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Abstract—Data bandwidth dominates the performance and
power consumption in the video encoder design. In which a
low bandwidth and bandwidth aware motion estimation design
enables smooth and better video quality as well as lower power
consumption on data accesses. This paper proposes a bandwidth
efficient motion estimation and its hardware implementation to
deal with the bandwidth issues. First, an on-demand data access
mechanism is proposed to acquire the reference data according
to the video content for motion estimation process and thus
can avoid unnecessary reference data loading. Furthermore, the
available bandwidth constraint is properly modeled into our
proposed rate distortion optimization framework to efficiently use
the data bandwidth. Simulation results show that our proposed
algorithm not only allocates proper data bandwidth for motion
estimation according to video content but also saves 79.15% data
bandwidth demand with 0.03 dB PSNR drop and 2.50% bitrate
increase in maximum for 4 CIF resolution sequences, when
compared to the fully data reuse full search motion estimation
which reuses the overlapped reference data to avoid unnecessary
data reloading. In addition, under the available data bandwidth
constraint, our proposed algorithm can achieve 2.43%, 0.08%,
and 0.20% BD-bitrate saving with 0.17 dB, 0.01 dB, and 0.01 dB
BD-PSNR increase on average for high, median, and low motion
sequences when compared to the full search motion estimation
algorithm. The resulted design only needs 75.27 K gate counts
when running at 23 MHz operating frequency for 4 CIF at
30 frames/s with 90 nm CMOS process due to its search range
independent buffer design.

Index Terms—Bandwidth aware motion estimation, bandwidth
efficient motion estimation, motion estimation.

I. Introduction

MOTION ESTIMATION (ME) not only contributes to
most of the coding efficiency but also is the most

computational intensive as well as data bandwidth intensive
component in modern video encoding design [1]. ME finds
out the best matching block by matching its current coding
macroblock (MB) (a block with 16 × 16 pixels) with search
candidates within the search range. A direct approach called
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full search, which searches all candidates, has been widely
used in hardware implementations [2] due to its simplicity
and regularity. With its regularity, it is easy to fully reuse the
overlapped search range data between different searches [3] to
reduce the required access and several hardware architectures
were proposed in [4]–[6] to take the advantages of search
range data overlapping. However, the bandwidth requirement
is still high due to its content independent data loading. Other
approaches like fast ME algorithms [7]–[13] can reduce the
computational complexity but they do not help a lot to reduce
the required bandwidth for irregular search pattern.

To deal with data bandwidth problem, works in [14]–
[19] proposed various efficient ME architectures to reduce
data bandwidth requirements. In [14], the authors proposed
a modified MB processing order to further increase the data
reuse of Level C data reuse scheme [3]. For multiple ref-
erence frames motion estimation in H.264, [15] proposed a
single reference frame multiple current macroblocks (MBs)
scheme to reuse the reference data. An alternative direction
to reduce the data bandwidth requirement was introduced
in [16] and [17] by decreasing the size of search range
centered at the motion vector predictor (MVP). In [16], the
authors efficiently selected the search area to reduce the data
bandwidth requirement by tracing the motion vectors. [17]
used a two-step windowing approach to dynamically decide
whether to load more reference data for motion estimation. In
hardware design, [18], [19] proposed the hardware architec-
tures to reduce the memory bandwidth overhead by adopting
the binary motion estimation mechanism which executed the
matching process on the generated bit map instead of on the
pixels. However, these works still require large and constant
bandwidth support from a system because of the adopted
full search algorithm. Large bandwidth requirement increases
the cost as well as power consumption. Besides, assumption
of constant bandwidth support is not practical for a modern
complex system-on-a-chip due to high varieties of processing
tasks. In addition, they do not consider how to efficiently use
the available bandwidth or adapt the search process according
to available bandwidth, which would be vital to portable video
applications like video phones due to costly DRAM power
consumption. As a result, the above bandwidth policy implies
two consequences: either over design to meet the demands
or design unchanged with insufficient bandwidth supply that
results in quality degradation or coding time increase.
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To solve the above problems without the side effects, this
paper presents an on-demand data access efficient ME and its
hardware realization under the rate distortion (RD) optimized
framework. Based on the introduced bandwidth-rate-distortion
model, the proposed approach can minimize and predict the
data bandwidth requirement, and access required data on
demand while maximizing the rate-distortion performance
within available bandwidth constraint. The on-demand data
access can reduce the unnecessary data access and thus
minimize the search range buffer. The simulation results
show that the proposed algorithm can effectively allocate and
reduce the required data bandwidth with negligible quality
loss. Such efficiency also brings the low cost benefits for the
resulted hardware implementation for its smaller search range
buffer than other designs.

The organization of this paper is as follows. Section II first
briefly reviews the previous work and modeling the memory
bandwidth of ME. Section III presents the proposed bandwidth
aware ME algorithm and the simulation results are shown
in Section IV. The hardware design and its implementation
results are exhibited in Section V to demonstrate the ef-
ficiency of our proposal. Finally, a conclusion is given in
Section VI.

II. Memory Bandwidth Modeling for ME

A. Search Algorithms and Their Memory Bandwidth Modeling

In ME search algorithms, the full search ME loads all pixels
inside the search area from external memory to find out the
best matching MB by exhaustively checking every candidate
position. The data bandwidth per frame for full search ME
(DBFS) can be calculated as follows:

DBFS = [(SRV × 2 + 16) × (SRH × 2 + 16)] × #MBsframe (1)

where SRV and SRH indicate the search range in the vertical
and horizontal directions, respectively, and #MBsframe refers
to the number of MBs per frame.

Due to the high computational complexity and data access
of full search ME, several fast algorithms [7]–[10] tried to
reduce the number of candidate positions instead of exhaustive
checking to decrease the computational complexity of full
search ME and thus lessen the bandwidth requirements with
less data to be loaded. However, these fast algorithms suffer
from the irregular data access and complex data access control
and consequently result in the difficulty of hardware realization
and ill data reuse.

In addition to check point reduction approach, search range
data can be reused to decrease the bandwidth requirement
since the adjacent MBs will share a large portion of overlapped
search range as shown in Fig. 1. A systematic analysis for
data reuse in full search algorithms has been proposed in
[14]. In which the level C data reuse scheme as shown in
Fig. 1 is widely used for ME design due to its high data
reuse property. Hence, the data bandwidth per MB for full
search with Level C reuse (DBFS−LevelC) can be computed as

Fig. 1. Illustration of data reuse scheme for ME.

Fig. 2. Example of nearest neighbors search algorithm.

follows:

DBFS LevelC
∼={

(SRV × 2+16)×(SRH×2+16)...∀MB ∈ left most MB column

(SRV × 2 + 16) × 16 ... ... ... ... ... OtherMBs.

(2)

For an example with QCIF image format and ±8 search
range, the data bandwidth requirements are 33 kB and 99 kB
per frame for full search with and without Level C data reuse,
respectively. Although full search with data reuse scheme can
greatly reduce the bandwidth requirements for ME, it still
needs high bandwidth requirements in case of large search
window, which could occur in large size video. Besides, the
search range for full search in hardware implementation is
usually larger than other algorithms to keep the quality since
hardware regularity forces its search center at (0, 0) instead of
motion vector predictor [20]. For an example of 480p frame
size, the bandwidth will be 3849.19 kB per frame if the search
range of ±64 is used.

B. Nearest Neighbors Search Algorithm and Its Bandwidth
Modeling

To gain the benefits both from data reuse scheme and
search range size reduction with MVP, this paper adopts
nearest neighbors (NN) ME [21] for its highly data reuse in
consecutive search and small search range due to MVP.

Fig. 2 shows the concept of a nearest neighbors algorithm.
It first calculates the MVP for search process and the sum
of absolute differences (SAD) of five positions centered at
MVP (labeled by 1). If the minimum SAD is located at center
position, the search operation is finished and the coordinate of
center position is set as motion vector of current coding MB.
Otherwise, the position with minimum SAD is set as the search
center and another three positions labeled by 2 are checked.
This operation is repeated until the position with minimum
SAD is located at center or the search boundary is reached.
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Fig. 3. Data overlapping for different nearest neighbors search results.
(a) Min. SAD at 1. (b) Min. SAD at 2. (c) Min. SAD at 4. (d) Min. SAD at
5.

With above operations, Fig. 3 shows the data overlapping
cases for different nearest neighbors search results. In this
figure, the lighter pixels indicate the overlapped area and the
dark pixel row or column is referred to the additional pixels
to be loaded. From this figure, we can observe that there is a
large portion of data overlapping between any two adjacent
search positions, which leads to highly regular data reuse
for hardware implementation. Therefore, by adopting nearest
neighbors search pattern, only one extra column or row of
pixels have to be loaded for search process.

The bandwidth requirements of nearest neighbors pattern
are analyzed as follows. In the first step, 18 × 18 reference
pixels for first five search points should be loaded from
external memory to evaluate the SADs. If the minimum SAD
is located at the center position, no more pixels are needed
from external memory. Otherwise, 18 additional pixels are
needed to be loaded from external memory for evaluation,
if the position with minimum SAD is located at any one of
four corner positions. Therefore, the data bandwidth per MB
of nearest neighbors search pattern (DBNN ) can be formulated
as follows:

DBNN = (18 × 18) + n × 18 (3)

where 18 × 18 indicates the required pixels for computing the
SADs for first five positions and the n is the remaining steps
to search the best result. With this, we can model the data
requirements of nearest neighbors search pattern with step n.
With step n, the data requirement for ME can be adjusted
freely for different quality.

III. Proposed Framework

A. RD Optimized Bandwidth Modeling for Video Contents and
Search Steps

The SAD is commonly used as a similarity measurement in
ME process due to its computational simplicity, but failed to
consider the coding rate brought by motion vector encoding.
Therefore, the commonly used rate-distortion cost (RDCost)
is adopted in this paper and can be calculated as follows:

RDCost(MV, λMOTION ) = SAD(s, c(MV ))

+ λMOTIONR(MV − MVP) (4)

where λMotion indicates the Lagrange multiplier and the term
R(MV − MVP) represents the number of bits for coding the
motion vector difference between the motion vector (MV ) and
the predicted motion vector. Through the adoption of RDCost,
the best rate-distortion performance can be achieved.

Fig. 4. Relationship between the steps n of nearest neighbors search pattern
and RDCost and modeled results for sequences of (a) Akiyo, (b) Football, and
(c) Foreman.

Fig. 4 shows the relationship between the rate distortion
performance improvement and search steps of the nearest
neighbors search. In which the vertical axis is the percentage
of RDCost improvement and the horizontal axis is the steps of
n in nearest neighbors pattern ME. This simulation uses JM11
reference software [22], quantization parameter (QP) with 28,
±16 search range and only 16 × 16 block size for simplicity.
The mechanism of variable block size is not included for
simplicity due to the SADs of other small block size can be
obtained from the data of 16×16 block size in SAD tree based
hardware realization, and it will not affect the data bandwidth.
Thus, the RDCost improvement can be derived as follows:

�RDCostn =

(
RDCostn − RDCost0

RDCost0

)
× 100 (5)

where RDCost0 and RDCostn indicate the RDCosts after the
first and n+1 steps search of nearest neighbors search, respec-
tively. From these figures we can observe that the �RDCost

is increased significantly in the first few steps. However, the
�RDCost is increased slightly after more steps. For example,
for the Akiyo sequence in Fig. 4(a), the �RDCost would be
stable after three steps. For the Football sequence in Fig. 4(b),
sixteen steps are required for the �RDCost stabilization.
Therefore, it is unnecessary to search too many steps since
the improvement would be negligible after checking certain
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number of steps. Meanwhile, this also helps to save the data
bandwidth requirement if the required steps can be properly
predicted.

From Fig. 4, we can obtain three properties. First, the
convergence speed of the sequence is content dependent. For
example, the high motion sequence such as Football has slower
convergence speed than the slow motion sequence such as
Akiyo. This property mainly comes from that the high motion
sequence needs more search steps to find out the best result.
The second property is that the magnitude of �RDCost is
also content dependent. For instance, the �RDCost of Akiyo
sequence is smaller than that of the Football sequence since
most MVs in low motion sequence have their best MV highly
around the MVP. The last property is that the magnitude
of RDCost significant influences the �RDCost convergence
speed. That is, the sequences with smaller RDCost like Akiyo
would have faster �RDCost convergence speed than the
sequences with larger RDCost like Football.

By combining the three above properties, we can use the
RDCost and �RDCost of the first few steps to predict the data
bandwidth requirement of ME process while maintain best
rate distortion performance. Therefore, the convergence speed
influenced by �RDCost can be modeled by the following
equation:

�RDCostimproved = α × e(�RDCost2−�RDCost1)×β (6)

where α is RDCost controlling factor which is related to initial
RDCost and defined by (7) and the β stands for the bandwidth
adjustment factor to achieve trade-off between rate distortion
performance and data bandwidth requirements. That is, the
larger the β is, the less the data bandwidth is necessary.
Oppositely, the larger β also results in more rate distortion
performance degradation. The β is set to 0.1 in this paper
empirically to achieve the best tradeoff.

Furthermore, since different RDCost magnitude might re-
sult in different convergence speed as mentioned in the last
property, the RDCost0 is used to derive the factor of α by the
following equation:

α = RDCost0 × γ. (7)

The γ is set to 0.001 empirically. Therefore, through (6), the
relationship between RDCost improvement and search steps
can be described and its fitting results are shown as the curve
labeled with “Model” in Fig. 4. Finally, the steps needed for
executing nearest neighbors search while keeping acceptable
rate distortion performance degradation can be decided by
the following equation by considering the maximum allowed
search range size:

n = �RDCostimproved × SRMax (8)

where SRMax indicates the maximum size of search range.
After the step number n has been estimated by (8), the
allocated data bandwidth for current MB (DBAllocated−MB−i)
can be obtained as follows:

DBAllocated MB i = n × 18. (9)

In summary, we can model the relationship of rate distortion
performance and bandwidth by the search steps, initial RDCost
and subsequent RDCost improvement according to (6). These
two RDCost terms faithfully reflect the characteristics of
video content. By this modeling, we can further determine
the optimal steps to maximize the rate distortion performance
under bandwidth constraints.

However, it is worth mentioning that any other fast algo-
rithm can also be used in the optimization framework of this
paper if it satisfies the property of highly data reuse in its
consecutive search, such as full search, logarithmic search
[23], and one-at-a-time search [24]. To fit different kinds of
search algorithms, (3) and (6)–(9) should be really remodeled.
For example, the one-at-a-time search algorithm checks three
candidates in the first step so that 16 × 18 pixels are loaded
from external memory. For each search candidate, 16 pixels
in average are demanded to be loaded for cost evaluation.
Therefore, (3) can be rewritten as (16 × 18) + n × 16 and
(6)–(9) should be remodeled. The modeling of (6)–(9) can be
done by a curve fitting tool once the relationship between rate
distortion cost and search step is derived.

B. Proposed Bandwidth Aware ME Algorithm

Fig. 5 shows the flow chart of proposed bandwidth aware
ME algorithm. It operates as follows. First the available band-
width for current frame is initialized. Afterward, the step0,
step1, and step2 of nearest neighbors search are executed
for obtaining �RDCost1 and �RDCost2. If the minimum
RDCost is located at center position, the search process is
finished. Otherwise, the �RDCost1 and �RDCost2 from
previous steps are used to calculate the corresponding data
bandwidth requirement of current MB. Afterwards, more steps
are applied to search the best result according to the allocated
data bandwidth. After finding the best result, the available data
bandwidth pool is updated for further usage. The details of
proposed algorithm are described as follows.

1) Bandwidth Initialization: In the first step, the total data
bandwidth (DBTotal) for a certain encoding period is calculated
by considering the available system bandwidth as follows:

DBTotal =
BWBus

FR
× GOP (10)

DBUsed = 0 (11)

where BWBus is the data transmission rate (bytes/s) of bus,
FR indicates the frame rate, and the DBUsed indicates the used
data bandwidth. In this paper the certain encoding period is
defined as the group of pictures (GOP) and GOP refers to the
number of frames per coding group. This total data bandwidth,
DBTotal, stands for the available bandwidth per GOP. However,
the available bandwidth for ME should subtract the bandwidth
requirements for basic quality coding. Thus, the available data
bandwidth (DBAvailable) should be as follows:

DBAvailable = DBTotal − DBBasic (12)

where DBBasic is the necessary data bandwidth requirements
for step0, 1, and 2 in nearest neighbors search algorithm and
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Fig. 5. Flowchart of proposed bandwidth aware ME algorithm.

can be calculated by (3) so that DBBasic = (18×18)+2×18 =
360 bytes.

2) Bandwidth Allocation for Current MB: After the initial-
ization step, the data bandwidth usage, DBMB− i, for current
MB i is allocated as follows:

DBMB−i =

⎧⎪⎨
⎪⎩

DBAllocated−MB−i ··· ··· if DBAllocated−MB−i

≤ DBAvailable−DBUsed

MBRemained
DBAvailable−Used

MBRemained
· · · · · ·otherwise

(13)

where DBAllocated−MB−i stands for the allocated data bandwidth
for current ith MB by (6)–(9) and the MBRemained is the
number of un-encoded MBs. In this allocation, the allocated
bandwidth by (9) will be adopted only if the allocated band-
width is smaller than average remaining data bandwidth per
MB. Otherwise, the data bandwidth usage is restricted to
average remaining data bandwidth per MB. By this restriction,
the problem of over allocation can be avoided. After bandwidth
allocation for current MB, the allocated bandwidth should be
converted to the corresponding steps in nearest neighbors ME
algorithm. The allocated steps can be calculated as follows:

NMB−i =
DBMB−i

18
. (14)

For the following step, the nearest neighbors search method
is applied according to the allocated steps.

3) Data Bandwidth Update: The allocated data bandwidth
might not be fully reused due to early termination condition
of the search algorithm. Thus, the unused bandwidth can be
recycled for further use. Therefore, an additional data band-
width update stage should be added into the whole system.
The data bandwidth update operations are as follows:

DBUsed =
i−1∑
j=0

DBUsed−MB−j (15)

DBRemained−MB−i = DBMB−i − DBUsed−MB−i (16)

DBAvailable = DBAvailable + DBRemained−MB−i (17)

TABLE I

Environment Settings for Simulation

TABLE II

Brief Content Description for Test Video Sequences

where DBRemained−MB−i refers to the remained data bandwidth
for current MB i and DBUsed−MB−i is used data bandwidth after
executing nearest neighbors search.

IV. Simulation Results

Tables I and II show the simulation environment settings
and test sequences. This simulation uses two scenarios to
demonstrate the efficiency of our proposed algorithm. One
scenario is to show the data bandwidth savings without data
bandwidth constraint. In this scenario, we use the search
range to represent BWBus for simplicity and compare with
the full search with Level C data reuse scheme since it
can achieve the highest data reuse [13], [25], [26]. Another
scenario is to demonstrate the rate distortion performance
under the data bandwidth constraint. This scenario compares
three algorithms including full search (FS), NN [21], and
block-based gradient descent search algorithm (BBGS) [27]
under the data bandwidth constraints of 20 kB and 38 kB for
CIF sequences and 385 kB and 765 kB for 1080p sequences.

Fig. 6 demonstrates the efficiency of bandwidth allocation
for our method. For low motion Akiyo sequence in Fig. 6(a),
the variation of allocated bandwidth is small, only 0.5 kB, for
each frame. However, the variation of allocated bandwidth
becomes larger for medium and high motion sequences. For
example, in Table Tennis sequence, more bandwidth has been
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TABLE III

Comparison of Average PSNR Without Bandwidth Constraint

allocated to the scene change frame (frame index 131) to
satisfy the demands of motion search.

Tables III–V show the comparisons of peak signal-to-
noise ratio (PSNR), bitrate and consumed data bandwidth
with search range ±16 and ±32 for CIF resolution, ±64
for 4 CIF resolution and ±128 for 1080p resolution. The
MVP is adopted as the prediction center for simulations of
all algorithms. The data bandwidth here only considers the
data amount accessed from external memory. The effect of
DRAM latency will be discussed in the next section. The
result shows that the proposed algorithm consumes 18.00%
less data bandwidth for the search range ±16 case. The saving
becomes larger, 61.58% and 78.82%, for larger search range
(search range ±32 for CIF) and larger frame size (search
range ±64 for 4 CIF), respectively. The bandwidth saving is
also content dependent: more saving in low motion sequences
and less saving in high motion sequences due to different
allocated search steps. Above results show that the proper
data bandwidth requirement can be dynamically allocated for
different video content through our proposed algorithm. With
less consumed data bandwidth, the PSNR degradation of our
proposed algorithm is only 0.12 dB for all search range size
in maximum, with only 0.37% bitrate increase on average.
As a result, the proposed algorithm can efficiently predict the
suitable data bandwidth requirements for ME and thus result
in less rate distortion performance degradation.

Tables VI–VIII show the BD-PSNR and BD-bitrate com-
parisons for low, median, and high motion sequences under
different data bandwidth constraints. All these results are
relative to the results of the FS algorithm. In our simulation,
the total data bandwidth is evenly distributed to each MB
in FS, NN, and BBGS motion estimation algorithms and is
dynamically allocated to each MB in our proposed algorithm.
For low motion sequences, the rate distortion performance
of our proposed algorithm is near the same as FS since the
best MV can be easily found near MVP from a limited data
bandwidth support. For median motion sequences, the BD-
PSNRs of our proposed algorithm become better than FS algo-
rithm and the BD-bitrates of some sequences are decreased.
In Table VII, we can observe that the BD-bitrate saving of
Station2 sequence is much higher than other sequences since
this sequence has zoom out motion over entire frame. As a
result, the data bandwidth requirement of MBs is different
from the others due to the MBs in the outer having higher

Fig. 6. Allocated bandwidth for difference video sequences. (a) Akiyo.
(b) Football. (c) Table Tennis.

motion than the MBs in the center. Our proposed algorithm
can detect such variation and allocate suitable amounts of
data bandwidth to each MB. For high motion sequences in
Table VIII, the BD-PSNR and BD-bitrate of our proposed
algorithm are much better than FS algorithm due to better
detection of data bandwidth requirement of each MB. The
BD-bitrate saving of our proposed algorithm can achieve
up to 7.143% for Stefan sequence in maximum and 2.44%
in average for all high motion sequences. In summary, our
proposed algorithm has higher performance in high motion
sequences which are also the hardest sequences to deal with.
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TABLE IV

Comparison of Average Bitrate Without Bandwidth Constraint

TABLE V

Comparison of Data Bandwidth Saving

Figs. 7–9 show the frame by frame bitrate usage of different
algorithms. This simulation condition is the same as previous
one but with unevenly distributed data bandwidth to each MB.
This condition is to simulate the traditional ME design with
fixed and pre-allocated bandwidth. In that condition, the ME
design has fixed search range and expects the search range
data arrival in time for computation. However, if the real
allocated bandwidth is lower than expected due to bandwidth
competition from other devices, the operations of motion
estimation will be skipped and the intra mode will be selected
as best prediction mode when the allocated data bandwidth
has run out. For the bandwidth usage, the simulation shows
that both of FS and our proposed algorithm would use up
all the available bandwidth but the BBGS and NN algorithm
wouldn’t. The PSNR results are similar to the previous one but
with quite different bit rate. The result shows that the bitrate
usage of the proposed algorithm is much less than those in
other algorithms due to fewer intra block coding. This proves
that our algorithm can properly allocate bandwidth to MBs
according to their content and use up the available bandwidth
but never exceed the budget to support ME operations.

V. Proposed Architecture

Fig. 10 shows the proposed architecture and its operation is
described as follows. First, the current pixels and 22 × 22
reference pixels will be, respectively, loaded into Current
buffer and Reference buffer through the help of Memory
controller. Here, the scheduling policy of Memory controller
is first-in-first-serve so that the requests are processed in the

TABLE VI

Comparison of BD-PSNR and BD-Bitrate for Low Motion

Sequences

TABLE VII

Comparison of BD-PSNR and BD-Bitrate for Median Motion

Sequences

request order. Afterwards, the pixels stored in Current buffer
and Reference buffer will be used to calculate SADs through
the SAD calculation module which will combine the motion
vector costs generated from MV cost generator to obtain
rate distortion costs of RDCost0, RDCost1, and RDCost2.
In our design, the SAD calculation module is composed of
16 PE−4 × 4s (Fig. 11), and each PE−4 × 4 [Fig. 12(a)]
computes the SAD value of a 4 × 4 block so that the SAD
of one candidate position can be generated per cycle. The
rate distortion costs generated from SAD calculation module
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TABLE VIII

Comparison of BD-PSNR and BD-Bitrate for High Motion

Sequences

Fig. 7. Comparison of bitrate for Stefan sequence under 38 kB data band-
width constraint.

Fig. 8. Comparison of bitrate for Pedestrian sequence under 385 kB data
bandwidth constraint.

are stored in RDCost buffer for the following usage. Once
the RDCost0, RDCost1, and RDCost2 have been calculated,
the modeled information of search steps will be computed
as (5)–(9) by the Bandwidth modeling module and sent to
Bandwidth aware ME controller. Afterward, the Bandwidth
aware ME controller will execute the computations as (10)–
(17) with the calculated search steps, and generate the memory
address to Memory Controller to load the required reference
pixels for the following search steps. Once the allocated
bandwidth has been run out or the termination criterion of
nearest neighbours search has been met, the motion estimation
search will be finished.

Fig. 9. Comparison of bitrate for Station2 sequence under 385 kB data
bandwidth constraint.

A. Bandwidth Modeling Module

The required search steps of our bandwidth aware ME is
mainly computed by (5)–(9). However, these equations need
five multipliers, three dividers, three subtractions and a look-
up table to generate the corresponding search steps by a direct
implementation approach, which is too costly. Therefore, some
approximations are applied to reduce the hardware cost. First,
the operation of �RDCost2 − �RDCost1 is computed as in
(18) so that the subtractions can be reduced from three to two
with an additional left-shift operation

�RDCost = �RDCost2 − �RDCost1

=

(
RDCost2 − RDCost1 − 2RDCost0

RDCost0

)
× 100. (18)

In addition, since the β is set to 0.1, the �RDCostimproved

can be rewritten as follows:

�RDCostimproved = α × e(�RDCost)×0.1. (19)

From (7), we observed that γ is set to 0.001 empirically.
However, we can rewrite (7) as follows:

α = RDCost0 × γ|γ = 0.001 =
1

1000
→ α =

RDCost0

1000
. (20)

To reduce the hardware cost of division operation, the
division operation of 1/1000 is simply approximated by 1/1024
in our design. The benefit of this approximation is that experi-
mental results show that there is no rate distortion performance
difference between the operations of 1/1000 and 1/1024 but
the division operation of 1/1000 can be simply replaced by a
right-shit operator to reduce the hardware cost. (The results
in Section IV already include this approximation into the
simulation.) Finally, the �RDCostimproved can be rewritten as
follows:

�RDCostimproved =
RDCost0

1024
× e

(
RDCost2−RDCost1−2RDCost0

RDCost0

)
×10

.

(21)
Fig. 13 shows the architecture of our proposed Bandwidth

modeling module. In which the Exp. LUT module is a look-
up table to implement the exponential operation, and it is
organized by 46 entries with 12 bits per each. With the above
approximation, the hardware cost can be reduced significantly
due to our proposed architecture only needs two multipliers,
two subtractions, one divider, three shifters, and a look-up
table when compared to direct implementation approach.
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Fig. 10. Architecture of proposed bandwidth aware ME.

Fig. 11. Architecture of SAD calculation module.

Fig. 12. (a) PE−4 × 4. (b) PE.

B. Design of the On-Demand Reference Buffer

Fig. 14 shows the design of the Reference buffer. In our
reference buffer design, the rc−sel signal is used to determine
where a row of 22 pixels or a column of 22 pixels should be
replaced in 22 × 22 Pixels buffer. In addition, the addr−x and
addr−y signals play the role of determining which 256 pixels
should be selected to output for SAD calculation according to
ME search algorithm. Note that the size of Reference buffer
is only 22 × 22 pixels which can cover the first three steps
and help the data reuse in the remaining steps. In addition,
another benefit of 22 × 22 buffer size is that the reference
data loading request can be issued simultaneously to memory
controller to load future necessary reference data once the
search direction has been decided and SAD calculation module
starts to compute SAD. As a result, the stalled cycles can be
eliminated.

Fig. 15 shows the mechanism of reference data updating
for our Reference buffer. In our Reference buffer design, we
adopt the circular addressing mode so that the new loaded
reference data will be stored in most-top-row [Fig. 15(a)],
most-bottom-row [Fig. 15(b)], most-left-column [Fig 15(c)],
or most-right-column [Fig. 15(d)] registers depending on the
required search direction. Through this updating mechanism,

Fig. 13. Architecture of proposed bandwidth modeling module.

Fig. 14. Architecture of reference buffer.

only one row or column reference data should be updated
instead of overall reference data and consequently reducing the
power consumption for updating Reference buffer contents.

With the above scheme, the required buffer size is inde-
pendent of required search range. This is quite different from
other designs for fast algorithms [4]–[6], [18], [19] that load all
search range data into on-chip memory. However, a common
issue for above scheme is the DRAM access latency if the
accessed data pattern is a column access as Fig. 3(b) and (c).
If these access data patterns are required, the DRAM access
latencies will be increased due to the required column of pixels
are not stored continuously in DRAM. Therefore, the required
cycle counts to load the data will be analyzed in the following
subsection with the consideration of DRAM access latency.

C. Timing Analysis with DRAM Access Latency

Fig 16 shows the timing diagram of the proposed design.
This timing diagram accurately includes the necessary memory
latency caused by DRAM access into the simulation frame-
work by adopting the Micron SDRAM model [28] in our
design. In general, the DRAM latency is mainly from the
row miss and page miss due to the cross page or cross row
access in a data access. Such misses in our algorithm could
occur in the same step access or the different step access if the
required data are located in different pages or rows. Therefore,
the video data mapping in DRAM uses the nearly optimal data
mapping proposed in [29] to gain the benefit of high spatial
locality of neighboring MBs to reduce the access penalty by
row miss or page miss. Fig. 17 shows the data mapping of
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Fig. 15. Mechanism of Reference buffer updating in which reference data
are loaded for (a) down-toward, (b) up-toward, (c) right-toward, and (d) left-
toward search process.

Fig. 16. Timing diagram of proposed bandwidth aware ME.

our design. In which the luminance, chrominance, and motion
vector components of four adjacent MBs are grouped and
stored at the same memory row. With above data mapping,
the external DRAM is interconnected to the proposed ME
module via a 32 bits data bus so that four pixels can be loaded
from external memory per cycle. Thus, initial 22 × 22 refer-
ence data loading needs 241 cycles in average according to
the simulations. With these data, 11 cycles are needed to
calculate the RDCosts for five candidates at the first step
and three candidates at the second and third step. Once the
RDCosts of step 0, 1, and 2 have been calculated, 5 cycles are
used to derive necessary search steps and bandwidth for the
following ME search. Finally, the nearest neighbours search
is executed to obtain the best results according to the decided
search steps n. It is worth mentioning that the required cycles
for each step are only the external memory access cycles, 22
cycles in maximum under our operating frequency, since the
SAD computation cycles are less than external memory access
cycles and thus these operations can be parallel executed.

Table IX shows the memory bandwidth saving comparison
per MB for our proposed algorithm and Level C data reuse
full search ME scheme. Both of memory access latencies
and data amounts are considered to derive the real memory
bandwidth saving in this simulation results. From this table,
we observed that the memory bandwidth savings for search
range ±16, ±32, and ±64 are 13.51%, 59.47%, and 77.43%,
respectively. In contrast to memory bandwidth saving listed in

Fig. 17. SDRAM data mapping of our proposal.

TABLE IX

Comparison of Memory Bandwidth Saving Per MB with DRAM

Latency

Table V, we can observe 3% data bandwidth saving difference
on average caused by DRAM latency. For the high motion
sequence, the memory bandwidth saving of Football sequence
is very different from the data bandwidth saving analyzed
in Table V. The reason is that the most of data accesses in
the Football sequence are tended to load a column of pixels
for SAD calculation from external DRAM since it has higher
motion behavior in objects and moving in horizontal direction
so that many search steps are allocated in this direction.
Unfortunately, the memory access cycles for a column of
pixels are much higher than a row of pixels in case of the same
data access amounts, when constrained by the external DRAM
data mapping mechanism. Therefore, the memory bandwidth
saving of Football sequence is lower than other sequences and
different from the data bandwidth saving listed in Table V.
However, it still has 2.08% memory bandwidth saving. For
the median and low motion sequences, the difference between
these two tables is not noticeable. As a result, the impact on
the bandwidth usage depends on the motion of the sequences
instead of the frame resolution, said the higher impact on
higher motion sequences.

In summary, the simulation results demonstrate that our
proposed algorithm can still work well and achieve efficient
bandwidth usage even considering the DRAM latency.

D. Implementation Results

The proposed design is implemented and synthesized by the
UMC 90 nm technology. Table X shows the design comparison
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TABLE X

Comparison of Hardware Implementation Results

with other architectures. As shown in the table, the proposed
design can process CIF and 4 CIF sized video at 30 frames/s
when running at 5.6 MHz and 23 MHz operating frequency,
respectively. It is worth to mention that the on-chip SRAM
size is usually increased with the growth of search range
size for most of ME hardware due to noticeable reference
pixels have to be stored temporally in on-chip SRAM for
SAD computation process. However, the main difference and
contribution of our proposed architecture is that the demanded
on-chip SRAM size is irrelevant to the search range size due to
the reference pixels are loaded from external memory on real
demand. When compared to other designs, our proposal can
support large search range with very slight hardware overhead,
with 75.27 K gate counts.

VI. Conclusion

In this paper, an on-demand data bandwidth efficient ME
with rate distortion optimization algorithm was proposed.
Three properties were revealed in our proposal. First, the on-
demand reference data acquiring mechanism led our proposal
only accessing reference data on-demand and could avoid
unnecessary reference data loading. Second, through mod-
eling the relationship between the data bandwidth and rate
distortion performance, the data bandwidth could be efficiently
allocated to the ME process according to the characteristics
of video content under the bandwidth constraint. Finally, via
the efficient prediction of proposed method, the low data
bandwidth requirement ME could also be achieved. Simulation
results show that our proposed method can save 79.15% of
data bandwidth requirements in maximum with only 0.03 dB
PSNR drop and 2.50% of bitrate increase when compared
with the full search method for search range ±64 in 4 CIF
resolution. Furthermore, our proposed algorithm can achieve
2.43%, 0.08%, and 0.20% BD-bitrate saving with 0.17 dB,
0.01 dB, and 0.01 dB BD-PSNR increase on average for high,
median, and low motion sequences under the available data
bandwidth constraint when compared to the full search motion
estimation algorithm. The resulted hardware implementation
with the simplified bandwidth control scheme reveals that our
proposed ME design can process 30 frames in 4 CIF resolution
per second when running at 23 MHz operating frequency with
only 75.27 K gate counts and search range independent buffer.
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