IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 20, NO. 11, NOVEMBER 2010

1555

Architecture Design of Belief Propagation for
Real-Time Disparity Estimation

Yu-Cheng Tseng, Student Member, IEEE, and Tian-Sheuan Chang, Senior Member, IEEE

Abstract—Belief propagation based algorithms perform best
in disparity estimation but suffer from high computational
complexity and storage, especially in message passing. This paper
proposes an efficient architecture design with three techniques
to solve the problems. For the memory storage, we propose
the spinning-message and the sliding-bipartite node plane that
can reduce memory cost to 1.2% for image-scale algorithms
and 23.4% for block-scale algorithms, when compared to the
traditional approach. For the logic complexity, we propose a
buffer-free processing element architecture that has 3.6 times
hardware efficiency of the previous work. The three proposed
techniques could be applied to various belief propagation based
algorithms to save significant hardware cost as well as approach
real-time speed.

Index Terms—Belief propagation, disparity estimation.

I. INTRODUCTION

ITH EMERGING stereoscopic displays [1]-[3],
W stereoscopic videos have become popular recently. In
contrast with 2-D videos, stereoscopic videos demand depth
information of scenes. The depth information can be derived
from disparity maps, which describe the distance of correspon-
dences in a stereo pair of images. The disparity maps can be
used to synthesize virtual views for free-viewpoint videos [4]
or stereoscopic displays, as well as predict inter-view motion
for video coding, such as multi-view video coding [5] and free-
viewpoint television [6]. For these applications, the disparity
estimation design requires real-time processing speed and high
quality results.

Fig. 1 shows the concept of disparity estimation. In
Fig. 1(a), the two cameras C; and Cg capture the object point
and project it at P, and Pg on the epipolar line. Given the
focus f and the baseline B of the cameras, if we could estimate
the disparity Xz — X, the object depth Z can be acquired by
fB/A(Xr — X). Thus, disparity estimation algorithms attempt
to find all correspondences in a pair of images.

The local approaches use the pixels within a window to find
correspondences. Hence, they have low computational com-
plexity and easily achieve real-time processing by the FPGA

Manuscript received August 27, 2009; revised January 6, 2010, May 27,
2010, and July 9, 2010; accepted August 26, 2010. Date of publication October
14, 2010; date of current version November 5, 2010. This work was sponsored
by the National Science Council, Taiwan, under Grant NSC-98-2220-E-009-
012. This paper was recommended by Associate Editor Y.-S. Ho.

The authors are with the Department of Electronics Engineering, Na-
tional Chiao-Tung University (NCTU), Hsinchu 30010, Taiwan (e-mail:
tyucheng @dragons.ee.nctu.edu.tw; tschang @dragons.ee.nctu.edu.tw).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSVT.2010.2087434

[9] and GPU software-based [10] implementation. However,
they suffer from inaccurate disparity. On the other hand, the
global approaches further apply the disparity optimization,
such as dynamic programming (DP) [11], graph-cut (GC)
[12], and belief propagation (BP) [13]. Because they consider
disparity selection in a whole image, they can deliver better
disparity maps but suffer from high computational complexity.
In these approaches, the results by the DP have the shrinking
artifact due to its 1-D scan line process. To solve the shrinking
artifact, Gong [14] and Park [15] proposed some additional
schemes and implemented them to achieve real-time process-
ing by GPU and FPGA based designs. In contrast, the GC and
the BP are performed in a 2-D space and have better accuracy
than the DP-based algorithms as shown in the Middlebury
evaluation [16]. The computational complexities of GC and BP
are O(L?) and O(L?), where L is the disparity range. Gallup
etal. [17] adopted the GC with L equal to 3 to refine sweeping
planes for 3-D reconstruction. However, the GC is an optional
process in their real-time implementation since it spends about
2 s for a frame. Compared to the computation of GC-based
algorithms, that of BP-based algorithms is more regular and
suitable to be accelerated by parallel hardware design. Thus,
this paper focuses on the state-of-art method, the BP-based
algorithm.

The concept of the BP-based algorithm is illustrated in
Fig. 2. In the BP-based algorithms, an energy function is gene-
rally formulated as

D

Ed)=)_ D(d)+

iel iel, jeNeighbor(i)

V(d;. dj) ey

for a 2-D graph in Fig. 2(a). In this energy function, D is
the data cost for each node corresponding to each pixel, V is
the smoothness cost for each edge, and d of the energy E is a
selected disparity set for all nodes. The two costs can constrain
selecting the disparity set d. The data cost D enforces that
the correspondences are similar, and the smoothness cost V
enforces that the neighboring nodes’ disparities are consistent.
To minimize the energy function and acquire an appropriate
disparity set d, the BP-based algorithms perform an iterative
process called message passing. However, the shortage of
the BP-based algorithms is that the energy function may not
be convergent definitely. Nevertheless, the disparity map could
approach to a steady state after sufficient iterations.

For the requirement of real-time processing, the direct
hardware implementation of BP-based algorithms suffers from
two design challenges: high computational complexity and

1051-8215/$26.00 (© 2010 IEEE

1556

Object point

‘ Matching cost calculation ‘

‘Matching cost aggregation‘

./‘ Disparity optimization ‘

‘ Disparity refinement ‘

Left-view

@) (b

Fig. 1. (a) Geometry of disparity estimation. (b) Framework of disparity
estimation.

®

Fig. 2. Illustrations of BP. (a) Node plane. (b) Message passing. (c) Belief
calculation.

storage in the message passing. For the example of 640 x 480
at 30 frames/s and the disparity range of 32, the computational
complexity is about 1200 billion operations per second for
the message passing, and the storage is about 157 MB for
messages.

To address above problems, various approaches have been
proposed. Felzenszwalb and Huttenlocher [18] proposed an
efficient message passing to reduce computational complexity
from O(L?) to O(L), and the bipartite message approach to
reduce 50% memory cost. Following their approach, Yang
etal. [19] implemented it on a high performance GPU, and
Park et al. [20] also designed an array processing architecture
on two FPGA boards to achieve the performance of 320 x 240
at 30 frames/s but with 880kB on-chip memory. Cheng
etal. [22]-[24] proposed a tile-based BP and a fully parallel
architecture for each message passing processing element (PE)
to reach real-time processing for the image size of 640 x 480.
Nevertheless, all the implementation still suffers from high
memory cost. In summary, though previous work used parallel
PEs to conquer the high complexity, the resulted logic still
occupies too much area since each PE needs high area cost.
In addition, all the work did not solve the memory cost well
due to their fixed memory access approach.

To solve the mentioned problems, we propose a hardware
efficient architecture for various BP-based algorithms through
three techniques. For the high memory cost, we propose
a spinning-message approach which rearranges the message
configuration in an internal memory to save 50% memory
cost. In addition, we propose a sliding-bipartite node plane
that combines the advantages of previous work to further
reduce more memory cost. For the message passing PE, we
propose a buffer-free PE architecture which removes all the

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 20, NO. 11, NOVEMBER 2010

large buffers and shares common operators to reduce logic cost
without significant speed degradation. Both the proposed low
memory access approaches and the buffer-free PE architecture
could be applied to various BP-based algorithms together
to significantly reduce their hardware cost as well as speed
up to real-time processing without changing their disparity
accuracies

The rest of this paper is organized as follows. Section II
reviews the BP-based algorithms and points out their design
challenges. Section III presents the proposed low memory
access approaches, and Section IV elaborates the buffer-free
PE architecture. Then, Section V shows the implementation
results and comparisons. Finally, Section VI concludes this

paper.

II. REVIEW OF BELIEF PROPAGATION

In this section, we review various BP-based algorithms and
then indicate the general design problems in these algorithms.

A. Baseline BP

Sun etal. [13] first applied BP to disparity estimation.
This baseline BP includes three steps: data cost calculation,
message passing, and disparity selection, which are performed
in the graph of Fig. 2(a). In this paper, the graph is called as
node plane whose size equals to an image in the baseline BP.

In the baseline BP, the first step is to calculate the data cost
of each node, where the data cost is identical to the matching
cost in local approaches. According to the data cost, local
approaches can determine disparity maps using the winner-
take-all scheme. In contrast, the baseline BP further propagates
it to neighboring nodes.

In the second step, the messages, which are the arrows in
Fig. 2(a), are added around all nodes, and they propagate data
cost to neighboring nodes. In the baseline BP, the propagating
mechanism is called as message passing. Fig. 2(b) illustrates
the message passing for calculating a new message, and its
equation is as follows:

M~

x—i

M., j(d,)zi ngn V. d)+ D)+ Y
xeNeighboring(i)\ j
)
where M’ ;_, ; is a new message of the node j at the iteration ¢
from the node i, and M'~! x—j 1s an old message of the node i
at the iteration — 1 from the nodes x which can be g, A, and k.
In addition, V and D are smoothness cost and data cost in (1),
and « is a normalization term. Note that the indexes d; and d;
are, respectively, for the nodes i and j. To calculate the new
message M',_, ;, the three old messages M1 hes > M1 he
and M'~!,_, ; are summed up with D by the index d;. Then the
result is convoluted with V' by the cross indexes d; and d;. For
the message passing in BP-based algorithms, the computation
of (2) is performed on all four incoming messages of each

node iteratively.

In the third step, the final incoming messages of each node
are accumulated with its D to form a belief. The belief is

TSENG AND CHANG: ARCHITECTURE DESIGN OF BELIEF PROPAGATION FOR REAL-TIME DISPARITY ESTIMATION

Node plane

Fig. 3. Configuration of the message passing PEs.

used to determine a disparity by the following equation, and
its illustration is shown in Fig. 2(c)

>

xeNeighbor(i)

d = argmin | D(d;) + M @) . (3)

In summary, the baseline BP alternates the initial data cost
with the belief deriving from the message passing to deliver
better disparity maps.

The major computational complexity of the baseline BP is
in the message passing, and that is O(4HWL?T), where H
and W are the height and width of the node plane, L is the
disparity range, and T is the iteration count. The computation
of the message passing can be undertaken by parallel PEs as
shown in Fig. 3. These PEs use the nodes’ data at the previous
iteration to calculate new messages for the next iteration. With
sufficient parallel PEs, the baseline BP could achieve real-time
speed. However, that will result in high logic cost. In addition,
high memory cost is also incurred since all the messages in
the node plane have to be stored.

B. Various BP-Based Algorithms

Based on the baseline BP, various BP-based algorithms have
been developed recently to address the mentioned problems
from the algorithm level.

To reduce the computational complexity, Felzenszwalb and
Huttenlocher [18] proposed the hierarchical BP that down-
samples the node plane to multiple resolutions and then per-
forms the message passing from coarser levels to finer levels.
Because the messages in the coarser levels could propagate
data cost to farther nodes and become initial messages for the
next level, the disparity maps could converge faster than the
baseline BP. Therefore, the hierarchical BP could take less
time and deliver better disparity maps than the baseline BP.

To reduce the memory cost, our previously proposed block-
based BP [25] partitions the node plane into independent
blocks. The memory cost is significantly reduced from image-
scale to block-scale, so that all data in the message passing
can be placed in an internal memory, instead of an external
memory. However, its disparity maps would suffer from blocky
artifact. Furthermore, Cheng er al. [22] proposed the tile-
based BP to improve the blocky artifact. In contrast with the
independent blocks, the tile-based BP preserves the boundary
messages of each tile in an external memory to link blocks.

For all the above algorithms, their computation shares the
same feature: the message passing performed in a rectangular
node plane. For example, the node plane is image-scale in

1557

the baseline BP and the hierarchical BP, and block-scale in
the block-based BP and the tile-based BP. Therefore, in the
following we will show how to develop techniques for a
rectangular node plane that can be applied to various BP-based
algorithms.

III. PROPOSED LOW MEMORY ACCESS APPROACH

In a rectangular node plane, the memory cost is constituted
of the messages and the data cost. In this paper, we focus
on the messages, which occupy the most of the cost. A
straightforward memory access approach for the messages is
the ping-pong buffer approach, which needs a pair of node
planes and requires SHWL memory. Unfortunately, this cost
is too large to be on-chip. Even if the messages are stored in
an external memory, its required bandwidth is still impractical,
especially for the image-scale node planes.

A. Previous Work

To reduce the memory cost of messages, Yu efal. [26]
compressed the messages by the envelope point transform
method that can achieve eight times compression without
significant degradation of disparity maps. However, this com-
pression method needs the overheads of compression and
decompression.

On the other hand, much previous work focuses on the
computing order of message passing on the node plane to
resize the node plane for memory cost reduction. Park et al.
[20] proposed the fast BP structure approach which resizes
the pair of node planes from HW to TW, where T is usually
smaller than H. In our previous work [28], we proposed
the in-place message update approach that resizes one of
the pair node planes from HW to 3W for buffering partial
new messages temporally. Felzenszwalb and Huttenlocher [18]
delivered the bipartite scan which only needs one node plane,
and can also reduce computation to half. Different from above
computing orders, Szeliski et al. [21] proposed the BP-M scan
which updates messages direction by direction for whole node
plane to accelerate convergence speed, and only needs one
node plane. Although the BP-M scan can converge faster than
others, the memory cost of BP-M scan is still too high and
could not be further reduced because of its iterative directional
process and overlapping data lifetime in all messages. Thus,
the BP-M scan is not discussed in this paper.

Excluding the BP-M scan, the memory access in the previ-
ous work belongs to the fixed memory access approach which
binds messages at fixed memory positions, and thus would
limit the possibility to reduce memory cost. Fig. 4 shows
the data dependency of the traditional fixed memory access
approach between successive iterations in a simplified 1-D
node line, where each square represents a memory position,
the arrow inside the square represents a stored message,
and the cross line linking two messages (e.g., m3 at t/ to
m2 at t2) represents that they have data dependency. In the
traditional approach, each node’s messages are stored at fixed
memory positions. For example, the node n3’s messages m3
are always located at the same memory position pos3 in
all iterations. These messages m3 are used to calculate the

1558

Old messages
of center node

Old messages
of neighboring nodes

Node (memory position)

nl n2 nd_
(posl) (pos2) (pos3) (pos4) (pos3)

New messages
of neighboring nodes

'@@ %

f4 2

iteration

Fig. 4. Traditional fixed memory access approach in a 1-D node line for
node n3 computation.

neighboring nodes n2 and n4’s new messages m2 and m4 for
next iterations. However, the new messages cannot overwrite
their old ones at the memory position pos2 and pos4 since
their old ones are still needed for new messages computation
at other nodes. Thus, an access conflict would occur between
the old and new messages of the neighboring nodes. To solve
the access conflict, a straightforward method is to allocate an
additional memory to buffer the new messages, but it will
increase extra cost.

B. Spinning-Message Approach

To address the access conflict and reduce memory cost, we
propose the spinning-message approach that frees the bind be-
tween the messages and the memory positions, and eliminates
the extra memory. In addition, the proposed approach could be
applied to the reduction techniques mentioned in Section III-A
to further save 50% memory cost.

Fig. 5(a) shows the main idea of the proposed approach. The
old messages of the center node are used to calculate the new
messages of the neighboring nodes, and their data life time is
ended. Therefore, the new messages of the neighboring nodes
can overwrite the outdated messages without access conflict,
and are stored at the center memory positions instead of the
neighboring memory positions.

Based on the main idea, Fig. 5(b) shows the details of the
proposed spinning-message approach by a 1-D node line for
the node n3 as an example. Other nodes follow the same
procedure. At the iteration ¢/, the messages m3 are stored at
the center memory position pos3 that is the centralized mode.
For the transition to the iteration 72, the messages m3 are used
to calculate the new messages m2 and m4 of the neighboring
nodes n2 and n4. The old messages m3 can be replaced by
the new messages at the center memory position pos3 without
the access conflict. After the calculation and replacement, the
centralized mode changes to the distributed mode since every
node’s messages are distributed at its neighboring memory
positions (e.g., m3 at pos2 and pos4) at the iteration ¢2. Then,
the distributed messages m3 are used to calculate the new
messages m2 and m4, and the distributed messages m3 can
also be replaced by the new messages without the access con-
flict. With another calculation and replacement, every node’s

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 20, NO. 11, NOVEMBER 2010

New messages
of neighboring nodes
(a)
Old messages New messages
of center node of neighboring nodes

Old messages Overwriting

of center node

Node

nl n2 n3_ i 5 _(memory position)
(posl) (pos2) (pos3) (pos4) {pos }
Centralized
1l
mode
Distributed
12
mode
mg 7 |7 ,"4\ Centralized
3 \ﬁl % = mode
7 I ‘ Distributed
“ wy,: @ gj @ mode

iteration

(b)

Fig. 5. Proposed spinning-message approach (a) main idea, and (b) memory
access in a 1-D node line for node n3 computation.

t—t2 12—t3 13—t4

Computating new

- Computating new /'mm\ es Computating new
s 8 _IMESSAZES 5 __IeSSages
L m
A 4 Y
»n2<| % "'n4< - n.’ % Ew - »an ’ Sm« /12 in3 | nd=
'Y A l 'Y
A
-
A A A
Centralized Distributed Centralized Centralized
| mode | mode | mode | mode
I t 1 2 1 13 1 Iz

Fig. 6. Proposed spinning-message approach in a 2-D node plane for node
n3 computation.

messages are returned to the centralized mode at the iteration
13.

In summary, the messages are centralized at their own
memory positions for odd iterations and distributed at their
neighboring memory positions for even iterations. With this
approach, we can save the memory while avoid the access
conflict. Fig. 6 shows the proposed approach extended to a
2-D node plane.

The proposed spinning-message approach could gain two
benefits. First, the memory cost could be directly reduced from
SHWL to 4HWL that is half of the straightforward ping-pong
buffer approach. Second, the messages of each node could be
updated individually, so that the computing order of message
passing could be arbitrary.

C. Applications

The proposed spinning-message approach can be applied to
different types of node plane to further reduce their memory
cost.

1) Sliding Node Plane: In the original BP, the messages
in a node plane are iteratively updated by the space-first (x—y
plane) computing order, and the node plane moves along the
iteration axis as shown in the ping-pong buffer approach of

TSENG AND CHANG: ARCHITECTURE DESIGN OF BELIEF PROPAGATION FOR REAL-TIME DISPARITY ESTIMATION

Fixed memory access

Ve

P =
Ping-pong buffer approach
v, —W—

nexlmy‘

4 P4

Sliding node plane
T

Bipartite node vPl‘cmc
- W—

(a)

Proposed spinning-message approach

Sliding node plane 3
-—T—>

, P ——
) 2
/ : %
Z

L} ’l_/ﬂl_/l_/

b % 4

Proposed Sliding-bipartite node plane
-—T—

Bipartite node plane
-— W

(®)

Fig. 7. Comparison of (a) the traditional fixed memory access approach and
(b) the proposed spinning-message approach in different node planes.

W W W
s T
| j 4
H v
‘ P H U H
~T>
(a) (®) (©)
Fig. 8. Sliding node plane in different directions. (a) Vertical sliding. (b)

Horizontal sliding. (c) Diagonal sliding.

Fig. 7(a). In contrast, the sliding node plane moves orthogonal
to the iteration axis, and their messages are updated by the
iteration-first computing order. The size of sliding node plane
is its projective area on the x—y plane, which is smaller than
the original node plane.

Fig. 8 shows three sliding directions. In which, the sizes
of node planes are WT for the vertical sliding and HT for
the horizontal sliding, and the diagonal sliding. The vertical
sliding node plane was proposed by the fast BP structure
approach in [20]. However, its size is larger than the other two
because W is usually larger than H. Therefore, we recommend
the horizontal sliding node plane, which totally requires SHTL
memory for messages.

The memory cost can be further reduced to 4HTL by the
proposed spinning-message approach as shown in Fig. 7(b).
Fig. 9 shows the details of the spinning-message approach
performing on the horizontal sliding node plane. The initial
state of the messages is shown in Fig. 9(a), where the front of
the node plane arrives at the node n6. Then, in Fig. 9(b), the
new messages in the node plane are computed from the node
n7 to n2 step by step. With the spinning-message approach,
the new messages can overwrite the old messages at the
same memory positions. After that, in Fig. 9(c), the front of
node plane will slide to the node n7. According to the above

1559

node (memory position
nS né n;

nl n2 n3 nd
(posl) (pos2) (pos3) (pos4) (pos3) (pos6) (pos7)
7 # & = -
12 e 1 B
13
t4 g
s P EIEEIEE I EEIEREIERE
iteration
(a) N
nl n2 n3 n4 nSn - (mer?lgry posmoz%
(posi) (pos2) (pos3) (pos4) (pos3) (pos6) (pos7)
7] g
12
13 -~
" # ==y
= | < gl
5 %%Q@?@Qﬂ@@ﬂ@
iteration T %7
disparity
(®)
. 5 3 5l node (memory posmon)
(posl) (pos2) (pos3) (pos4) (posJ) (posé) (pos7)
1 B o
\X/\
2
3
t4 > E -
5 R == s
iteration — == —

Fig. 9. Sliding node plane with the spinning-message approach. (a) Node
plane slides to the node n6. (b) Computing order of the message passing. (c)
Node plane slides to the node n7.

flow, the spinning-message approach could cooperate with the
sliding node plane well to further save 50% memory cost.

2) Bipartite Node Plane: The bipartite node plane was
proposed in [18] that divides nodes into two parts, like a
chessboard as shown in Fig. 7(a). In which, one part is
computed at odd iterations, and the other is computed at even
iterations. Its memory cost is reduced from a pair of node
planes in ping-pong buffer approach to only one node plane
of 4HWL.

Above memory cost can be further reduced to 2HWL
by the proposed spinning-message as shown in Fig. 7(b).
Fig. 10 shows the spinning-message approach performs on the
bipartite node plane at odd iterations and even iterations. At
the odd iteration in Fig. 10(a), the messages of the white nodes

1560

) . [T
< >
|

LY
- >
_[y] |

(a) (b)
Fig. 10. Bipartite node plane with the spinning-message approach. (a) Mes-
sage passing for white nodes at odd iterations. (b) Message passing for black

nodes at even iterations.

node (memory position)

nl n2 n3 n4 ns né n n
(posl) (pos2) (pos3) (pos4) (pos3) (pos6) (pos7) (pos8)
tl > - - % E E
2%
12 - B FH - m
e <]
s 1 |mEl RS qs
% . N\ 4
4 - E\ g <[y /#I ~ ~
= [>< <
s ® - = S EE
iteration -
(a) N
o w2 3 " - node K(lmcmory position)
(posl) (pos2) (pos3) (pos3) (pos6) (pos7)

n4
(posd)
tl —- < > -

n
(pos8, ;

2 « H <
3 - ==
X
“ ~ &l
15 - B
iteration
(®) N
nl n2 n3 né ns n e [(lmcmory ptilsmon)
(posl) (pos2) (pos3) (pos4) (pos3) (pos6) (pos7) (pos8)
tl > - - - - @
3 /
2 - < F - B ~
<
5 : # = (==
N N
AN N\
g = | = B = &
| N -
) LT LS]

15 = ~ ER=] & -
iteration —
(c)

Fig. 11. Proposed sliding-bipartite node plane. (a) Node plane slides to the

node n6. (b) Computing order of the message passing. (c) Node plane slides
to the node n8.

are used to calculate the new messages of the black nodes, and
these messages of the black nodes can overwrite those of the
white nodes. Then the state of node plane is transformed to
Fig. 10(b). Similarly, the messages at the even iteration can
be returned to the next odd iteration. Thus by the spinning-
message approach, only the white nodes need memory, and
50% memory cost can be saved.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 20, NO. 11, NOVEMBER 2010

Aggregation and forward process

mfo(-1) = MAX

minip = MAX

Loopl:

ford=0to L-1{
Ago(d) = D) + M (d) + M (&) + My (d)
minig = min{Ago(d), minig} + Kv
mfo(d) = min{Ago(d), mfo(d-1)} + Cv

/

O NN A WN -

Backward process
9 mby(-1) = -MAX
10 norne =0
11 Loop2:
12 ford=L-1 10 0f
13 temp = min{mfy(d), temp + Cv}
14 mbo(d) = min{temp, minig}
15 normy = normg + mby(d)
16 }

Normalization process
17 normg = normy/ L
18 Loop3:
19 ford=0to L-1{
20 My'(d) = mbo(d) — normo
21}

Fig. 12. Pseudo code of the message passing for calculating a new message.

3) Proposed Sliding-Bipartite Node Plane: By combining
the above sliding node plane and bipartite node plane, the
memory cost can be reduced to 4HTL. Furthermore, applying
the proposed spinning-message approach, the memory cost
can be reduced to 2HTL as shown in Fig. 7(b). Fig. 11
shows the spinning-message approach performs on the sliding-
bipartite node plane. In a similar way as the sliding node
plane, the front of the sliding-bipartite node plane can slide
from the node n6 to n8 by the computing order in Fig. 11(b).
Therefore, the proposed sliding-bipartite node plane takes
advantages of the sliding node plane and the bipartite node
plane to reduce memory cost.

IV. PROPOSED BUFFER-FREE PE ARCHITECTURE

Following above proposed approaches for memory access,
the message passing could be performed by parallel PEs with
the configuration in Fig. 14(a). However, the logic of each PE
costs too much due to the high computational complexity of
message passing. To conquer the high logic cost, we propose
the buffer-free PE architecture in this section.

A. Previous Work

In the message passing, both the computational complexity
and logic cost are significantly affected by the model of
smoothness cost V. Kumar and Torr [27] took advantage of
a truncated model to propose a low-memory generalized BP.
This reduction is effective if the convolution of (2) is fully
unrolled. On the other hand, Felzenszwalb and Huttenlocher
[18] reduced the message passing from O(L?) to O(L) by
the benefit of a linear model. Fig. 12 presents the pseudo
code of their proposed message passing to calculate one new
message. This code includes three loops: aggregation and

TSENG AND CHANG: ARCHITECTURE DESIGN OF BELIEF PROPAGATION FOR REAL-TIME DISPARITY ESTIMATION

1561

Node plane

Aggregation circuit Forward circuit

Message passing PE

Node plane

normy

Normalization

- e)
Backward circuit Sircuit

Fig. 13. Architecture of Park’s PE.

Sliding—hipa‘rtite‘node. plane Parallel buffer-free PEs

X

Y, -
/ PE F#Q
T PE /e o
PE ||&®
-
‘ oo |[PE]| 70
(a)
]
Buffer-free PE I
T
CL-T-d)
el
L
() +Am.l
r 7 P (g(d) 3) fy NEEE
M o g
/s o:(d] *
P NS
00 05(d) remp
+
-
" 3
3 iniy
norm
Post-normalization & Convolution circuit
aggregation circuit
m)
D(d), M (d), M/ (d), M (), M () fuld). mf (), mf (), mfct)
normynormynormynormy [py
(€] @)
ol ler 1), mfy(L-1-d). mfs(Ll-d).mfs(L-1-d) pnbofd).mb (d).mb(d). b (d)
mEE T Formanormiormssorm;
1
1 10 20 30 40 0 60)0
Node plane: T T T — 2
read 1) Read D. M™, M™, M™, M; 1[®) Read mfy, mfi, mf>. mfs |

Read normg, norm;, norm;, norms

Buffer-free PE Protis Ay A ATa A, 1 Produce minig, miniy, miniz, minis
Produce mfp, mf;, mf> mfs 1 Produce mby, mb;, mb;, mb;]

Write normg, norm;, norms, norms

Write mbg, mb;, mb;, mb; 1]

Node plane:
write

[@)___ Write mfo, mf,, mfn mf;] [@

(b)

Fig. 14. Proposed architecture (a) configuration of parallel PEs on the
sliding-bipartite node plane, (b) architecture of the buffer-free PE, and (c)
schedule of the buffer-free PE.

forward process, backward process, and normalization process.
The latency of each loop is L iterations.

Based on the above flow, Park et al. [20] directly designed
a PE architecture as shown in Fig. 13. In this architecture,
the node plane additionally stores the data cost. By sequential
computation, four old incoming messages and data cost of a
node are fetched, and four new messages of neighboring nodes
are produced. This architecture uses three pipeline stages
corresponding to three loops in Fig. 12. They are divided by
the two large message buffers mf and mb with L message
entries, which dominate the hardware cost of this PE.

0, & o
100'00/" o M - v —o—Ping-pong Buffer
90.0% with Fixed
80.0%
70.0% - In-place Message [28]
o 60.0% - with spinning-message
g
s 50.0% —&Vertical Sliding [20]
40.0% with spinning-message
30.0% 25.0%
20.0% - = —— e Horizontal Sliding
1()l 0% with spinning-message
’ ‘3%5‘/ 0
0.0% ; == L2% o pioartite [18]
Ww=16, W=32, W=320, W=640, with spinning-message
H=16 H=32 H=240 H=480
Size of Node Plane
Fig. 15. Ratio of memory cost in different types of node plane with spinning-

message approach.

B. Buffer-Free PE Architecture

Because the message buffers are the major logic cost of
the previous PE, the strategy in our architecture is to remove
all the message buffers of the previous PE. Fig. 12(a) shows
the overall configuration of the parallel buffer-free PEs. The
parallel PEs fetch and store data by the proposed low memory
access approaches, and each buffer-free PE can calculate four
messages at the same time.

Fig. 14(b) shows the detailed architecture of the buffer-free
PE. Based on the pseudo code in Fig. 12, we first propose the
post-normalization approach that merges the computation of
the normalization on line 20 with the aggregation on line 5.
The benefit of this merging is that the message buffer mb could
be eliminated, but the norm storing the normalization term
should be changed to node plane. It causes that the memory of
each message in node plane is increased by one memory entry.
Second, we propose the convolution circuit that combines the
forward process on lines 6 and 7 with the backward process
on lines 13 to 15. These two have identical computations, two
adders and two comparators, so that these computations can
share the operators with additional multiplexers for selecting
data path. Thus we can remove the message buffer mf. Finally,
we also add the pipelining registers z0 and z/ to cut the critical
path in this architecture.

The schedule of data access and computation in the pro-
posed PE architecture are presented in Fig. 14(c). In step (1),
the normalization terms, the old messages, and the data cost
are read to calculate the forward messages. In step (2), the
forward messages are stored in the node plane sequentially. In

1562

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 20, NO. 11, NOVEMBER 2010

TABLE I
COMPARISON OF MEMORY COST IN MEMORY ACCESS APPROACHES FOR THE ITERATION COUNT OF 30

Type of Node Memory Access Memory Cost of

Block-Scale Image-Scale

Plane Approach Message (16 bit) W=16H=16 W=32H=32 W=320,H=240 W =640, H =480
(B) (B) (kB) (kB)
Ping-pong buffer Fixed SHWL 131 524 39321 157286
Spinning-message =~ 4HWL 65 262 19660 78 643
In-place message [28] Fixed 4(HW + 3W)L 77 286 19906 79134
Spinning-message ~ 4HWL 65 262 19 660 78 643
Vertical sliding [20] Fixed S8TWL 131 491 4915 9830
Spinning-message 4TWL 65 245 2457 4915
Horizontal sliding Fixed SHTL 131 491 3686 7372
Spinning-message 4HTL 65 245 1843 3686
Bipartite [18] Fixed 4HWL 65 262 19 660 78 643
Spinning-message 2HWL 32 131 9830 39321
Sliding-bipartite Fixed 4HTL 65 245 1843 3686
Spinning-message ~ 2HTL 32 122 921 1843

step (3), the forward messages are read to calculate the back-
ward messages. Finally, in step (4), the backward messages
and new normalization terms are stored in the node plane.
The memories of the node plane are implemented by two-port
register files because the proposed PE read and write them at
the same time. Although the proposed PE takes about double
latency of the Park’s PE, the logic cost has been significantly
reduced because all the message buffers are removed.

The proposed buffer-free PE can compute four messages of
one node at the same time. It can also compute one message
of multiple nodes for different scan schemes by the following
simple modification. First, the post-normalized and aggrega-
tion circuit is modified to receive three messages. Then, the
convolution circuit is modified to be only one module. Finally,
the accessed node plane should be properly modified according
to the specific scan scheme. This modification can make the
proposed PE work well for one message, but will slightly
degrade the hardware efficiency due to no sharing operators
in the post-normalized and aggregation circuit.

V. IMPLEMENTATION RESULT AND COMPARISON
A. Memory Cost Comparison

The memory cost is affected by the type of node plane
and memory access approach. As mentioned in Section III,
the type of node plane would affect the computing order of
PEs, and the memory access approach would provide a data
access order for node planes. Both of the type of node plan and
the memory access approach do not change the computational
efficiency of the message passing but the memory cost.

Table I compares the memory cost used by various types
of node plane adopting the traditional fixed memory access
approach and the proposed spinning-message approach. The
size of node plane is substituted with block-scale and image-
scale magnitudes, and each entry of messages is 16 bit.
Compared to the traditional approach, most types of the node
planes can save 50% memory cost in both the scales with the
proposed spinning-message approach. The only exception is
our previous in-place message node plane that has less saving
with our approach since its original memory cost has been
reduced to near 50%. In the comparison of overall hardware

efficiency, the proposed spinning-message approach is better
than the traditional approach. The reasons are that the pro-
posed approach needs the same cycle counts as the traditional
one while saving much memory cost. The only overhead of
the proposed approach is a simple address generator, which
has similar complexity as that in the traditional one.

Fig. 15 compares the memory cost among different types
of node plane using the same proposed spinning-message
approach for different sizes of node plane. In this figure, all the
memory cost ratios are relative to the ping-pong buffer with
the traditional fixed memory access approach. Compared to
the sliding node planes, the bipartite node plane can save more
memory cost in the block-scale. On the contrary, the sliding
node planes can reduce more in the image-scale. The proposed
sliding-bipartite node plane combines their benefits to reduce
more memory cost in the block-scale and image-scale. Its
memory cost reduction can achieve 1.2% in the image-scale of
640 x 480 and 23.4% in the block-scale of 32 x 32. Note that
the sliding-based node planes would decrease its memory cost
reduction when the iteration count 7 is larger than H or W.

B. Implementation

The proposed buffer-free PE architecture has been imple-
mented by Verilog and synthesized by the 90 nm CMOS
technology process. To compare with the Park’s PE [20],
we also implemented their PE design since their original
implementation is on two FPGA boards. In addition, the
Cheng’s PE [24] is implemented in the same design condition
for a fair comparison since some details are not disclosed in the
paper. All the data widths are 16 bit in each implementation.
Table II compares the logic cost of the proposed buffer-free
PE with the other PEs. In these PEs, the Cheng’s PE takes the
least latency to calculate a new message because of its fully
parallel architecture. The Park’s PE and the proposed buffer-
free PE belong to sequential architecture that causes higher
latency. Although the proposed PE requires the most latency,
its hardware efficiency is 3.6 times of the Park’s PE and 1.4
times of the Cheng’s PE. That is because we remove all the
message buffers and common circuits to reduce logic cost, as
well as add a pipeline stage on its critical path in the proposed
buffer-free PE.

TSENG AND CHANG: ARCHITECTURE DESIGN OF BELIEF PROPAGATION FOR REAL-TIME DISPARITY ESTIMATION

1563

TABLE I
LogGIC COST COMPARISON OF PE ARCHITECTURES

Cheng’s PE [24] Park’s PE [20]

Proposed Buffer-Free PE Proposed Buffer-Free PE (32 PEs)

Operating frequency (MHz) 100 222 285 285
Disparity range (L) 32 32 32 32
CMOS tech. process UMC 90 nm UMC 90 nm UMC 90 nm UMC 90 nm
Gate count (K) 69.6 50 8.3 256.6
Latency (cycle) 1 32 68 68

(1 msg) (4 msg) (4 msg) (128 msg)
Throughput (node/s) 25 000K 6938K 4191K 134117K
Hardware efficiency 359 139 505 505

(throughput/gate count)

TABLE III
IMPLEMENTATION RESULTS OF VARIOUS BP-BASED ALGORITHMS FOR FRAME SIZE OF 640 x 480 AND DISPARITY RANGE OF 32

Baseline BP [13]

Hierarchical BP [18]

Block-Based BP [25] Tile-Based BP [22]

Iteration 7' 30 5,5,10,5 30 Inner = 8, outer = 2

Required throughput (node/frame) 4608 000 1212000 4608 000 4915200

Operating frequency (MHz) 285 285 285 285

Number of PE 33 9 32 32

Gate count (K) 273.9 74.7 265.6 265.6

Size of sliding-bipartite node plane 30 x 480 5 x 480 30 x 32 8 x 32
(image-scale) (image-scale) (block-scale) (block-scale)

Memory cost of messages and data costs 2793 465 186 49

kB)

FPS 30.01 31.12 29.11 27.29

Note that the hardware efficiency in our PE excludes the
memory overhead by the post-normalization approach, which
is highly related to the size of node plan, instead of the number
of PE. Thus, our hardware efficiency will be still higher than
Cheng’s design when the size of node plan is smaller than
35 for one PE case. For the 32 PEs case as in Table III, the
proposed approach will still have better hardware efficiency
for node planes up to 35 x 32 (1120) nodes. With this size,
our proposed PE is suitable for the block-scale BP algorithms,
such as block-based BP and tile-based BP, whose overall cost
will be more practical than that in the image-scale BP.

The proposed low memory access approach and buffer-free
PE architecture could be generally applied to the various BP-
based algorithms together. Table IIT shows the implementation
results of four typical BP-based algorithms for the real-time
constraint of 640 x 480 and the disparity range of 32.

In these BP-based algorithms, their algorithm flows and
iteration counts affect the required throughput. The message
passing is performed for the baseline BP on a whole image,
and for the hierarchical BP on multiple resolution images with
different iteration counts. Thus, their required throughput is
proportional to the image size and corresponding iteration
count. For the block-based and tile-based BP, the message
passing is performed on each block (tile) in an image. In
addition to the iteration count for each block, the tile-based
BP has the outer iteration count for re-processing the image.
Their required throughput is proportional to the total iteration
count as well as the block’s count and size. To satisfy the
required throughput of these BP-based algorithms, we should
use sufficient parallel PEs. Note that the maximal number of
PE is equal to H due to the configuration of parallel PEs in

the sliding-bipartite node plane. As a result, the block-based
BP and tile-based BP designs just approach to real-time speed.
With the buffer-free PE architecture, the logic cost of all the
BP-based algorithms are less than the gate counts of 300K.

The memory cost of this table contains the messages and the
data costs, which is proportional to the size of sliding-bipartite
node plane according to Table I. The total memory cost of
the baseline BP and hierarchical BP is larger than others
because they allocate image-scale node planes. In contrast,
the block-based BP and tile-based BP are more suitable to be
integrated into stereoscopic video systems.

VI. CONCLUSION

In this paper, we addressed the memory and logic cost of
the message passing in BP-based algorithms. We proposed
the spinning-message approach and the sliding-bipartite node
plane to significantly reduce the memory cost, and the buffer-
free PE architecture to reduce the high logic cost. Furthermore,
the proposed low memory access approach and the buffer-
free PE architecture could be applied to all typical BP-based
algorithms. With the proposed approaches, the implementation
of BP-based algorithms could save significantly hardware cost
as well as achieve real-time speed with the same quality.

REFERENCES

[1] Philips Electronics. Philips 3-D Solutions [Online]. Available: http://
www.business-sites.philips.com/3dsolutions/home/index.page

[2] Sharp Corporation. Sharp Laboratories of Europe: 3-D Research [On-
line]. Available: http://www.sle.sharp.co.uk/research/optical _imaging/
3d_research.php

1564

(3]
(4]
[5

—

(6]
(71

(8]

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 20, NO. 11, NOVEMBER 2010

iZ3D Corporation. The World’s First 3-D Monitors Designed for
Gamers: iZ3D [Online]. Available: http://www.iz3d.com

M. Tanimoto, “Overview of free viewpoint television,” Signal Process.:
Image Commun., vol. 21, no. 6, pp. 454-461, 2006.

Joint Draft 6.0 on Multiview Video Coding, ISO/IEC JTC1/SC29 and
ITU-T SG16 Q.6 JVT-Z209, Jan. 2008.

Applications and Requirements on FTV, ISO/IEC JTC1/SC29/WGl11
N9466, Shenzhen, China, Oct. 2007.

D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense
two-frame stereo correspondence algorithms,” Int. J. Comput. Vision,
vol. 47, nos. 1-3, pp. 7-42, 2002.

M. Z. Brown, D. Burschka, and G. D. Hager, “Advances in computa-
tional stereo,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 8,
pp. 993-1008, Aug. 2003.

J. Diaz, E. Ros, R. Carrillo, and A. Prieto, “Real-time system for high-
image resolution disparity estimation,” IEEE Trans. Image Process., vol.
16, no. 1, pp. 280-284, Jan. 2007.

J. Lu, S. Rogmans, G. Lafruit, and F. Catthoor, “Real-time stereo corre-
spondence using a truncated separable Laplacian kernel approximation
on graphics hardware,” in Proc. IEEE ICME, Jul. 2007, pp. 1946—1949.
I. J. Cox, S. L. Hingorani, and S. B. Rao, “A maximum likelihood
stereo algorithm,” Comput. Vision Image Understanding, vol. 63, no. 3,
pp. 542-567, May 1996.

V. Kolmogorov and R. Zabih, “Computing visual correspondence with
occlusions via graph cuts,” in Proc. IEEE ICCV, Jul. 2001, pp. 508-515.
J. Sun, N. N. Zheng, and H. Y. Shum, “Stereo matching using belief
propagation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 7,
pp. 787-800, Jul. 2003.

M. Gong and Y.-H. Yang, “Real-time stereo matching using orthogonal
reliability-based dynamic programming,” IEEE Trans. Image Process.,
vol. 16, no. 3, pp. 879-884, Mar. 2007.

S. Park and H. Jeong, “Real-time stereo vision FPGA chip with low
error rate,” in Proc. IEEE Int. Conf. Multimedia Ubiquitous Eng., Apr.
2007, pp. 751-756.

D. Scharstein and R. Szeliski. Middlebury Stereo Evaluation: Version 2
[Online]. Available: http://vision.middlebury.edu/stereo/eval

D. Gallup, J.-M. Frahm, P. Mordohai, Q. Yang, and M. Pollefeys, “Real-
time plane-sweeping stereo with multiple sweeping directions,” in Proc.
IEEE Conf. CVPR, Jun. 2007, pp. 1-8.

P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient belief propagation
for early vision,” in Proc. IEEE Conf. CVPR, Jun.-Jul. 2004, pp. 261—
268.

Q. Yang, L. Wang, R. Yang, S. Wang, M. Liao, and D. Nister, “Real-
time global stereo matching using hierarchical belief propagation,” in
Proc. BMCV, 2006.

S. Park, C. Chen, and H. Jeong, “VLSI architecture for MRF based
stereo matching,” in Proc. Int. Symp. SAMOS, Jul. 2007, pp. 55-64.
R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kolmogorov, A.
Agarwala, M. Tappen, and C. Rother, “A comparative study of energy
minimization methods for Markov random fields with smoothness-based
priors,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 6, pp. 1068—
1080, Jun. 2008.

[22]

[23]

[24]

[25]

[26]

[27]

[28]

C.-C. Cheng, C.-K. Liang, Y.-C. Lai, H. H. Chen, and L.-G. Chen,
“Analysis of belief propagation for hardware realization,” in Proc. IEEE
Workshop SiPS, Oct. 2008, pp. 152-157.

C.-C. Cheng, C.-K. Liang, Y.-C. Lai, H. H. Chen, and L.-G. Chen, “Fast
belief propagation process element for high-quality stereo estimation,”
in Proc. IEEE ICASSP, Apr. 2009, pp. 745-748.

C.-K. Liang, C.-C. Cheng, Y.-C. Lai, L.-G. Chen, and H. H. Chen,
“Hardware-efficient belief propagation,” in Proc. IEEE Conf. CVPR, Jun.
2009, pp. 80-87.

Y.-C. Tseng, N. Chang, and T.-S. Chang, “Low memory cost block-based
belief propagation for stereo correspondence,” in Proc. IEEE ICME, Jul.
2007, pp. 1415-1418.

T. Yu, R.-S. Lin, B. Super, and B. Tang, “Efficient message repre-
sentations for belief propagation,” in Proc. IEEE ICCV, Oct. 2007,
pp. 1-8.

M. P. Kumar and P. H. S. Torr, “Fast memory-efficient generalized belief
propagation,” in Proc. ECCV, May 2006, pp. 451-463.

Y.-C. Tseng, N. Y.-C. Chang, and T.-S. Chang, “Block-based belief
propagation with in-place message updating for stereo vision,” in Proc.
IEEE APCCAS, Dec. 2008, pp. 918-921.

Yu-Cheng Tseng (S°07) received the B.S. degree
in electronic engineering from National Chiao-Tung
University (NCTU), Hsinchu, Taiwan, in 2006. He
is currently pursuing the Ph.D. degree from the
Department of Electronics Engineering, NCTU.

His current research interests include 3-D video
processing, and hardware architecture design and
implementation.

Tian-Sheuan Chang (S’93-M’06-SM’07) received
the B.S., M.S., and Ph.D. degrees in electronic
engineering from National Chiao-Tung University
(NCTU), Hsinchu, Taiwan, in 1993, 1995, and 1999,
respectively.

He is currently an Associate Professor with the De-
partment of Electronics Engineering, NCTU. From
2000 to 2004, he was a Deputy Manager with Global
Unichip Corporation, Hsinchu. His current research
interests include (silicon) intellectual property and
system-on-a-chip design, very large scale integration

signal processing, and computer architecture.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00540068006500730065002000730065007400740069006e00670073002000610072006500200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e003000200061006e00640020006d00610074006300680020007400680065002000220053007500670067006500730074006500640022002000730065007400740069006e0067002000660069006c0065007300200066006f00720020005000440046002000730070006500630069006600690063006100740069006f006e002000760065007200730069006f006e00200034002e0030002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

