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Wafer Sort Bitmap Data Analysis Using
the PCA-Based Approach for Yield

Analysis and Optimization
Yeou-lang Hsieh, Gwo-hshiung Tzeng, Fellow, IEEE, T. R. Lin, and Hsiao-cheng Yu

Abstract—Yield analysis is one of the most important subjects
in IC companies. During the initial stage of new process develop-
ment, several factors can greatly impact the yield simultaneously.
Traditionally, several learning cycle iterations are required to
solve yield loss issues. This paper describes a novel way to
diagnose yield loss issues in less iteration. First, the failure
classification of bitmap data is transferred to a new basis using
principal component analysis. Second, the defective rates are
calculated and the original bitmap data is reconstructed in the
principal basis, allowing the yield loss space to be generated by
Cluster Analysis. Third, physical failure analysis samples can be
selected to solve yield loss issues. Furthermore, the new yield loss
basis can be used to monitor the progress of yield improvement
as a discriminate analysis measure for reducing failure patterns
(bitmap failures).

Index Terms—Bitmap, cluster analysis, discriminate analysis,
principal component analysis (PCA), yield analysis, yield loss
space.

I. Introduction

DURING THE wafer manufacturing process, wafer sort-
ing is the final step to ensure that ICs function well.

Only qualified chips are sent on for packaging and further
processing. If an IC contains repeated circuit blocks [e.g.,
embedded static random access memory (SRAM)], bitmap
data can be collected as part of chip probe data. Bitmap data
collection is a common procedure in SRAM, dynamic random
access memory, and Flash memory ICs. Bitmap data records
the failing bits of the memory being tested, and it represents
the failing counts for different failure patterns recognition.
Because specific bitmap failure patterns can be connected
to certain semiconductor process failures, several previous
studies focus on bitmap failure pattern recognition [2], [8],
[9]. The first step of traditional yield analysis approach is
to synthesize bitmap data into a Pareto chart. The second
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step conducts failure analysis to examine selected samples
from the Pareto chart to determine failure mechanisms. After
modifications are made for the process improvement, the third
step generates a new Pareto chart for the second learning cycle.
Lastly, the entire procedure is repeated to achieve the yield
goal. A few learning cycles and several months of development
are usually required to launch new technology (e.g., 45 nm
technology).

This paper uses the principal component analysis (PCA)
approach to explore the reduced failure space basis, the cluster
analysis to generate independent failure events, and discrim-
inate analysis to select objective physical failure analysis
(PFA) dice. Using failure analysis, this paper then reveals
the IC failure mechanisms and fixes them using process
improvement. Results show that the approach in this empirical
study demonstrates fewer learning cycles than traditional yield
improvement approaches.

SRAM is widely used as a test vehicle in the new generation
complementary metal oxide semiconductor (CMOS) process
development due to its high front-end transistor density and
CMOS-compatible manufacturing process properties. Com-
pared to other kinds of circuits, memory circuits are also
easier to use in PFA because failing bits are localized by
bitmap testing data. Therefore, SRAM ICs or logic ICs with
embedded SRAM are commonly used as monitors in CMOS
process development.

Many different mechanisms can induce chip failures. Failure
patterns can be categorized as random failures, systematic
failures, and repeated failures [5].

This research is organized as follows. Section II intro-
duces the bitmap data and mathematical method, Section III
presents examples of bitmap data analysis to demonstrate the
procedures of the proposed method, and Section IV presents
conclusions and remarks.

II. Bitmap Data and Mathematical Method

This section briefly introduces the bitmap data and the
method of generating simulated bitmap data. The second
subsection then introduces analytical approaches like PCA,
cluster analysis, and discriminate analysis.

A. Bitmap Data

1) Bitmap Failure Pattern: Bitmap data records the lo-
cations of failing bits in the repeated structures of an IC
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Fig. 1. Bitmap failure pattern recognition.

(e.g., the SRAM). Due to the circuit structure, specific failure
mechanisms usually produce particular failure patterns that can
be analyzed and categorized. For instance, if four bits share the
same via in the circuit layout, they would fail simultaneously
by the via open fail. Also, if two bits share the same contact,
both would fail if that particular contact fails. Furthermore,
failure patterns change with different testing voltages. For
example, if the contact fails because of high resistance but
no contact open, the results of testing twin bit failure at low
voltages and high voltages might be different.

Fig. 1 illustrates typical (SRAM) bitmap failure recognition.
Grouping procedures generally begin by processing large-area
failure patterns, such as bulk failures, word line failures, and
bit line failures. The remaining failing bits are then grouped
into four bit failures, twin bit failures, one bit failures, and
so on. With further analyses, each of the failure patterns can
be classified into several subcategories. For example, wordline
failures can be separated into full wordline failures and partial
wordline failures, and so on.

2) Simulated Bitmap Data: The method in this paper
generates bitmap data by the following equation:

Xn×p :→
m∑

k=1

Ck × Dk
n×1 × Fk

1×p × f (1)

where Xn×p is a matrix with n row(s) and p column(s),
and the element [xνi]n×p represents the failure bit count of
the ith bitmap failure mode (i = 1, 2, ..., p) of the vth die
(v = 1, 2, ..., n), the element [xνi]n×p can be any nonnegative
integer (Ex: if [x12,5] = 7, the failure bit count is seven in
the 5th failure mode of 12th die). In the simulated example,
n = 500, p = 20, and m = 6 (500 dice, 20 failure modes,
six yield loss event). The basic idea of (1) is, bitmap data
from the kth yield loss event can be constructed by: 1) Ck:
fail intensity among different wafers; 2) Dk

n×1: fail intensity
within same wafer but different dice; 3) Fk

1×p: specific bitmap
data feature by circuits structure; and 4) f : uncertain factor.

One yield loss event can cause different yield loss results in
different wafers (for example, if we have litho machine lens
heating issue in a metal layer which makes metal island pattern

TABLE I

Ck
Values for Each Yield Loss Event

Event 1
(System
Wafer
Edge)

Event 2
(System
Wafer
Edge)

Event 3
(System
Wafer
Center)

Event 4
(System
Local-
ized)

Event 5
(Repeating)

Event 6
(Random)

C1

= 100
C2

= 100
C3

= 100
C4

= 100
C5

= 100
C6 = 1 (low noise
scenario)
C6 = 10 (median noise
scenario)
C6 = 100 (high noise
scenario)

Fig. 2. Wafer map of yield loss events Dk
n×1.

fail, we can observe same bitmap failures with different “fail
intensity,” because lens heating is getting worse by process
time), so that we use Ck as failure count multipliers to interpret
yield loss events’ “intensity.” The term Ck is a constant of k,
which stands for the kth yield loss event, in the model, Ck is
assigned as different order for different signal intensities.

In Table I, the Ck values function as failure count multipliers
for yield loss events. Event-1–Event-5 are signals with three
noise scenarios presented by Event 6. When the Ck value of
Event 6 (in a low/medium noise scenario) is lower than that
of the other events, the signals (Events 1–5) are larger than
the noise (Event 6).

Dk
n×1 is a matrix with n row(s) and one column in Event k,

we use “0–1” in Dk
n×1 to separate those defective/non-defective

dices under each yield loss event. For example, [D97]4 = 0
means for 97th die, it is non-defective from yield loss event
four. In this paper, we set m = 6 (six yield loss events), four
systematic yield loss events occur along with one repeated
yield loss event and one random yield loss event. Fig. 2
displays the corresponding wafer maps of these six events
and combined wafer maps. In the first row of Fig. 2, D1 and
D2 represent the systematic wafer edge yield losses, while
D3 indicates the systematic wafer center yield loss. In the
second row, D4 represents the systematic localized yield loss,
D5 depicts the repeated yield loss, D6 shows the random yield
loss. Finally, the bottom pattern is a combination of the wafer
maps for the six yield loss events above.

A SRAM layout example is shown in Fig. 3, imagining a
contact layer process issue inducing a random single contact
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Fig. 3. Four-bit SRAM layout example, OD layer in vertical, POLY layer
in horizontal, contact in rectangular [2].

TABLE II

Fk
1×p

Values for Each Yield Loss Event (Example)

opening failure, this failure will induce single bit fault if
one contact opening among contact-1–contact-4, horizontal
twin fault if either contact-11 or contact-12 opening, vertical
twin fault if one of contact-5–contact-10 opening. Assuming
in a certain yield loss event the contact opening probability
is equal to each other, the ratio among single bit fault v.s.
horizontal twin bit fault v.s. vertical twin bit fault will be
4:1:3=0.5:0.125:0.375, with a specific signature. Therefore,
due to circuit structure characteristics, the ratio of each bitmap
failure mode in each event was approximately to a specific
signature and be expressed by Fk

1×p, where Fk
1×p is a matrix

with one row and p column(s) in Event k, graded from 0 to
1. TABLE II shows the data used in Fk

1×p.
There are always uncertainties in the testing results. If we

test a same wafer in the same tester twice and then compare
the results, the data will be close but not 100% the same.
The disparities might result from testing marginality, fault
marginality, or bitmap fault pattern recognition sensitivity, and
so on. In this model, f represents an uncertain factor with a
value between 0.8 and 1.2 with conservative estimate.

This paper includes 20 bitmap failure modes and six yield
loss events. Table III shows the selected simulated data of X.
Except for Event 2, the Dk

n×1values are either 0 or 1. The
number 1 signifies that a specific die was influenced by a
certain yield loss event; whereas 0 means that the die was not

TABLE III

Selected Bitmap Data List

(See Appendix-D)

affected. In Event 2, the Dk
n×1values are set between 0 and

1 to show the intensity of influence that Event 2 has within
this wafer. A good die is only produced when all the Dk

n×1
values are 0, as “P” in the “P/F?” row indicates. The FM1
(bitmap failure mode1) count of Die 1is 110, but 130 for Die 2.
Die 1 is affected by Events 1 and Events 2, while Die 2 was
affected by Events 1, Events 2, Events 5, and Events 6 (see
Appendix D).

B. PCA Approach

PCA is a component of multivariate statistical analysis.
PCA was first proposed by Pearson, and then developed by
Hotelling. The PCA method is also called the Karhunen-Loève
transform or Hotelling transform. PCA is a technique for
reducing multidimensional data sets to minimize dimensions
of analysis. The dimensions remaining after PCA analysis
are mutually independent. In other words, PCA is a linear
transformation that converts data to a new coordinate system
where the greatest variance of any projection of data lies on
the first coordinate (the first principal component), the second
greatest variance on the second coordinate, the third greatest
variance on the third coordinate, and so forth [1], [4], [6], [7]
(see Appendix A).

The following section briefly describes how to use the PCA
approach. First, standardize the bitmap raw data to matrix X ,

xvi,s tan daridized =
xvi,raw − x̄i

σxi

X =

⎡
⎢⎢⎢⎢⎢⎢⎣

x11 · · · x1i · · · x1p

...
. . .

...
. . .

...
xν1 · · · xνi · · · xνp

...
. . .

...
. . .

...
xn1 · · · xni · · · xnp

⎤
⎥⎥⎥⎥⎥⎥⎦

n×p

= [xνi]n×p.
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Second, calculate the correlation matrix R = [rhj]p×p where
rhj is the correlation coefficient

R =

⎡
⎢⎢⎢⎢⎢⎣

1 r12 r13 · · · r1p

r21 1 r23 · · · r2p

r31 r32 1 · · · r3p

...
...

...
. . .

...
rp1 rp2 rp3 · · · 1

⎤
⎥⎥⎥⎥⎥⎦

p×p

= [rhj]p×p (2)

of the hth and jth bitmap failure modes, with p = 20 in our
paper. Third, to calculate �, the diagonalization matrix, use

� = B′RB (3)

where

� =

⎡
⎢⎢⎢⎣

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λp

⎤
⎥⎥⎥⎦ .

� is a diagonal matrix where the ith diagonal element is
the ith eigenvalue of R = [rhj]p×p The term B is a translation
matrix between old and new coordinate systems, where the ith
column is the ith eigenvector of R = [rhj]p×p.

In the PCA approach, an important output result called
principle factor loading A = [aik] can be derived from
B = [βik]p×p (see Table A2). In other words, the principle
factor loading

A = [aik] = [
√

λkβik]. (4)

The ith eigenvalue λk of [rij] stands for the variance
corresponding to kth principle component, so the sum of all
eigenvalues is the total variance of [rij]. The variance ratios
can be acquired by dividing λk by

∑p

k=1 λk = p (A7)–(A9).
Another useful result called factor score coefficients may be

found by taking m factors that can be derived from dividing
[βik]p×m by

√
λk.

Factor score coefficients (FSC) are as follows:

FSC = [βik ÷
√

λk]. (5)

Factor scores (FS) can be obtained by multiplying the
normalized X by the factor score coefficients

[FS]n×m = Xn×p × BP×m/
√

λk

= [xνi]n×p × [βik/
√

λk]p×m (6)

where variables i = 1, 2, ..., p, and samples v = 1, 2, ..., n.

C. Cluster and Discriminatory Analysis for Bitmap Failure
Patterns

This paper uses clustering to classify a data set into subsets
(clusters) so that the data in each subset shares some common
features. The cluster analysis employed in this paper uses
factor scores and wafer maps.

Due to the nature of the semiconductor process, one die
might suffer multiple yield losses. Such dice are not appropri-
ate objectives for failure analysis, because more resources are
required to arrive at a failure analysis conclusion. Therefore,
this paper proposes using a suitable threshold value of factor

score to select PFA objective dice. The objective die should
have as more factor scores as possible in specific PC and also
have as fewer factor scores as possible for other PCs.

Once the matrix B is derived from the raw data, (6) can be
used to transform the sample’s data from bitmap failure space
X to event failure space Y

Y = XB (7)

X = YB−1. (8)

Comparing the spectrum in the event failure space for the
original data and transformed data reveals any new yield loss
events.

III. Bitmap Data Analysis Example

The conventional yield improvement procedures include: 1)
set up the bitmap yield loss Pareto plot; 2) select sample dice
and process them with PFA analysis; 3) modify the process
recipe to resolve the yield loss events; 4) process new wafers
with the new recipe; and 5) continue the above four steps until
the yield reaches the desired goal.

Yield loss events are usually mutually independent, which is
consistent with the eigenvectors of the bitmap data correlation
matrix. Accordingly, Microsoft EXCEL VBA was used to
generate the simulated data, PCA analysis, cluster analysis,
wafer maps, and so on.

A. Bitmap Data Analysis with Medium Noise

The Ck value of a random yield loss event in a medium
noise case is set at 10, which is ten times less than the Ck

values of other signals. Table IV lists the top five eigenvalues
and factor loadings.

Comparing the factor loading data in Table IV with that in
Table II shows that principal component 1 (PC1) is mostly
mapped to FM5, FM6 and FM11 to 14 (failure modes
5, 6, 11–14). This reflects the wafer center yield loss event
(Event 3 in Table II). PC2 is mainly mapped to FM15 to 20,
which reflects the repeated wafer yield loss event (Event 5 in
Table II). PC3 is largely mapped to FM1 to 4, FM7 and FM8,
which reflects the wafer edge yield loss event (Event 2 in
Table II). PC4 is mainly mapped to FM7 to 10, which reflects
the system localized yield loss event (Event 4 in Table II).
PC5 is mainly mapped to FM2 to 4 and FM8, which reflects
the wafer edge yield loss event (Event 1 in Table II).

B. Bitmap Data Analysis with Low Noise

In low noise cases, the Ck value of random yield loss event
in Table I is set at 1 for further noise reduction. Repeating the
PCA procedures produces the data shown in Table V. These
results are very similar to those obtained from bitmap data
analysis with medium noise.

C. Bitmap Data Analysis with High Noise

For high noise scenario analysis, the Ck value of random
yield loss events in Table I is adjusted to 100 to determine
what happens in the PCA analysis when the background
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TABLE IV

Eigenvalues and Corresponding Factor Loadings

(Rotated) of Medium Noise Analysis

Ck Value of
Event 6 = 10 PC1 PC2 PC3 PC4 PC5
Eigenvalue 6.30 5.87 4.96 2.30 0.24
Proportion 31.5% 29. 3% 24.8% 11 5% Community 1.2%

PC1–PC4Commulative 31.5% 60.9% 85.7% 97.2% 98.4%
FM1 −0.011 0.020 0.994 −0.022 0.989 −0.025
FM2 −0.185 0.012 0.941 −0.021 0.920 0.266
FM3 0.209 0.026 0.944 −0.027 0.937 −0.228
FM4 0.213 0.018 0.948 −0.032 0.946 −0.204
FM5 0.954 0.027 0.255 0.044 0.978 −0.046
FM6 0.941 0.044 0.301 0.039 0.979 −0.031
FM7 0.080 0.076 0.576 0.795 0.975 0.119
FM8 −0.149 0.028 0.882 0.365 0.934 0.231
FM9 0.532 0.088 −0.043 0.834 0.989 −0.057
FM10 0.455 0.089 0.011 0.879 0.988 −0.048
FM11 0.980 0.037 −0.072 0.132 0.984 0.021
FM12 0.983 0.030 −0.080 0.119 0.987 0.017
FM13 0.982 0.031 −0.100 0.070 0.981 0.021
FM14 0.981 0.017 −0.098 0.079 0.979 0.020
FM15 0.059 0.984 0.010 0.113 0.984 −0.007
FM16 0.014 0.987 0.000 0.006 0.975 −0.001
FM17 0.040 0.989 0.030 0.034 0.981 0.002
FM18 0.000 0.988 0.007 −0.049 0.980 0.006
FM19 0.065 0.978 0.045 0.067 0.967 0.003
FM20 0.021 0.993 0.015 −0.010 0.986 −0.004

TABLE V

Eigenvalues and Corresponding Factor Loadings

(Rotated) of Low Noise Analysis

Ck Value of
Event 6 = 1 PC1 PC2 PC3 PC4 PC5
Eigenvalue 6.31 5.91 4.98 2.30 0.24
Proportion 31.5% 29.6% 24.9% 11.5% Community 1.2%

PC1–PC4
Commulative 31.5% 61.1% 86.0% 97.5% 98.7%
FM1 −0.015 0.011 0.994 −0 032 0.989 0.015
FM2 −0.185 −0.001 0.944 −0.025 0.926 −0.253
FM3 0.206 0.015 0.947 −0.027 0.940 0.222
FM4 0.210 0.021 0.946 −0.034 0.941 0.217
FM5 0.956 0.025 0.257 0.031 0.982 0.045
FM6 0.948 0.027 0.287 0.036 0.984 0.032
FM7 0.077 0.069 0.586 0.786 0.973 −0.114
FM8 −0.149 0.035 0.885 0.355 0.933 −0.231
FM9 0.530 0.085 −0.044 0.834 0.986 0.052
FM10 0.445 0.069 0.005 0.887 0.990 0.043
FM11 0.979 0.032 −0.078 0.128 0 982 −0.021
FM12 0.979 0.033 −0.084 0.137 0.986 −0.017
FM13 0.985 0.026 −0.099 0.080 0.987 −0.020
FM14 0.985 0.017 −0.100 0.073 0.986 −0.020
FM15 0.048 0.986 0.008 0.099 0.984 0.009
FM16 0.011 0.992 −0.001 −0.004 0.985 0.001
FM17 0.034 0.991 0.028 0.022 0.985 −0.013
FM18 0.008 0.993 −0.001 −0.035 0.987 −0.006
FM19 0.051 0.989 0.038 0.067 0.987 0.005
FM20 0.020 0.993 0.010 −0.011 0.987 0.004

TABLE VI

Eigenvalues and Corresponding Factor Loadings

(Rotated) of High Noise Analysis

Ck Value of
Event 6 = 100 PC1 PC2 PC3 PC4 PC5
Eigenvalue 14.69 2.77 1.36 0.41 0.32
Proportion 73.5% 13.8% 6.8% Community

PC1–PC4
2.1% 1.6%

Commulative 73.5% 87.3% 94.1% 96.2% 97.8%
FM1 0.683 0.710 0.016 0.972 0.100 0.050
FM2 0.391 0.898 −0.068 0.964 −0.009 −0.025
FM3 0.766 0.582 0.088 0.934 0.171 0.002
FM4 0.754 0.604 0.091 0.941 0.174 −0.005
FM5 0.969 0.069 0.142 0.963 0.099 −0.037
FM6 0.970 0.090 0.132 0.965 0.094 −0.023
FM7 0.868 0.333 0.050 0.867 −0.328 0.091
FM8 0.611 0.732 −0.023 0.910 −0.278 0.018
FM9 0.947 −0 016 0.126 0.913 −0.249 0.057
FM10 0.950 0.014 0.109 0.914 −0.236 0.108
FM11 0.970 −0 064 0.150 0.967 0.049 −0.059
FM12 0.961 −0.094 0.169 0.961 0.072 −0.107
FM13 0.883 −0.177 0.241 0.869 0.085 −0.332
FM14 0.881 −0.193 0.253 0.877 0.080 −0.320
FM15 0.919 0.037 −0.343 0.963 −0.014 0.104
FM16 0.777 0.010 −0.613 0.980 −0.003 −0.048
FM17 0.934 0.061 −0.293 0.962 0.061 0.133
FM18 0.836 0.018 −0.530 0.980 0.025 0.018
FM19 0.946 0.061 −0.216 0.944 0.008 0.167
FM20 0.884 0.040 −0.435 0.972 0.037 0.081

noise increases. When the noise intensity matches the signal
intensity, the failure counts of systematic failure events roughly
equal the number of random failure events. Yield loss events
cannot be completely decoupled by PCA, as Table VI shows.
This result shows that PC1 is a random failure event, and
only three out of five events can be analyzed: wafer center,
localized, and repeated failure events (PC2–PC4). However, in
real situations, the failure counts of random yield loss events
are lower than systematic and repeated yield loss events. As
a result, high noise cases rarely occur.

D. Cluster Analysis

The details of yield loss events are usually unavailable
for both the event (number) count and event bitmap failure
mode distribution. Therefore, factor score data is required for
deciding objective sample dice of the PFA. The factor scores
can be easily obtained, as (6) indicates.

Fig. 4 plots the PC1 factor scores and corresponding Dk
n×1

values at a medium noise level for 500 simulated samples.
According to the plot, the factor score data varies significantly
among various Dk

n×1 values (0 or 1). As Fig. 5 shows, the
factor score map of PC1 is very similar to the Dk

n×1 map
of Event 3. The threshold values of the gray-level parts of
the factor score map are 1.88, 1.28, and 0.84, respectively.
These values correspond to roughly 97%, 90%, 80% of the
cumulative probability.

Fig. 6 shows that the factor score map of PC2 is similar to
the Dk

n×1 map of Event 5. The original yield loss events repeat
the defects possibly caused by the mask’s faults. Except for
the wafer center area, the repeated defects of yield loss events
can be duplicated in PC2’s factor score map. This is because
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Fig. 4. Factor score plot for each sample with corresponding Dk
n×1 value

(medium noise, PC1).

Fig. 5. Factor score map for PC1 (left) and Dk
n×1 map (right) for Event 3

(medium noise).

Fig. 6. Factor score map for PC2 (left) and Dk
n×1 map (right) for Event 5

(medium noise).

the wafer center signal might be biased from the wafer center
yield loss event (Event 3 in PCA analysis).

In Event 2, the Dk
n×1 values are set at 0, 0.2, 0.4, 0.6, 0.8,

and 1.0 to represent varying degrees of yield loss. According
to Fig. 7, the magnitude of PC3 is correlated to the Dk

n×1
values of Event 2, which supports the knowledge that greater
factor score values correspond to more serious degrees of yield
loss.

Fig. 8 shows that PC3 represents Event 2, Fig. 9 shows that
PC4 represents Event 4, and Fig. 10 indicates that PC5 stands
for Event 1. The eigenvalue of PC5 is much less than that of
the other PCs, so the connection between PC5 and Event 1 is
not obvious.

Based on this discussion above, the objective die ν should be
on the right-hand side of the factor score probability distribu-
tion for the given factor scores of specific PC. Simultaneously,
the objective die should also have as fewer factor scores as
possible for other PCs.

Equation set (7) shows the cluster analysis proposed in this
paper. Appendix B is the factor score summary of medium
noise scenario (Ck = 10), with gray background mark for
P{[FS]k ≤ thresholdk} = 97% and an underlined mark for
P{[FS]k ≤ threshold∗

k} = 70%. For example, die-482 is a
proposed candidate of PC1, die-274 is a proposed candidate

Fig. 7. Factor score plot for each sample with corresponding Dk
n×1value

(medium noise, PC3).

Fig. 8. Factor score map for PC3 (left) and Dk
n×1 map (right) for Event 2

(medium noise).

Fig. 9. Factor score map for PC4 (left) and Dk
n×1 map (right) for Event 4

(medium noise).

Fig. 10. Factor score map for PC5 (left) and Dk
n×1 map (right) for Event 1

(medium noise).

of PC2, die-008 is a proposed candidate of PC3, and die-387
is a proposed candidate of PC4. The criteria 97% and 70% are
not invariant, they depend on how many dice can be supported
by PFA resource

⎧⎪⎪⎨
⎪⎪⎩

[FS]νk ≥ thresholdk for k = η

[FS]νk ≤ threshold∗
k for k �= η.

k=1,2,.η..,6 ν=1,2,...,500

(9)

E. Empirical Study

An empirical study in the 65 nm SoC device yield improve-
ment trend chart is shown in Fig. 11. In this example, ten
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Fig. 11. Selected 65 nm device yield improvement trend chart.

TABLE VII

Eigenvalues and Corresponding Factor Loadings

in the Empirical Study

months were taken to improve the yield from 0% to 80% by
traditional approach.

The traditional procedure is: 1) build up a yield loss Pareto
from tested data; 2) 80–20 rule, choose top failure dice for
PFA, usually only couple of dice are chosen due to limited PFA
resource; 3) draw up a process improvement strategy according
to PFA results; and 4) after new wafer processed by improved
process condition, repeat procedures (1)–(3).

If there were two yield loss events (named event A and
event B), event A causes hundreds of failure bits per die, and
event B only causes couple of failure bits per die. Most likely,
we could not dig out event B in the first learning iteration by
traditional procedure.

Table VII is the PCA results of the 0% yield wafer of
mentioned 65 nm device. In this paper, we add defective rate
from factor score to improve PCA in practice (in this case,
factor score >0.7 is treated as defective dice). Compared to the
PCA data and empirical results, PCA results factor-2, factor-
4, factor-6 can match yield loss Event 2, Event 3, Event 1,
respectively. PCA results factor-1 can be treated as random
defect, because factor-1 can cause whole the bit map failure
modes FM01–FM12. We did not put resource on Factor-3/5,
because the defective rate is as low as 1%.

F. Discussion and Implementation

From the simulated analysis of medium and low noise cases,
using the PCA based approach discusses all the principal com-
ponents, and four out of the five eigenvalues are greater than

one. From the empirical example, which introduces defective
rate to enhance the PCA results in practice, one can shorten the
yield learning iterations. Based on this paper, objective dice
of the PFA for yield improvement can be selected after PCA
is implemented using the following proposed procedures:

1) 80–20 rule, calculating the defect rate of each factor
based on factor scores which are greater than a suitable
value (ex: 0.7);

2) from high defective PCs, choosing the objective dice as
higher factor score as possible with corresponding PC
and also as lower factor score as possible in other PCs;

3) drawing up a process improvement strategy according
to PFA results on objective dice;

4) after new wafer processed by improved process condi-
tion, repeat procedures (1)–(3).

Based on the analysis of the three different noise scenarios,
the PCA based approach is influenced when the noise intensity
equals the signal intensity (i.e., the high noise case). However,
most yield loss events can be detected when the noise intensity
is smaller than the signal intensity.

Wafer map overlaps between yield loss events indeed affect-
ing the results produced by PCA. For example, Event 3 and
Event 5 have similar wafer center area map, and this overlap
influences the factor score maps of PC1 and PC2.

It is not practicable to have PFA in whole defective dice,
usually several dice are selected as PFA objectives for one
yield learning iteration. Usually, several learning iterations are
needed for yield improvement and it really consumes both time
(one iteration—three months) and cost (need many wafers).
The proposed “PCA+ defective rate” analysis is a practical
methodology for shortened yield learning iteration, compared
to traditional Pareto rules.

IV. Conclusion

The process of new technology yield improvement can take
up to one year to complete [3]. The bottlenecks in this process
are: 1) not all yield loss events can be uncovered in the first
analysis; 2) after the modifications, two or three months of pro-
cess time is required to verify the yield results; and 3) the PFA
method is a resource-limited and time-consuming approach.

However, the bitmap data analysis method proposed in this
paper uses the “PCA based + defective rate” approach to
greatly reduce the yield learning cycle time without requiring
additional resources. Only a desk-top computer, the related
software, and a little time is required to conduct this analysis.

Although previous studies present numerous data mining
approaches [1]–[6], [8], [11], none of them can decouple the
yield loss events considering wafer maps and signal intensity.
Only the PCA based approach can decouple these kinds of
failures.

Once the bitmap data is analyzed, the principal components
can be used as the basis of failure process space. The following
techniques are suggested for semiconductor manufacturing
yield management: 1) the goal of yield improvement should
objective not only systematic or repeated failure events, but
also random failure events; 2) since the failure process space
of a wafer analyzed by PCA can be established, the problems
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of another wafer with similar failure modes can be disclosed
in minutes without any traditional analysis; and 3) the basis of
failure process space can be extended by adding new failure
modes. Eventually, a complete version of failure process space
for a specific technology node can be built (ex: 0.13 µm
CMOS logic low power process) to improve manufacturing
knowledge management or technology transfer.

Appendix A

CONCEPTS OF PRINCIPLE COMPONENT

TABLE A.1

Bitmap Data Set Matrix and Sample Scores for PCA

TABLE A.2

Principle Factor Loading

Variables Principle y1 Principle yk Principle ym Community

x1
√

λ1β11 · · · √
λkβ1k · · · √

λmβ1m h1

...
...

...
...

...

xi

√
λ1βi1 · · · √

λkβik · · · √
λmβim hi

...
...

...
...

...

xp

√
λ1βp1 · · · √

λkβpk · · · √
λmβpm hp

Eigenvalue λ1 · · · λk · · · λm −
Contri. rate λ1/p · · · λk/p · · · λm/p ·

Accu.con. rate λ1/p · · ·
k∑

k=1

λk/p · · ·
m∑

k=1

λm/p

where aik =
√

λkβik ,i.e., A = [aik] = [
√

λkβik], hi =
m∑

k=1

a2
ik

and
√

λkβik and

λk =
p∑

i=1

a2
ik

.

A. BASIC CONCEPTS OF PRINCIPLE COMPONENT

Y = β1x1 + · · · + βixi · · · + βpxp = β
′
x. (A1)

Let the synthetic index Y = β
′
x of standardized bitmap

variables vector x = (x1, · · · , xi, · · · , xp) be the greatest
variance, i.e., maximize Var(Y ) = Var(β

′
x) = β

′
Rβ. Let the

standardized bitmap data set matrix X be

X =

⎡
⎢⎢⎢⎢⎢⎢⎣

x11 · · · x1i · · · x1p

...
. . .

...
. . .

...
xν1 · · · xνi · · · xνp

...
. . .

...
. . .

...
xn1 · · · xni · · · xnp

⎤
⎥⎥⎥⎥⎥⎥⎦

n×p

= [xνi]n×p. (A2)

APPENDIX-B: SELECTIVE FACTOR SCORES (Ck = 10)

TABLE A.3

Factor Scores (Ck
=10) of die-1 die-250
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The correlation matrix R = [rij]p×p is a variance-covariance
matrix by the standardized bitmap data set matrix X =
[xiv]n×p, where R = [rij]p×p is the correlation coefficient
matrix

R = [rij]p×p =

⎡
⎢⎢⎢⎢⎢⎣

1 r12 r13 · · · r1n

r21 1 r23 · · · r2n

r31 r32 1 · · · r3n

· · · · · · · · · . . . · · ·
rn1 rn2 rn3 · · · 1

⎤
⎥⎥⎥⎥⎥⎦ . (A3)

Find the eigenvalue and respective eigenvalue to eigenvector
as follows:

Maximize Var(Y ) = β
′
Rβ (A4)

subject to
p∑

i=1

β2
i = β

′
β = 1.

Take the Lagrange under equality constraint β
′
β = 1 for

maximizing objective function Var(Y ) = β
′
Rβ, and then see

that

Q = β
′
Rβ − λ(β

′
β − 1) → Maximize (A5)

∂Q

∂β
=

∂

∂β
[β

′
Rβ − λ(β

′
β − 1)]

= 2Rβ − 2λβ = 0 ⇒ Rβ = λβ.

(A6)

This leads to

(R − λI)β = 0. (A7)

The eigenvalue (λ1, ..., λk, ..., λm, ..., λp) and respective
eigenvalue to eigenvector can then be found

Bp×p = (β1, ..., βk, ..., βm, ..., βp) = [βik]p×p{
β′

kβk′ = 1 k = k′

β′
kβk′ = 0 k �= k′ independence.

(A8)

Therefore, B
′
B = I.

According to (A6) Var(yk) = β
′
kRβk = λk of component

yk; k = 1, 2, ..., p can be obtained and B′RB=� . Alternately,
based on (A6), RB = B�→B

′
RB = B

′
B�, B

′
RB=� when

B
′
B = I, where the diagonalization matrix

� =

⎡
⎢⎢⎢⎣

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λp

⎤
⎥⎥⎥⎦ . (A9)

Finally, based on (A8) principle factor loading matrix A,
communality hi, eigenvalue λk and contribution rate λk/p,
accumulated contribution rate can be obtained (see Table A2)

A = [aik] = [
√

λkβik]. (A10)

In the real word, take k = 1, 2, ..., m and m < p to
determine the accumulated contribution rate

∑m
k=1 λk/p.

APPENDIX-C: SELECTIVE RAW DATA (Ck = 10)

TABLE A.4

Table-A3 Selective raw data (Ck
= 10)

APPENDIX-D: MORE INTERPRETATION OF TABLE 3

TABLE A.5

More interpretation of Table-3
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