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Abstract— A technique to prune the paths for �-best sphere
decoding algorithm (SDA) based on radius constraint is pre-
sented. The proposed scheme preserves breadth-first searching
nature, and the distinct radii for each decoding layer are theo-
retically derived from the system model with the noise statistics.
In addition, based on the data range provided by the radius, a low
complexity sorting strategy is proposed. The proposed method
can apply to SDA with various path cost functions. Euclidean
norm and sum of absolute difference are demonstrated in this
paper. With SNR degradation less than 0.2dB, more than 47%
and 90% computation complexity can be reduced in 16-QAM
and 64-QAM �� � MIMO detection, respectively.

I. INTRODUCTION

Multiple input multiple output (MIMO) technology has been
widely applied in many wireless communications for better
transmission efficiency and signal quality due to the inherent
diversity gain [1]. For maximum likelihood (ML) detection
of the received signals, sphere decoding algorithm (SDA)
can be applied as an efficient means to searching for the
sequence with the minimum path metric [2]–[5]. Instead of
exhaustively search, only the signals within the radius will
be searched in SDA. However, the computation complexity
depends on the channel conditions and the noise variance, and
the non-constant decoder throughput results to difficulties in
hardware implementation. Thus, �-best SDA [6]–[9], is often
used as an alternative approximation. �-best SDA maintains a
breadth-first searching strategy. Thus, constant and predictable
complexity guarantees manageable hardware realization. For a
signal vector of size ����, the signals are detected from layer
�� to layer 1, and the term layer stands for the transmitted
antenna index. In the �-th decoding layer of �-best SDA,
only the � best candidates are kept and used for detecting
signals of �� � ��-th layer, and sorting is required to select
the � best candidates. It is obvious that � dominates the
performance and the complexity. In this paper, a pruning
technique is proposed for the �-best SDA based on the radius
constrained. Unlike the conventional SDA, distinct radius is
set for each layer, and therefore, the proposed �-best SDA
preserves the breadth-first searching nature. Moreover, a low
complexity sorting strategy is proposed, and the computation
complexity can be greatly reduced. According to our simula-
tion, for 16-QAM and 64-QAM �� � MIMO detection, with

SNR degradation less than 0.2dB, more than 47% and 90%
computation complexity can be reduced, respectively. The rest
of this paper is organized as follows. In Section II, SDA and
�-best SDA are briefly introduced. The proposed schemes, the
radius-constraint �-best SDA and the roughly sorting strategy,
are presented in Section III. Theoretical derivation for the radii
for every decoding layer is described in this section as well.
The simulation results are shown in Section IV. The bit error
probabilities and computation complexities of conventional
�-best SDA and the proposed �-best SDA are compared.
Finally, a summary concluding our work is given in Section V.

II. �-BEST SPHERE DECODING ALGORITHM

A MIMO system of �� transmit antennas and �� receive
antennas can be represented by

�y � ����� ��� (1)

where �� is the �� �� transmitted signal vector, �� is an �� �
�� channel matrix of independent and identical distributed
(i.i.d.) complex Gaussian elements, and �� is an �� � � i.i.d.
complex Gaussian noise vector, and �� is the ��� � received
signal. Note that an independent and flat-fading channel is
assumed in (1). For convenience, (1) is often represented by
an equivalent real-valued form as
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Maximum likelihood (ML) detection is to find a vector �s
that minimizes the Euclidean norm �y � Hs��, that is,
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���

�� ����� � (3)

Exhaustively searching for the minimizer in (2) becomes
infeasible when the dimension of �s increases. However, (3)
equivalent to finding a closest point in a lattice, and sphere
decoding algorithm(SDA) can be applied. SDA reduces the
computation by setting a radius 	, and it only examines the ��
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vectors that satisfy the radius constraint �y � Hs�� 
 	. More-
over, SDA transforms the closest-point searching problem into
a tree-search problem by factorizing the channel matrix as
� � ��, where � is a ��� � ��� unitary matrix and �
is an upper triangular matrix of size ��� � ��� . Therefore,
(3) can be rewritten as

�� � �	
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�� ����� � (4)

with �� � ���. Due to the triangular form of matrix �,
we can express the vector form in (4) by
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The detection process starting from the ��� -th layer of the
tree to the first layer, and each survived candidate of the �-th
layer is represented by ���� � ��
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�� . The partial
Euclidean distance (PED) of ���� is defined as


 �������� �

����
����

������ �
����
����

�����
����
�

���

(6)

and it can derived recursively from
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Obviously the initial radius selection affects the compu-
tation complexity. Moreover, the radius is updated by 	� �
��y � R�s�� 
 	 when an �s satisfying ��y � R�s�� 
 	 is found.

However, the depth-first tree-search nature restricts the de-
coding throughput, and the resulting non-constant computation
limits the decoding efficiency. In order to achieve constant
decoding speed, �-best SDA is often used, and simpler
hardware design can be deduced. Since �-best SDA only
keeps the paths corresponding to the first � smallest PEDs
in every layer, constant computation is promised. But �-best
SDA can not guarantee the same performance as SDA. When
� is not large enough, the ML solution may be eliminated in
PED computation process. Thus, there is a tradeoff between
complexity and bit error rate.

III. �-BEST SDA WITH RADIUS CONSTRAINTS

Although �-best SDA promises a constant decoding
throughput and can approach similar error performance of
the conventional SDA as long as � is sufficiently large,
computation, especially the sorting operation in finding the
� best PSDs, will also grow with �. Thus, a �-best sphere
decoder with large � and low sorting complexity is desired.

In this section, a technique is proposed to prune the less
reliable paths in advance. Unlike the conventional SDA which
only restraints the overall Euclidean norm, a distinct radius
constraint is applied to the PEDs of each layer. The radii are
independent of the channel matrix � and can be determined at
design time according to the noise statistics in (2). Similar to
�-best SDA, the proposed scheme keeps at most � paths to
guarantee a predictable and manageable computation complex-
ity. Due to the radius constraints, the ranges of the data to be
sorted in each decoding layer are known in advance. A roughly
sorting strategy can be applied. The proposed sorting can be
realized by few comparing operations, resulting to significant
reduction in sorting complexity.

A. Radius constraints derivation

According to (2), �� � �� � �� is still a vector of i.i.d.
Gaussian random variables, and the PED
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is a Chi-square random variable of degree ��� � � � �.
Therefore, we can always find a value ���� such that
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� is a design parameter, a larger � value, 0.9999 for instance,
means a more conservative pruing constraints: 99.99% of PED
of the ML solution is smaller than ����. Hence, the value ����,
which is determined by � , can be used as the radius of the
PEDs in the �-th layer.

Fig. 1 illustrates a two-dimensional examples for conven-
tional SDA, conventional �-best SDA, and the proposed �-
best SDA. The points labeled in color gray are the candidates
generated by the detector; the one corresponds to minimum
cost will be the detector output. Since Fig. 1(a) only consider
the initial radius, more points are left at layer 1. For Fig. 1(b),
all points are kept in Layer-2, and then the 4 points having
the smallest 
 ������ will be the candidates of layer-1. For
Fig. 1(c), 8 points are first pruned by the layer-2 radius
constraint, then 4 points with the smallest 
 ������ are kept.

So far, the �-th layer radius ���� is acquired when � and
the chi-square distribution (as well as the corresponding noise
variance) are known. To avoid estimating noise variance in
decoding time, the radius ���� should be assigned according
to the minimum working SNR, which stands for the minimum
signal to noise ratio such that the conventional SDA can
provide an acceptable bit error rate, such as ���� for example.
Note that the selection of minimum working SNR affects
computation complexity and bit error probabilities. A lower
minimum working SNR deduces to a larger ����’s. Thus
more PEDs satisfy the radius constraints and the computation
increases. On the other hand, the resulted large ����’s promises
a higher probability that the PED of the ML solution always
fall into the radii for all layers, and a better error performance
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can be achieved. In words, the proposed �-best SDA can be
expressed by the following steps:
Initialization (at design time):
i) Determine the value � and the minimum working SNR.
ii) Compute the radius ����� ����� ���� ����� �

Decoding:
Step 1: set � � ���

Step 2: Compute the PEDs according to (6) - (8)
Step 3: Prune the paths with PEDs computed in Step 2 that
are greater than ����.
Step 4: If more than � paths are preserved in Step 3, choose
the � paths associated to the � smallest PEDs by sorting.
Step 5: set � � �� �. Go back to Step 2.
Step 6: � � �, output the path with minimum Euclidean norm
and the decoding process is completed.

It is perceived in Step 4 that a sorter is still needed in the
proposed algorithm. However, the sorting can be realized by
a few comparators, and the sorting strategy will be presented
subsequently.

B. Low complexity sorting strategy

The goal of �-best SDA is to search for the closest point
in a lattice. As long as the closest point is kept, the rest
�-1 PEDs do not need to be the ”smallest �-1” PEDs.
Therefore, instead of precisely sorted, the data can be sorted
in a rough order and was presented as fast sequential decoding
[10]. The data is first separated into � groups, and only the
orders among the groups will be concerned. Since we have
the knowledge of the maximum value among all the data to
be sorted, which is ����, we can divide ���� into � uniform
regions, � ���

	
����� �

	
������ � � �� �� ����, and the data to be

sorted can be classified into � groups by the regions they fall
into. Afterwards, randomly pick � data from the group with �

= 1. If there are less than K data in this group, we pick the rest
data (randomly) from the group with � = 2. Then the selecting
process proceeds for � = 3,4,..., until � paths are selected.
Consequently, the data in the groups of smaller � index are
chosen first, we can always choose the � paths with smaller
PEDs. According to the simulation results � = 16 is large
enough a choice to provide the similar bit-error probability
compared to conventional �-best SDA.

C. Radius derivation for other cost functions

The above chi-square distributed radius constraint can apply
only when the path cost function is computed by the Euclidean
norm as (3) to (8). When the cost function is replaced by
other methods, such as sum of absolute difference, the radius
constraint can still be applied according to the system model
(2) and the knowledge of the noise statistics.

Let ���� denote the cost function, for sum of absolute
difference, ������ � �����, and the overall path metric is

����
����

���������� �
����
����

�����
����
�

������ �
����
����

����� � (11)

In the following, we will use (11) as example for deriving the
radius constraints. The procedure of finding the probability

density function (PDF) of
	���

�
���

����� � for deriving the radius
���� will be described as follows.

First, the PDF of ������
�, represented by f��
��� ����, can be

easily found because ����
is known to be Gaussian distribu-

tion. Thus,
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where �� is the noise variance. Moreover, for two independent
random variables X and Y that have PDFs f� and f� ,
respectively, the PDF of X+Y is the convolution of f� and f� .
Therefore, the PDF of

	���

�
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����� �, which is the summation of
���� � �� �� i.i.d random variables, can be derived by
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where the notation 	 represents convolution. As a result, there
is always a probability � and ���� such that
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IV. SIMULATION RESULTS

The proposed �-best SDA are compared with the con-
ventional �-best SDA by the bit error rate (BER) and the
computation complexity. Information with 16-QAM and 64-
QAM signal mapping are simulated in a � � � Rayleigh flat
fading plus additive white Gaussian noise (AWGN) MIMO
channel. The minimum working SNR of the proposed �-
best SDA are chosen as 16dB and 25dB for 16-QAM and
64-QAM symbols, respectively. Both Euclidean norm and
sum of absolute difference are used in calculating the PEDs.
Furthermore, the bit error probabilities of ML detection, which
is realized by conventional SDA, are also provided as a
performance baseline. �=16 and �=64 are for 16-QAM and
64-QAM, respectively, which are chosen to provide similar
error performance of ML detection.

A. Bit error rate

Fig. 2 to Fig. 5 illustrate the impacts on BER of different
�. As the figures show, larger � provides finer resolution for
our proposed roughly sorting strategy. Therefore better error
performance can be achieved. The figures show that �=16
is sufficient to provide error performances very similar to
that of the ML detection. Moreover, different � values shown
here all have the form of �� in order to reduce the sorting
computation. For each PED satisfying the radius constraint,
it takes � comparing operations to examine to which region
of � ���

	
����� �

	
�����, �=1,2,...�, the PED belongs. When � is

too small, the performance will have siginificant degradation.
This is more clear in Euclidean norm than sum of absolute
difference. Because the PEDs have larger variance by squaring
operation, the same � conducts to a poorer signal resolution,
as compared to that of the sum of absolute difference. The
results show that the SNR degradation for 16-QAM and 64-
QAM constelation is below 0.2dB and 0.1dB respectively.
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(a) Conventional SDA
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(b) Conventional 4-Best SDA
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(c) Proposed 4-Best SDA

Fig. 1. Geometric two dimensional example for conventional SDA, conventional �-best SDA, and the proposed �-best SDA (� � �). The gray point that
contributes to minimum cost will be the detector output.
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Fig. 2. Simulation result of 16-QAM with cost computed by sum of absolute
difference.
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Fig. 3. Simulation result of 16-QAM with cost computed by Euclidean norm.

B. Computation complexity

TABLE I and TABLE II show the averaged number of
multiplications, additions and comparisons in sorting per trans-
mitted MIMO signal block. Quick sort algorithm [11] is used
for conventional �-best SDA. The computation are reduced
by pruning the paths with the proposed radius constraints of
�-best SDA. Especially for the system of 64-QAM signals
that operates in higher SNR, larger � value (�=64) and the
smaller radii conducted to a significant computation reduction.
Compared to �-best SDA, more than 90% computation can
be reduced.

TABLE III and TABLE IV present the average number of
paths survived at the first layer of the proposed �-best SDA
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Fig. 4. Simulation result of 64-QAM with cost computed by sum of absolute
difference.
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Fig. 5. Simulation result of 64-QAM with cost computed by Euclidean norm.

for 16-QAM and 64-QAM mapping. Because the radii for
the proposed �-best SDA are derived in advance according
to the minimum working SNR, not only the computation,
but the number of survived paths also increases with SNR.
Nonetheless, at least 43% and 93% of the paths are pruned
for 16-QAM and 64-QAM respectively.

V. CONCLUSION

In this paper, a technique to prune the paths for K-best SDA
based on radius constraints is proposed. The proposed scheme
effectively reduces the number of paths, leading to significant
reduction in computations. For each decoding layer, the radius
can be derived according to the path cost function, system
model, and the noise statistics at design time. Besides, the
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TABLE I

AVERAGE NUMBER OF COMPARISONS(CMP) IN SORTING,

MULTIPLICATIONS (MUL), AND ADDITIONS (ADD)FOR 4X4-16QAM

Method Cost SNR(dB) 6 10 14 18

CMP

EN

Conventional 6605 6603 6614 6615
16-Best SDA 100% 100% 100% 100%

Proposed 2544 2990 3163 3227
16-Best SDA 38.46% 45.20% 47.82% 48.78%

SAD

Conventional 6512 6533 6568 6605
16-Best SDA 100% 100% 100% 100%

Proposed 2170 2172 3146 3474
16-Best SDA 32.80% 41.15% 47.56% 52.52%

MUL

EN

Conventional 1256 1256 1256 1256
16-Best SDA 100% 100% 100% 100%

Proposed 441 520 555 570
16-Best SDA 35.11% 41.40% 44.19% 45.38%

SAD

Conventional 852 852 852 852
16-Best SDA 35.11% 41.40% 44.19% 45.38%

Proposed 251 321 380 422
16-Best SDA 19.98% 25.55% 30.25% 33.59%

ADD

EN

Conventional 3304 3304 3304 3304
16-Best SDA 100% 100% 100% 100%

Proposed 1221 1430 1516 1555
16-Best SDA 36.96% 43.28% 45.88% 47.06%

SAD

Conventional 3320 3320 3320 3320
16-Best SDA 61.09% 61.09% 61.09% 61.09%

Proposed 1054 1321 1534 1684
16-Best SDA 31.90% 39.98% 46.43% 50.97%

* EN and SAD stand for Euclidean norm and sum of absolute
difference, respectively.

TABLE II

AVERAGE NUMBER OF COMPARISONS(CMP) IN SORTING,

MULTIPLICATIONS (MUL), AND ADDITIONS (ADD)FOR 4X4-64QAM

Method Cost SNR(dB) 14 18 22 26

CMP

EN

Conventional 83413 83419 83574 83592
64-Best SDA 99.79% 99.88% 99.98% 100%

Proposed 3958 4852 4725 4765
64-Best SDA 4.73% 5.48% 5.65% 5.70%

SAD

Conventional 82359 82443 82563 82713
64-Best SDA 98.52% 98.63% 98.77% 98.95%

Proposed 2170 2721 3146 3474
64-Best SDA 2.60% 3.26% 3.76% 4.16%

MUL

EN

Conventional 8080 8080 8080 8080
64-Best SDA 100% 100% 100% 100%

Proposed 577 650 676 690
64-Best SDA 7.14% 8.04% 8.37% 8.54%

SAD

Conventional 4936 4936 4936 4936
64-Best SDA 61.09% 61.09% 61.09% 61.09%

Proposed 284 339 384 432
64-Best SDA 3.51% 4.20% 4.75% 5.35%

ADD

EN

Conventional 17740 17740 17740 17740
64-Best SDA 100% 100% 100% 100%

Proposed 1438 1626 1686 1717
64-Best SDA 8.11% 9.17% 9.50% 9.68%

SAD

Conventional 17740 17740 17740 17740
64-Best SDA 100% 100% 100% 100%

Proposed 1204 1434 1605 1776
64-Best SDA 6.79% 8.08% 9.05% 10.01%

* EN and SAD stand for Euclidean norm and sum of absolute
difference, respectively.

TABLE III

AVERAGE PATH NUMBER FOR �� �16-QAM

Method Cost/SNR(dB) 6 10 14 18

Conventional EN 16 16 16 16
16-Best SDA SAD 16 16 16 16

Proposed EN 4 5 6 6
16-Best SDA SAD 3 5 7 9

TABLE IV

AVERAGE PATH NUMBER FOR �� � 64-QAM

Method Cost/SNR(dB) 14 18 22 26

Conventional EN 64 64 64 64
64-Best SDA SAD 64 64 64 64

Proposed EN 2 2 2 2
64-Best SDA SAD 1 2 3 4

radius is independent of the channel matrix, and the required
sorting operation can be realized by few comparators since
the range of the sorted data are known in advance. Moreover,
the reduction computation complexity is more obvious for
larger K. Higher-order-modulation usually requires larger K to
derive better performance. Thus the proposed �-best SDA is
suitable for higher-order modulated signals. According to our
simulation of 16-QAM and 64-QAM �� � MIMO detection,
more than 47% and 90% computation complexity can be
reduced with SNR degradation less than 0.2dB.
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