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Extending Koo and Case’s model (1990) for the case of a single assignable cause to allow for the second

occurrence of an assignable cause following the first occurrence and the probability of the assignable

causes following exponential distribution, the process-failure mechanism having a fixed hazard rate.

We present a cost model and determine the optimal values of the design parameters, the sample size,

the sampling intervals and control limit coefficient by minimizing the expected cost per unit time with

respect to exponential parameters change. Finally, suggesting the performance of the loss-cost and

sensitivity analyses of the design parameters and loss-cost which depend on the model parameters and

shift amounts closely are also presented.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

The X-charts investigated in this paper are those used to
maintain current control of a process. The initial model was
designated by Duncan. Duncan (1956) proposed a single assign-
able cause model for the determination of the optimal economic
design of x-control charts and assumed that the occurrence time
of the assignable cause is an exponentially distributed random
variable, a constant failure rate is implied and the number of
periods for the processes remain in control has memory less
property associated with the Poisson process. That is, the process
is a uniform inspection scheme. The majority of the research in
the last few years focuses on the subject according as the
assumption. Excellent reviews of these subjects can be found in,
for example, Goel et al. (1968), Barker (1971), Gibra (1971, 1975),
Chiu and Wetherill (1974), Saniga (1977), Chiu and Cheung
(1977), Collani (1986), Chung (1990), Alexander et al. (1995),
Chen and Tirupati (1997), Bai and Lee (1998), Chen and Yang
(2002), Chen (2004), Lin and Chou (2005), Chen et al. (2007) and
many other reviews.

However, these reviews are centered on piece part manufac-
turing. Koo and Case (1990) first proposed an economic design of
x-control charts for using in monitoring continuous flow process,
where the amount of time the process remains in control can be
formulated as exponential distribution. A sampling scheme in a
continuous flow process is to take one sample from the process at
each sampling time and then combine n analytical results into a
ll rights reserved.

).
subgroup. That is considerably different from pulling n samples at
one time as in a discrete piece-part process.

Many production processes are affected by several assignable
causes. In such situations, a single assignable cause model would
seem inappropriate. Duncan (1971) has generalized his single
assignable model to a situation in which there are s assignable
causes, however, where different special causes will shift the
process mean by different amounts. Duncan’s multiple causes
model is divided into two types: Model I presents ‘‘a single
occurrence’’ model. It is assumed that once assignable cause Ai

occurs, the process remains in that other assignable causes occur
no longer till assignable cause Ai is detected; Model II presents
‘‘double occurrence’’. It is assumed that the model allows for the
second occurrence of an assignable cause following the first
occurrence and the joint effect of the two assignable causes is
always to produce a shift of constant magnitude regardless of
what two assignable causes occur jointly. The occurrence time of
the assignable causes is assumed to be independent exponential
random variable. Many papers were presented according to
Duncan’s model (1971), for example, George and Lee (1988),
Jaraiedi and Zhuang (1991) and Chung (1994).

This paper adopts Duncan’s multiple causes model (1971), Koo
and Case’s sampling scheme (1990) and cost structure of Koo et al.
(1994) developing a new economic design of x-control chart
for continuous flow process which subjects to a multiplicity of
special causes (denoted by Ai, i¼ 1,2,. . .,s). The definitions and
assumptions are presented in Section 2. The model of average
time and loss-cost is derived in Sections 3 and 4. Then, the
selection of model parameters and sensitivity analysis are
suggested in Section 5. Finally, the conclusions are presented in
Section 6.
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dx.doi.org/10.1016/j.ijpe.2010.04.048
mailto:ashley.su@msa.hinet.net
dx.doi.org/10.1016/j.ijpe.2010.04.048


Y.-M. Yang et al. / Int. J. Production Economics 128 (2010) 110–117 111
2. Definition and assumption

The definitions and assumptions considered in our model are
as follows:
(1)
 The time of assignable cause Ai that the process is in-control
state follows an exponential distribution, the probability
density function is given by f(t)¼le�lt for t40, l40, then
the probability is exp(�lt) if no assignable cause has occurred
at the end of time t.
(2)
 The time at which the process goes out of control is
distributed as the minimum of n independent exponentials
with means 1/l1,1/l2,y,1/ln and thus has an exponential
distribution with mean 1/l, where

l¼
Xn

i ¼ 1

li: ð1Þ

The process is normally distributed and characterized by an
(3)

in-control state u0, because of the occurrence of an assignable
cause Ai which occurs at random, resulting in a shift in the
mean from u0 to either u0+dis or u0�dis. Where u0, s and di

are, respectively, the process mean, the process standard
deviation and shift parameter.
(4)
 The occurrence of an assignable cause Ai does not affect the
process variability, that is, the process mean and the process
variability are independent.
(5)
 The process mean is not shifting slowly, but instantaneously.

(6)
 The time to sample and draw control point is negligible and

production ceases during the searches and repair.
In this paper, we propose two models. Model I, having been
presented by Koo et al. (1994), assumes that the process is at any time
in one of two states. Either it is in control or it has been distributed by
the occurrence of an assignable cause Ai which produces a shift of dis
in the process mean. The probability of di is followed three prior
distribution, respectively, negative-exponential ðð1=2Þexpð�di=2ÞÞ,
uniform and half-normal ðð1=

ffiffiffiffiffiffi
2p
p
Þexpð�ðð0:5diÞ

2=2ÞÞ. Model II is to
ascertain the effect of Model I that allows for the second occurrence of
the assignable causes following the first cause Ai occurrence in the
next subsequent subgroup. To simplify the analysis we assume the
joint occurrence of the any two assignable causes in Model II always
results in the same shift of Dds in the process mean. Therefore, there
is no need in the model to consider the prior distribution of second
causes.
3. Formulation of the expected loss-cost of Model I

The paper by Koo et al. (1994) considered economic design of
x-control charts for using in continuous flow process—when there
is a multiplicity of assignable cause.

3.1. Average cycle length

Koo et al. (1994) assume that there are s assignable causes in
Model I. The occurrence times of the s (s-N) causes are assumed
to be independently exponential distributed. After being dis-
turbed by cause Ai, the process is assumed not to be affected by
any other assignable causes. The probability of non-occurrence of
multiple assignable causes is

PðT4tÞ ¼ PðA14t,A24t,. . .,As4tÞ

¼ PðA14tÞUPðA24tÞ,. . .,PðAs4tÞ ¼ e�lt , ð2Þ

where l¼
P
li for i¼ 1,2,. . .,s.
Therefore, the occurrence average time of any various assign-
able causes is denoted as AVGT, and is

AVGT ¼

Z 1
0

t
Xs

i ¼ 1

li exp �
Xs

i ¼ 1

lit

 !
dt¼

1Ps
i ¼ 1 li

¼
1

l
: ð3Þ

Define pij (i¼1,2,...,s) as the probability that the assignable
cause Ai will occur during the sampling interval jth and (j+1)st,
that is

Pij ¼

R ðjþ1Þh
jh lie

�lit dtR nh
0 lie�lit dt

¼
e�liðjþ1Þhþe�li jh

1�e�linh
¼

e�li jhð1�e�lihÞ

1�e�linh

for i¼ 1,2,. . .,s: ð4Þ

When the process is out-of-control, the mean of the process
will shift to u0+dis. If the shift occurs during the sampling interval
jth and (j+1)st, then the mean of the process in this subgroup will
be u¼ u0þðn�j=nÞdis. Let the probabilities of detecting an
assignable cause in a shift occurring subgroup and the next
subsequent subgroups after the occurrence of assignable cause
Ai be Pi

0 and Pi, respectively, Pi
0 and Pi are formulated as follows:

Pui ¼
Xn�1

j

Pij 1�F k�
n�jffiffiffi

n
p

di

� �
þF �k�

n�jffiffiffi
n
p

di

� �� �
, ð5Þ

Pi ¼ 1�Fðk�di

ffiffiffi
n
p
ÞþFð�k�di

ffiffiffi
n
p
Þ: ð6Þ

F(U) is the cumulative density function of the standard normal
distribution.

The average cycle length (ACL1) is expressed as follows:

ACL1¼(a) average process of in-control state+(b) average time
of out-of-control state.

These two average length components will be derived in turn:
(a)
 Since the average time for the occurrence of multiple
assignable causes in exponential distribution with mean time
1/l, this is the average process in-control time.
(b)
 The average time that the process is out-of control until
assignable cause Ai is detected and discovered is derived as
follows:
Let the probability on the first sampling interval of a point
falling outside the control limits after the occurrence of assignable
cause Ai be Pi

0 and the probability on the other sampling interval
of a point falling outside the control limits after the occurrence of
assignable cause Ai be (1�Pi

0)(1�Pi)
r�2Pi for r¼ 2,3,. . ..

Let ti be the expected time between the samples taken just
prior to the occurrence of assignable cause Ai and the occurrence
itself. That is

ti ¼

R ðjþ1Þnh
jnh e�litliðt�jnhÞdtR ðjþ1Þnh

jnh e�litli dt
¼

e�li jnh
R nh

0 te�litli dt

e�li jnh
R nh

0 e�litli dt

¼
1�ð1þlinhÞe�linh

lið1�e�linhÞ
: ð7Þ

We obtain the expected time which is to detect the assignable
cause after the process is shift, and the expected time is denoted
as AVGOOCTi, that is

AVGOOCTi ¼ nh Puiþ
X1
r ¼ 2

rð1�PuiÞð1�PiÞ
r�2Pi

 !
�ti

¼ Puiþ
ð1�PuiÞð1þPiÞ

Pi
¼

1�PuiþPi

Pi
: ð8Þ
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Let Di denote average time taken to find assignable cause Ai

after it has caused a point to fall outside the control limits, let e
denote the time of sampling, inspecting, evaluating and plotting.
Then let Bi denote the average time that between the occurrence
of cause Ai and its removal, that is, in out of control state, can be
denoted by

Bi ¼ AVGOOC TiþeþDi: ð9Þ

Under the condition, the occurrence rate of assignable cause Ai

for s assignable causes is li=l, average time for a cycle will be
denoted as ACL1, that is

ACL1¼
1

l
þ

P
li

l
Bi for i¼ 1,2,. . .,s: ð10Þ

3.2. Loss-cost generated in average cycle length

Based upon the above derivation of average cycle length,
formulation of average cost E1(C) is derived as follows:
1.
 Let Mi denote the increased loss per hour of operation due to
the presence of assignable cause Ai. The expected additional
loss per cycle arising from out-of-control conditions will be
summary of liBiMi=l and the expected additional loss per hour
of operations will be

L1 ¼
ð
P

li=lÞBiMi

ACL1
for i¼ 1,2,. . .,s: ð11Þ

Let ENF be the expected number of false alarm. ENF depends
2.

on type I error a and the number of sampled subgroups before
the assignable cause occurred. That is

ENF ¼ a
X1
j ¼ 0

j

Z ðjþ1Þnh

jnh
le�lt dt

¼ að1�e�lnhÞ
X1
j ¼ 0

je�ljnh ¼ a e�lnh

1�e�lnh
, ð12Þ

where a¼2[1�F(k)].
Let T be the average cost of looking for an assignable cause
when a false alarm occurs and the average time to search false
alarm is T ENF. The expected cost per hour of operations on this
account will be

L2 ¼
ENF T

ACL1
: ð13Þ

Let Wi denote the average cost of finding assignable cause Ai
3.

when it occurs. Then the expected cost per cycle of discovering
assignable causes will be

P
liWi/l and the expected cost per

hour of operations on this account will be

L3 ¼
ð
P

li=lÞWi

ACL1
for i¼ 1,2,. . .,s: ð14Þ

Let b denote the fixed cost per sampling of sampling,
4.

inspecting, evaluating and plotting and let c denote the
variable cost per item of sampling, inspecting, evaluating and
plotting. The average hourly cost of maintaining the control
nh nh nh

iA

iτ nhe λ ′− nhe λ ′−

)1(
′− iP )1( iP−)1( iP−

Fig. 1. The process
chart is

L4 ¼
bþcn

nh
¼

b

nh
þ

c

h
: ð15Þ

Hence for Model I we have the expected loss-cost equal to

E1ðCÞ ¼ L1þL2þL3þL4:

Our objective is to find the optimal design parameter. The
parameters, n, h and k, are given by time, cost and shift
parameters of s assignable causes. The optimal solution of the
loss-cost function E1(C) is minimized.
4. Formulation of expected loss-cost of Model II

4.1. Average cycle length

To ascertain of effect of this assumption, a study is made in this
section of a model that allows for the second occurrence of an
assignable cause in a later intervals following the first occurrence.
The process is assumed to be in one of the three states. It is (1) in a
state of in-control or (2) it has been disturbed by the occurrence
of an assignable cause Ai which produces a shift of dis in the
process mean or (3) it has been disturbed by the occurrence of
a second assignable cause following the first, the joint effect
of which in every case is arbitrarily assumed to produce a shift
of Dds in the process mean. As in Model I, the occurrence times of
the various assignable cause are assumed to be independently
exponentially distributed with mean time 1/li for i¼ 1,2,. . .,s. The
occurrence time of the first assignable cause has an exponential
distribution with mean time 1/l where l is the summation of li

and the occurrence time of a second assignable cause has an
exponential distribution with mean time 1/l0 where l0 is a
function of l. The average time for cycle that can be derived for
the each state is as follows: The process is in a state of in-control
and the average time that the assignable cause will occur is 1/l.

(1) State 1: The process is in a state of in-control and the
average time that the assignable cause will occur is 1/l.

(1) State 2: The process has been disturbed by the occurrence
of the first assignable cause Ai and produces a shift of dis in the
process mean. The process can be classified into two situations.

Situation 1: Consider the situation in Fig. 1. The process is
the period that a second assignable cause will be not to occur
until assignable cause Ai detected. Based upon the above Eqs. (5)
and (6), the probability that a point falls outside the control limits
at the first sampling interval or at the other sampling interval
after the occurrence of the first assignable cause is Pi

0 or
ð1�PuiÞe

�lunh½ð1�PiÞe
�lunh�r�2Pi,r¼ 2,3,. . ..

Let ti be the average time between the sample taken just prior
to the occurrence of assignable cause Ai and the occurrence itself.
Define ti is the same as Eq. (7).

Then let the average time in situation 1 be E1. The E1 is

E1 ¼ nh Puiþ
X1
r ¼ 2

r ð1�PuiÞe
�lunhðð1�PiÞe

�lunhÞ
r�2Pi

h i( )
�tiþeþDi
e iD

iP

of situation 1.
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¼ nh PuiþruiPi
2�ri

ð1�riÞ
2

" #
�tiþeþDi, ð16Þ

where rui ¼ ð1�PuiÞe
�lunh and ri ¼ ð1�PiÞe

�lunh.
Situation 2: Consider the situation in Fig. 2. The process is from

the occurrence of the first assignable Ai to the occurrence of a
second assignable cause, during the period that the cause Ai is
never to be detected. The conditional probability that a second
assignable cause will occur between the first and the second
subgroup is (1�Pi

0)(1�e�l
0nh), then will occur between the (r+1)

and (r+2) subgroup is (1�Pi
0)(1�e�l

0nh)[(1�Pi)e
�l0nh]r�1 for

r¼ 1,2,. . ..
Let the average time in situation 2 be E2. The E2 is

E2 ¼ nh
X1
r ¼ 1

rð1�PuiÞð1�e�lunhÞ ð1�PiÞe
�lunh

h ir�1
( )

�tiþtu

¼ nh
1�Pui�rui

ð1�riÞ
2

" #
�tiþtu, ð17Þ

where ti is given by Eq. (7), t0 is the same formula and definition
with l0 replacing li.

It follows from what has been derived that the average time of
the State 2, respectively, is E[State2]:

E State2½ � ¼ E1þE2

nh PuiþruiPi
2�ri

ð1�riÞ
2

" #
�tiþeþDi

( )
þ nh

1�Pui�rui

ð1�riÞ
2

" #
�tiþtu

( )
:

ð18Þ

(3) State 3: Consider the situation in Fig. 3. The process is from
the occurrence of the first assignable Ai to the joint assignable
cause detected. The joint effect is to produce a shift of Dds in
the process mean. Define b0 ¼FðL�Dd

ffiffiffi
n
p
Þ�Fð�L�Dd

ffiffiffi
n
p
Þ is the

probability that a point falls inside the control limits after the
occurrence of a second assignable cause, then the probability that
the joint assignable cause detected is 1�b0.

Define p̂ij ði¼ 1,2::::,sÞ as the probability that a second assign-
able cause will occur during the sampling interval jth and (j+1)st

after the occurrence of assignable cause Ai, and pij is given by (4),
p̂ij is the same formula with l0 replacing li.

Let the probabilities of detecting joint assignable causes in a
shift occurring subgroup and the next subsequent subgroups be
nh nh nh

iA

iτ nhe λ ′− nhe λ ′−

)1( ′− iP )1( iP−)1( iP−

nh

τ ′

)1( iP−

The second assignable cause 

Fig. 2. The process of situation 2.

nh nh nh

iA

iτ nhe λ ′− nhe λ ′−

)1( ′− iP )1( iP−)1( iP−

The

Fig. 3. The proce
P̂ui and P̂i, respectively, P̂ui and P̂i are formulated as follows:

P̂ui ¼
Xn�1

j ¼ 0

P̂ijð1�b0Þ ¼
Xn�1

j ¼ 0

ð1�e�luhÞe�lujh

ð1�e�lunhÞ

� �
1�F k�

nDdþ jðdi�DdÞffiffiffi
n
p

� ��

þF �k�
nDdþ jðdi�DdÞffiffiffi

n
p

� ��
, ð19Þ

P̂i ¼ 1�Fðk�Dd
ffiffiffi
n
p
ÞþFð�k�Dd

ffiffiffi
n
p
Þ: ð20Þ

Let the probability on the first sampling interval of a point
falling outside the control limits after the occurrence of joint
effect be P̂ui and the probability on the other sampling interval of a
point falling outside the control limits after the occurrence of joint
effect be ð1�P̂i

u

Þð1�P̂iÞ
r�2P̂i for r¼ 2,3,. . ..

Let D0 denote the average time taken to find the combined
assignable causes after a point has fallen outside the control limits
when the process is in State 3, assumed to be independent of the
assignable causes. The D0 is not changed by the joint effect of
cause Ai and a second assignable cause, then the average time of
State 3 is given by E(State3), will be

EðState3Þ ¼ nh P̂uiþ
X1
r ¼ 2

rð1�P̂uiÞð1�P̂iÞ
r�2P̂i

" #
�tuþeþDu

( )
1�Pui�rui
ð1�riÞ

� �

¼ nh
1þ P̂i�P̂i

u

P̂i

 !
�tuþeþDu

" #
1�Pui�rui
ð1�riÞ

� �
: ð21Þ

Summing up the various average time of States 1–3 and finding
the average cycle length of Model II will be

ACL2¼
1

l
þ

Ps
i ¼ 1 li

l
EðState2ÞþEðState3Þð Þ: ð22Þ

4.2. Loss-cost generated in average cycle length

Based upon the above derivation of average cycle length,
formulation of average cost E2(C) is derived as follows:
1.
τ

 second

ss of s
Let Mi denote the increased loss per hour of operation due to
the presence of assignable cause Ai in State 2 and M

0

denote
the additional loss per hour of operations when the process
is in State 3. The average hourly loss when out of control is

L1 ¼
ð
Ps

i ¼ 1 li=lÞ EðState2ÞMið Þþð
Ps

i ¼ 1 li=lÞ EðState3ÞMuð Þ

ACL2
:

ð23Þ

The expected number of false alarms before the process goes
2.

out-of-control will be the probability of a false alarm (a) times
the expected number of subgroups taken in an ;in-control
period. Hence, the expected number (ENF) of false alarms per
hour of operation will be ENF ¼ a½expð�lnhÞ=ð1�expð�lnhÞÞ.
Thus, the average hourly false-alarm cost is

L2 ¼
ENF T

ACL2
, ð24Þ

where T is the average cost of looking for an assignable cause
when a false alarm occurs.
nh 

′

 assignable cause 

e D′

tate 3.
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3.
Table
The re

Ai

1

2

3

4

5

6

7

a

Let Wi denote the average cost of finding assignable cause Ai

when it occurs and W
0

denote the cost of finding the
combined assignable causes, assumed to be independent of
the assignable causes. The average hourly cost of finding and
repairing the assignable cause is

L3 ¼
ð
Ps

i ¼ 1 li=lÞ Wi 1� 1�Pui�rui
1�ri

� �h i
þð
Ps

i ¼ 1 li=lÞ W u 1� 1�Pui�rui
1�ri

� �h i
ACL2

:

ð25Þ

Let b denote the fixed cost per sampling of sampling,
4.

inspecting, evaluating and plotting and c denote the
variable cost per item of sampling, inspecting, evaluating
and plotting. The average hourly cost of maintaining the
control chart is

L4 ¼
bþcn

nh
¼

b

nh
þ

c

h
: ð26Þ
Hence for Model II, we have the expected loss-cost equal to

E2ðCÞ ¼ L1þL2þL3þL4:

The optimal design parameters n, h and k for Model II is to
minimize the loss-cost function E2(C).
5. Determination of optimal design parameters

5.1. Selection of model parameters

In the expression for the total expected loss-cost of operations
(E1(C) and E2(C)) certain quantities can be classified into five kinds
of parameters. There are cost parameters T, b, c, Mi, Wi; time
parameters e, Di; shift parameters di; exponential distribution
parameters li and design parameters n, h and k for Model I. And
addition cost parameters M0, W0; time parameters D0; shift
parameters Dd and exponential distribution parameters l0 for
Model II. A numerical example will be used to illustrate of Koo
and Case Model (1990), value for T¼2000, b¼20, c¼20, M0 ¼4000,
W0 ¼1000, Dd¼2, l0 ¼0.02, D0 ¼2, e¼1.25 are not changed by
assignable cause Ai. The Mi, Wi, Di and li are taken to be a function
of di, the rule of selection is as follows:
(1)
 The li is a non-increasing function of di. When the cause Ai

occurs, m0 shift to m0+dis, Mi is proportional to the resulting
increase in the percent of product outside specification
(1�bi), where bi¼F(3�di). As di varies above and below 2,
the percent beyond specifications increases and decreases to
cause corresponding variations in Mi.
(2)
 Assume the process exists seven assignable causes
(Ai,i¼1,2,...,7), those causes will produce 1s, 1.5s, 1.8s, 2s,
2.2s, 2.5s and 3s shift , the occurrence of each assignable
cause randomly and indecently produce single shift.
1
ference set of cost and probability parameters for Model II.a

di 1�Fð3�diÞ ¼ 1�bi Prior distribution (PDi) Mi Di

NE Un HN NE

1 0.0228 0.303 0.143 0.352 575 3.2

1.5 0.0668 0.236 0.143 0.301 1684 2.5

1.8 0.1151 0.203 0.143 0.266 2901 1.1

2 0.1587 0.184 0.143 0.242 4000 2

2.2 0.2119 0.166 0.143 0.218 5341 1.8

2.5 0.3085 0.143 0.143 0.183 7776 1.5

3 0.5 0.112 0.143 0.130 12602 1.2

NE, negative-exponential; Un, uniform; HN, half-normal.
(3)
93

65

03

04

54

17
Like Di, Mi and Wi are function of di. For di¼2, Mi, Wi and Di is
equal to 4000, 1000 and 2.
(4)
 When the parameters, T, b, c and e, are kept fixed, the
numerical examples used. For example, the parameter Dd is
varied from 1–1.5 to 2–2.5. The parameter l0 is varied from
0.005–0.01 to 0.02–0.04. Then D0, M0 and W0 are also the same
as Di, Mi and Wi of di¼2 for Model I. Owing to obtain li,
assume

P
liMi ¼ lMu¼80 for i¼ 1,2,. . .,s.
(5)
 When the parameters, Dd, l0, D0, M0 and W0, are kept fixed, the
numerical examples used. For example, the parameter T is
varied from 1000–2000 to 3000. The parameter b is varied
from 10–20 to 30. The parameter c is varied from 10–20 to 30.
The parameter e is varied from 0.625–1.25 to 1.875.
Let PDi denoted prior distribution of di(d1¼1, d2¼1.5,
d3¼1.8,y,d7¼3). In this study, the negative-exponential, uniform
and half-normal are considered for PDi. Prior distribution of d4¼2
is PD4, we set up the time and cost values for d4¼2 as ‘‘base case’’,
and in one set, li are chosen as proportional to PDi. According to
the discussion of above (1), (2), (3), (4) and (5) rules, we have
Wi ¼ ðPDi=PD4Þ1000, Di ¼ ððPDiPD4Þ2, Mi ¼ ðPDi=PD4Þ4000 and
li ¼ ðPDi=PD1Þl1. The values of Wi, Di and li for different prior
distribution and the values of Mi for different di are listed
in Table 1.

5.2. Effects of changes in the cost parameters of Model II

We used search technique which is developed by Rahim
(1993) to determine the optimal design parameters. The code was
considered to minimize loss-cost, and provides economically
optimal values of n, h and k. The effects of changes in the cost
parameters on the minimum loss-cost design are listed in Table 2
along with other data. Table 2 suggests the following general
conclusions:
(a)
 For l0 ¼0, the loss-cost function E2(C) of Model II is equal to
loss-cost function E1(C) of Model I. Therefore, one result from
economic design for Model II stood out clearly. It was noted
that if l0 is decreased, the loss-cost of Model II approaches to
the loss-cost of Model I.
(b)
 With the same value of the parameters in both models, the
loss-cost of Model II is larger than the loss-cost of Model I, but
smaller than the loss-cost of the Koo and Case model. If the
conservative designing point of view is applying, the multi-
plicity-cause model can replace the single-cause model.
(c)
 T, b, c and e are kept fixed at the reference values listed in
Table 2. Variation in Dd, D0 and W0 have little effect on the
loss-cost, but variation in l0 and M0 have their dominant effect
on the loss-cost.
(d)
 Among the economic design for three prior distributions,
the negative exponential prior distribution is the best while
Wi li (�10�3)

Un HN NE Un HN NE Un HNi

2 2.909 1647 1000 1454 4.566 2.294 4.220

2 2.488 1283 1000 1244 3.557 2.294 3.608

2 2.198 1103 1000 1099 3.059 2.294 3.190

2 2 1000 1000 1000 2.772 2.294 2.901

2 1.802 902 1000 901 2.502 2.294 2.612

2 1.512 777 1000 756 2.155 2.294 2.194

2 1.074 609 1000 537 1.689 2.294 1.557



Table 2
Optimum design parameters for Model II at three different prior distributions.a

T b c e Dd l0 M0 D0 W0 Prior distribution Optimal design loss-cost

n h k

2000 20 20 1.25 1 0.02 4000 2 1000 NE 3 0.354 2.465 427.712

Un 3 0.352 2.568 442.129

HN 3 0.365 2.495 431.020

1.5 NE 3 0.363 2.595 424.329

Un 2 0.451 2.587 438.291

HN 3 0.346 2.592 427.627

2 NE 2 0.487 2.445 425.596

Un 2 0.433 2.621 437.589

HN 2 0.464 2.498 428.724

2.5 NE 2 0.401 2.569 429.645

Un 2 0.415 2.617 440.229

HN 2 0.428 2.524 433.159

2 0.005 4000 2 1000 NE 2 0.483 2.512 417.650

Un 2 0.442 2.637 433.239

HN 2 0.464 2.504 421.480

0.01 NE 2 0.438 2.545 420.378

Un 2 0.510 2.507 435.130

HN 2 0.442 2.529 424.079

0.02 NE 2 0.487 2.445 425.596

Un 2 0.433 2.621 437.589

HN 2 0.464 2.498 428.724

0.04 NE 2 0.423 2.481 433.107

Un 2 0.457 2.565 442.146

HN 2 0.407 2.502 436.311

2 0.02 575 2 1000 NE 2 0.444 2.585 410.458

Un 2 0.505 2.556 427.322

HN 2 0.444 2.585 414.505

1684 NE 2 0.459 2.514 415.286

Un 2 0.460 2.545 430.957

HN 2 0.496 2.500 419.230

4000 NE 2 0.487 2.445 425.596

Un 2 0.433 2.621 437.589

HN 2 0.464 2.498 428.724

7776 NE 2 0.461 2.407 440.185

Un 2 0.455 2.518 447.608

HN 2 0.434 2.418 442.769

2000 20 20 1.25 2 0.02 4000 3.3 1000 NE 2 0.400 2.555 428.969

0.5 Un 2 0.416 2.619 435.097

2.9 HN 2 0.400 2.555 431.435

2.6 NE 2 0.400 2.555 427.119

1 Un 2 0.483 2.565 435.798

2.5 HN 2 0.487 2.445 430.322

2 NE 2 0.487 2.445 425.596

2 Un 2 0.433 2.621 437.589

2 HN 2 0.464 2.498 428.724

1.6 NE 2 0.429 2.527 423.969

3 Un 2 0.433 2.621 439.453

1.5 HN 2 0.429 2.527 427.420

2 0.02 4000 2 1647 NE 2 0.487 2.445 426.058

250 Un 2 0.472 2.512 437.242

1454 HN 2 0.487 2.445 429.413

1283 NE 2 0.487 2.445 425.798

500 Un 2 0.472 2.512 437.362
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Table 2 (continued )

T b c e Dd l0 M0 D0 W0 Prior distribution Optimal design loss-cost

n h k

1244 HN 2 0.464 2.498 428.898

1000 NE 2 0.487 2.445 425.595

1000 Un 2 0.433 2.621 437.589

1000 HN 2 0.464 2.498 428.724

777 NE 2 0.487 2.445 425.437

1500 Un 2 0.483 2.565 436.061

756 HN 2 0.464 2.498 428.551

1000 20 20 1.25 2 0.02 4000 2 1000 NE 2 0.436 2.250 410.201

Un 2 0.493 2.389 424.369

HN 2 0.436 2.250 413.827

2000 NE 2 0.487 2.445 425.596

Un 2 0.433 2.621 437.589

HN 2 0.464 2.498 428.724

3000 NE 3 0.315 2.756 433.948

Un 2 0.432 2.697 446.118

HN 3 0.324 2.761 437.141

2000 10 20 1.25 NE 2 0.411 2.541 413.229

Un 2 0.390 2.645 425.844

HN 2 0.411 2.541 416.752

20 NE 2 0.487 2.445 425.596

Un 2 0.433 2.621 437.589

HN 2 0.464 2.498 428.724

30 NE 2 0.465 2.486 435.951

Un 2 0.538 2.482 448.340

HN 2 0.445 2.506 439.800

2000 20 10 1.25 NE 3 0.271 2.751 393.807

Un 3 0.288 2.722 408.808

HN 3 0.257 2.743 397.111

20 NE 2 0.487 2.445 425.596

Un 2 0.433 2.621 437.589

HN 2 0.464 2.498 428.724

30 NE 2 0.482 2.454 446.222

Un 2 0.569 2.486 458.027

HN 2 0.544 2.389 449.364

2000 20 20 0.625 NE 2 0.432 2.522 382.936

Un 2 0.467 2.563 393.987

HN 2 0.432 2.498 428.724

1.25 NE 2 0.487 2.522 386.522

Un 2 0.433 2.621 437.589

HN 2 0.464 2.498 449.364

1.875 NE 2 0.464 2.498 466.341

Un 2 0.472 2.512 480.262

HN 2 0.464 2.498 469.766

a NE, negative-exponential; Un, uniform; HN, half-normal.
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uniform prior distribution is the worse. But the difference
between the loss-cost for half-normal and negative- expo-
nential prior distribution is less than 0.7%.
(e)
 For the negative-exponential prior distribution, variation in l0

has its primary effect upon the optimal value of k. The sample
size and the frequency of sampling are affected moderately.
Thus for large l0 we should use charts with 2.5 sigma limits.
(f)
 For the negative-exponential prior distribution, variation in
M0 has its dominant effect on the optimal value of k. When M0

is relatively large, k should be small; when M0 is relatively
small, k should be large. Variation in M0 has little effect on the
optimal values of n and h.
(g)
 Dd, l0, M0, D0 and W0 are kept fixed at the reference values listed
in Table 2. Variation in T and b has little effect on the loss-cost,
but variation in c and e has more effect on the loss-cost.
(h)
 For the negative-exponential prior distribution, variation in c

affects all three of the elements of design. For high values of c,
the optimal design calls for taking small samples, possibly
only samples of 2, at large intervals between samples and
with control limits at low multiples of sigma.
(i)
 For the negative-exponential prior distribution, variation in e

affects primarily the optimal value of k, possibly we should
use charts with 2.5 sigma limits. It also has a moderate affect
on the frequency of sampling.
6. Conclusions

In practice, multiple assignable causes are more realistic than the
single ones. From an economic viewpoint, a study is conducted in this
paper that allows for the second occurrence of an assignable cause
following the first occurrence. We depict the detailed development of
an economic model for the optimal design of x-control chart for
continuous flow process. The process-failure mechanism is assumed
with multiple assignable causes and each assignable cause follows an
exponential distribution. Solutions of the optimal design parameters,
n, h and k, have been obtained according to the different values of the
model parameters. The optimal economic design of Model II is listed
in Table 2. Overall, this paper advances economically-based x-control
chart to the important area of multiple assignable causes process in
continuous flow process.
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