sufficient; hence, for this step, we consider the total cost of t
key servers. That is, t Exp1. For the combining and decoding
step, we split it into two substeps: the combining substep and
the decoding substep. The combining substep includes the
computation of hxID and the computation of codeword
elements wjs from the decryption shares ~�i;js. The computa-
tion of hxID is a Lagrange interpolation over exponents in GG1,
which requiresOðt2ÞFp, t Exp1, and ðt� 1ÞMult1. Computing
wj fromAj;Bj, and hxID requires one Pairing and one modular
division, which takes 2 Mult2. The decoding substep in-
cludes the matrix inversion and the computation of messages
Mis from codeword elementswjs. The matrix inversion takes
Oðk3Þ arithmetic operations over GF ðpÞ, and the decoding
for each message takes k Exp2 and ðk� 1ÞMult2.

4.2 Storage Cost

The storage cost in a key server for a user is dlog2 pe because
the key server only requires to store the secret key share.
The main storage cost lies on the storage servers.

We measure the storage cost in bits as the average cost in a
storage server for a message bit. To store k messages, each
storage server SSj stores ðAj; hID; BjÞ and the coefficient
vector ðg1;j; g2;j; . . . ; gk;jÞ. The total cost in a storage server is
ð2l1 þ l2 þ kdlog2 peÞ bits, where Aj; hID 2 GG1, and Bj 2 GG2;
hence, the average cost for a message bit is ð2l1 þ l2 þ
kdlog2 peÞ=kl2 bits, which is dominated by dlog2 pe=l2 for a
sufficient large k. In practicality, gi;js are chosen from a much
smaller set than ZZp. Then, we can use fewer bits to represent
gi;js. This reduces the storage cost in each storage server.

4.3 Probability of a Success Retrieval

When n and k are fixed, u and v affect the probability of a
success retrieval. We investigate the relations of these
parameters for the success probability. The results are given
in Theorems 2 and 3.

To retrieve all k messages, the key servers have to get k

stored data �j1 , �j2
; . . . ; �jk from k different storage servers

SSj1 ; SSj2 ; . . . ; SSjk and apply ShareDec to acquire ~�i1;j1
:~�i2;j2

;

. . . ; ~�ik;jk . Furthermore, a k� k matrix K formed by the

coefficient vectors in ~�i1;j1
; ~�i2;j2

; . . . ; ~�ik;jk needs to be inver-

tible in order to solve the k messages. The random process is

on the selection of distinct SSj1
; SSj2

; . . . ; SSjk by the key

servers and the coefficient vectors in �j1 ; �j2
; . . . , and �jk . Let

E1 be the event that less than k distinct storage servers are

queried by the key servers. For the generator matrix G

implicitly generated by the owner and the storage servers,

let E2 be the event that the submatrix K of k columns

j1; j2; . . . ; jk of G is noninvertible. Thus, the probability of a

success retrieval by the owner is

1� Pr½E1� � Pr½E2jE1�Pr½E1�: ð1Þ

We analyze suitable settings of m; v, and u, where n ¼
ak3=2 and n ¼ ak, respectively, and the results are listed in
the following:

1. n ¼ ak3=2, a >
ffiffiffi
2
p

, m � t � k > 1, v ¼ bk1=2 ln k, u ¼ 2
with b > 5a,

2. n ¼ ak, a > 1, m ¼ t ¼ k > 1, v ¼ b1 ln k, u ¼ b2 ln k
with b1 > 5a and b2 > 4þ 3= ln a.

We image a networked storage system that consists of a
large number of storage servers. The number k of stored
messages each time is much less than n. Thus, the first
setting of n ¼ ak3=2 is better than the second setting of
n ¼ ak. Although, in the regular coding theory, the constant
information rate for the second setting may be preferred,
the first setting is more suitable for the application to
practical networked storage systems.

Theorem 2. Assume that there are k messages, n storage servers,
and m key servers where n ¼ ak3=2, m � t � k > 1 and a is a
constant with a >

ffiffiffi
2
p

. For v ¼ bk1=2 ln k and u ¼ 2 with
b > 5a, the probability of a success retrieval is at least
1� k=p� oð1Þ.

Proof. To analyze Pr½E1�, we consider that each storage
server is a bin and each key server has u balls, where
u ¼ 2. When a key server queries a storage server, we
consider that the key server throws a ball into the bin.
Because the key servers make queries randomly, those
balls are randomly thrown into n bins. The probability
that less than k bins contain balls is

Pr½E1� � Cn
k�1

k� 1

n

	 
2m

¼ nðn� kþ 2Þ
ðk� 1Þ1

ðn� 1Þðn� kþ 3Þ
ðk� 2Þ2

� � �
ðn� bk�2

2 cÞðn� dk�2
2 eÞ

dk�1
2 ebk�1

2 c
k� 1

n

	 
2m

� 2nðn� kþ 2Þ
k

k�1
2 k� 1

n

	 
2m

� 2a2k2 � 2ak3=2 þ 4ak1=2
� �k�1

2 k� 1

n

	 
2k

ðbecause n ¼ ak3=2Þ

� 2a2k2 � 2ak3=2 þ 4ak1=2

a4k2

	 
k
2 k� 1

k

	 
2k

¼ oð1Þ ðbecause a >
ffiffiffi
2
p
Þ:

ð2Þ
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The event E2 under the condition E1 can be modeled
by forming a perfect matching in the random bipartite
graph H with respect to G. The random bipartite graph
H is constructed as follows: Let each ciphertext Ci be a
vertex v1;i and V1 be the set of all vertices for Cis. Let each
storage server SSj be a vertex v2;j and V2 be the set of all
vertices for SSjs. When a ciphertext Ci is distributed to
the storage server SSj, there is an edge (v1;i; v2;j). The
matrix K induces a subgraph H 0 of the bipartite graph H.
The subgraph H 0 consists of all vertices in V1, a subset
V 02 	 V2 that V 02 is a subset of queried storage servers and
jV 02 j ¼ k, and edges (v1;i; v2;j) for all v1;i 2 V1 and v2;j 2 V 02 .
If H 0 has no perfect matching, K is not invertible. If H 0

has a perfect matching, K is noninvertible if and only if
detðKÞ ¼ 0. The value of detðKÞ depends on the random
coefficients chosen by the storage servers. Let E3 be the
event that H 0 has no perfect matching, and E4 be the
event that detðKÞ ¼ 0. We have

Pr½E2jE1� ¼ Pr½E3jE1� þ Pr½E4jE3 ^ E1�Pr½E3jE1�
� Pr½E3jE1� þ Pr½E4jE3 ^ E1�:

ð3Þ

We analyze the probability of E3 conditioned on E1 by
using the Hall’s Lemma in the following form [8]:

Lemma 1 (Hall’s Lemma). Let H 0 be a bipartite graph with

vertex sets V1 and V 02 , where jV1j ¼ jV 02 j ¼ k. If H 0 has no
isolated vertex and no perfect matching, then there exists a set

A 	 V1 or A 	 V2 such that:

. 2 � jAj � kþ1
2 .

. The number of neighbors of A is jAj � 1.

. The subgraph induced by A and its neighbors is
connected.

Hence, there are two cases that H 0 has no perfect
matching. First, H 0 has at least one isolated vertex.
Second, H 0 has no isolated vertex and a set A satisfies the
above conditions. Let EI be the event that H 0 has at least
one isolated vertex and EA be the event that some set A
satisfies the conditions. We obtain

Pr½E3jE1� � Pr½EIjE1� þ Pr½EAjE1�: ð4Þ

Starting from EI, we consider each vertex in V2 as a bin
and each edge from V1 to V2 as a ball. When an edge
connects to a vertex in V2, a ball is thrown into the bin.
Consider the subset B of the bins corresponding to
the subset V 02 of V2. Thus, B contains k bins. EI means
that there is one or more empty bins inB. For a fixed bin in
B, the probability of the bin being empty is ð1� 1=nÞbk

3=2 ln k

since there are bk3=2 ln k balls. By using the union bound on
k bins, we have the probability of EI conditioned on E1 as

Pr½EIjE1� � kð1� 1=nÞbk
3=2 ln k

¼ k 1� 1

ak3=2

	 
ak3=2�ba ln k

ðbecause n ¼ ak3=2Þ

� kðe�ba ln kÞ ðbecause 1� x � e�xÞ

¼ 1

k

	 
b
a�1

¼ oð1Þ ðbecause b > 5aÞ:

ð5Þ

As for Pr½EAjE1�, we separate the event into two
subevents by A 	 V1 or A 	 V 02 . Thus,

Pr½EAjE1� ¼ Pr½EA and A 	 V1jE1�Pr½A 	 V1�
þ Pr½EA and A 	 V 02 jE1�Pr½A 	 V 02 �
� Pr½EA and A 	 V1jE1�
þ Pr½EA and A 	 V 02 jE1�:

For Pr½EA and A 	 V 02 jE1�, we further divide the event
into subevents according to the size of A and use the
union bound again. Consider a set A 	 V 02 with jAj ¼ i.
The event EA conditioned on E1 can be overestimated by
the event that �ðAÞ 	 V1 and j�ðAÞj ¼ i� 1. In other
words, there is a set A0 	 V1 with jA0j ¼ i� 1 such that all
vertices in V1nA0 only connect to vertices in V2nA. Thus,
we have

Pr½EA and A 	 V 02 jE1�

�
Xðkþ1Þ=2

i¼2

Pr½EA;A 	 V 02 and jAj ¼ ijE1�

¼
Xðkþ1Þ=ð2Þ

i¼2

Ck
i C

k
i�1

n� i
n

	 
ðk�iþ1Þbk1=2 ln k

�
Xðkþ1Þ=ð2Þ

i¼2

ek

i

	 
2i n� i
n

	 
ðk�iþ1Þbk1=2 ln k

because Ck
i �

ek

i

	 
i !

� kmax
i

ek

i

	 
2i n� i
n

	 
ðk�iþ1Þbk1=2 ln k
( )

¼ max
i

�
exp

	
2ið1� ln iÞ

þ ln k

�
bðk� iþ 1Þk1=2 ln

	
n� i
n



þ 2iþ 1


�
:

ð6Þ

To achieve Pr½EA and A 	 V 02 jE1� ¼ oð1Þ as k!1, it is
sufficient to have

bðk� iþ 1Þk1=2 ln
n� i
n

	 

þ 2iþ 1 < 0: ð7Þ

Since ðn� iÞ=n ¼ 1� i=n < e�ði=nÞ, we have

bðk� iþ 1Þk1=2 �i
n

	 

þ 2iþ 1 < 0: ð8Þ

By (8), we need

b >
ð2iþ 1Þak3=2

ðk� iþ 1Þk1=2i
¼ ð2iþ 1Þak
ðk� iþ 1Þi : ð9Þ

Since b > 5a, for 2 � i � ðkþ 1Þ=2, (9) holds. It implies
that

Pr½EA and A 	 V 02 jE1� ¼ oð1Þ;

as k!1. Similarly, we can get a lower bound for b from
the case of A 	 V1 and the bound is satisfied by b > 5a.

For Pr½E4 j E3 ^ E1�, that is, detðAÞ ¼ 0, we treat each
coefficient, randomly chosen from Zp, in the matrixK as a
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variable. Thus, detðKÞ is a multivariate function. Since
there is a perfect matching in the induced graph H 0,
detðKÞ is a nonzero function and the degree of detðKÞ is k.
From the Schwartz-Zippel Theorem, the probability that
the randomly chosen coefficients make detðKÞ ¼ 0 is no
more than k=p, i.e., Pr½E4 j E3 ^ E1� � k=p. Thus, we have

Pr½E2 j E1� � k=pþ oð1Þ;

and conclude the proof of Theorem 2. tu
For another setting for v and u, where n ¼ ak and m ¼ k,

we have the following theorem:

Theorem 3. Assume that there are k messages, n storage servers,
and m key servers, where n ¼ ak for a fixed constant a > 1
and m ¼ t ¼ k > 1. For v ¼ b1 ln k, u ¼ b2 ln k, b1 > 5a, and
b2 > 4þ 3= ln a, the probability of a success retrieval is at least
1� k=p� oð1Þ, where p is the size of the used group.

Proof. By the proof of Theorem 2, we analyze two events E1

and E2 similarly. We have

Pr½E2� < k=pþ oð1Þ:

To bound E1, we start with

Pr½E1� � Cn
k�1

k� 1

n

	 
b2k ln k

:

By the bound for Cn
k�1 in the proof of Theorem 2 and

n ¼ ak, we obtain

Pr½E1� �
2nðn� kþ 2Þ

k� 1

	 
kþ1
2 k� 1

n

	 
b2k ln k

� ð4a2kÞ
kþ1

2
k

ak

	 
b2k ln k

¼ akþ1þ½logað4kÞ�kþ1
2 �b2k ln k

¼ oð1Þ because b2 > 4þ 3

ln a
; k > 1

	 

;

as k!1. Therefore, the probability of a success
retrieval is

1� Pr½E1� � Pr½E2 j E1�Pr½E1� � 1� k=p� oð1Þ:
ut

5 CONCLUSION

We have introduced a secure decentralized erasure code
and our secure distributed networked storage system. Our
system provides both of the storage service and the key
management service. Our construction is fully decentra-
lized: each encrypted message is distributed independently;
each storage server performs the encoding process in a
decentralized way; each key server queries the storage
servers independently. Moreover, the secure distributed
networked storage system guarantees the privacy of
messages even if all storage servers are compromised.
Our storage system securely stores data for a long period of
time on untrusted storage servers in the distributed
network structure.

APPENDIX

We extend the standard CPA security game for the thresh-

old public key encryption scheme, and then, prove that our

threshold public key encryption scheme is CPA secure.

A. Definition

The threshold CPA security game consists of a challenger C
and an adversary A.

. Setup: C does the following:

- Run Setupð�Þ to get � ¼ ðp;GG1;GG2; ~e; gÞ.
- Run KeyGenð�Þ to get a key pair ðpk; skÞ and run

ShareKeyGen on ðsk; t; nÞ to get ski; 1 � i � n,
where t and n are randomly chosen.

- Send ð�, pk, t, nÞ to A.
. Key share query: A queries ðt� 1Þ secret key shares

from C and gets skq1
; skq2

; . . . ; skqt�1
, where q1; q2; . . . ;

qt�1 2 ½1; n�.
. Challenge: A chooses two messages M0 and M1,

where M0 6¼M1, and sends them to C. C encrypts Mb

as C, where b is randomly selected from f0; 1g, and
sends C to A.

. Output: A outputs a bit b0 for guessing b.

The advantage of A is defined as AdvA ¼ jPr½b0 ¼ b� � 1=2j.
A threshold public key encryption scheme is CPA secure if

and only if for any probabilistic polynomial-time algorithm

A, AdvA is a negligible function in �.

B. Proof of Theorem 1

We prove that if no probabilistic polynomial time algorithm

solves the decisional bilinear Diffie-Hellman problem with

advantage 
, then no polynomial time algorithm wins the

CPA security game against our encryption scheme with

advantage 2
.

Proof. We prove by contradiction. Assume that there is an

algorithm A winning the CPA security game against our

encryption scheme with advantage 2
. We can construct

an algorithm A0 solving the decisional bilinear Diffie-

Hellman problem with advantage 
 as follows:

. Setup. The input of A0 is ðg; gx; gy; gz;QQÞ with
public parameters ð~e;GG1;GG2; pÞ. Then, A0 sends
ð�; pk; t; nÞ to A, where � ¼ ðp;GG1;GG2; ~e; gÞ, pk ¼
gx, t is a threshold value, and n is the number of
secret key shares. This implicitly sets sk ¼ x.

. Key share query. To answer A’s queries q1; q2; . . . ;
qt�1 for ðt� 1Þ secret key shares, A0 sets skq1

;
skq2

; . . . ; skqt�1
as random values and sends them

to A. Wlog, assume that q1; q2; . . . ; qt�1 are all
different.

. Challenge. A gives two messages M0 and M1. A0
randomly selects b 2 f0; 1g and encrypts Mb as

C ¼ Encðpk;MbÞ ¼ ðgy; gz;MbQQÞ:

. Output. A0 sends C to A and gets A’s output b0. If
b0 ¼ b, then A0 outputs 0 for guessing that
QQ ¼ QQ0 ¼ ~eðg; gÞxyz. If b0 6¼ b, then A0 outputs 1
for guessing that QQ ¼ QQ1 ¼ ~eðg; gÞr.
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When QQ ¼ QQ0 ¼ ~eðg; gÞxyz,C is a ciphertext ofMb; thus,A
has advantage 2
 winning the game, i.e., Pr½b0 ¼ b j QQ ¼
~eðg; gÞxyz� ¼ 1=2þ 2
. When QQ ¼ QQ1 ¼ ~eðg; gÞr for some

random r, the distributions of ðgy; gz;M0QQÞ and ðgy; gz;
M1QQÞ are identical because for any r, there exists r0 such

that M0~eðg; gÞr ¼M1~eðg; gÞr
0
. Thus, we have Pr½b0 ¼ bjQQ ¼

~eðg; gÞr� ¼ 1=2. The advantage of A0 is����Pr½A0 ! 0 j QQ ¼ QQ0�Pr½QQ ¼ QQ0�

þ Pr½A0 ! 1 j QQ ¼ QQ1�Pr½QQ ¼ QQ1� �
1

2

����
¼ 1

2
þ 2


	 

� 1

2
þ 1

2
� 1

2
� 1=2

����
����

¼ 
:
ut
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