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Abstract—In this paper, we present bit error rate (BER)-
minimized space-time-frequency (STF) block codes for multi-
input multi-output (MIMO) highly frequency-selective block-
fading channels. We consider the IEEE 802.15.3a ultra-wide band
(UWB) channel models (CM) 1–4. Based on a new STF block
codes design criterion with the objective of minimizing BER, we
develop an efficient searching algorithm for the design of the
optimal STF block codes which maximize the coding gain. For
128 subcarriers with two subcarriers jointly encoding with 2–4
transmitting antennas, we find that the optimal STF block codes
for all the IEEE 802.15.3a UWB channel models CM 1–4 can be
found. Furthermore, the designed STF block codes outperform
the recently published high-rate full-diversity STF codes [1] by 1
dB. Last, the proposed STF codes can be decoded by maximum
likelihood decoding approach, which is simpler than the sphere
decoding principle used in [1].

Index Terms—Bit error rate (BER), block-fading chan-
nels, IEEE 802.15.3a channel model, multi-input multi-
output (MIMO), space-time-frequency (STF) block codes, ultra-
wideband (UWB).

I. INTRODUCTION

THE space-time-frequency (STF) coding is a technique
which provides error control ability in multi-input multi-

output (MIMO) systems, which are usually combined with
the orthogonal frequency-division multiplexing (OFDM) tech-
nology. The main purpose of using the STF coding is to
achieve the full diversity gain. For example, in [1], the authors
proposed STF codes which achieve the diversity gain of
NtNrKL, where Nt is the number of transmit antennas,
Nr is the number of receive antennas, K is the number of
independent fading blocks in one codeword, and L is the
number of taps of channel impulse response (CIR) between
any pair of transmit and receive antennas. The space diversity,
time diversity, and frequency diversity are NtNr, K, and L,
respectively.

However, in a highly frequency-selective fading channel, the
number of taps of CIR could be very large. For example, in
the IEEE 802.15.3a UWB channel model [2], the number of
taps of CIR is infinity theoretically and about 1000 to 2000
practically. Thus, it is difficult to achieve the full frequency
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diversity under the highly frequency-selective fading channel.
Thus, it motivates us to turn to a more fundamental problem:
How to design BER-minimized STF codes for MIMO highly
frequency-selective block-fading channels? Here the block-
fading channel is defined as follows: The channel remains the
same within one fading block and is independent from one
block to another one [1].

The difficulties of design BER-minimized STF block codes
for the MIMO highly frequency-selective block-fading chan-
nels can be discussed in three aspects. Note that we take the
IEEE 802.15.3a UWB channel model as an example in this
paper. 1) First, the IEEE 802.15.3a channel model has four
different sets of parameters, named CM1, CM2, CM3, and
CM4. For different channels, we have to design different codes
to reflect the channel characteristics. One challenging issue
arises: Is there a universal code which is optimal for all the
four channel models CM 1–4 for given numbers of subcarriers
and transmit antennas? 2) As the numbers of subcarriers and
transmit antennas increase, the number of all possible codes
becomes astronomical. Thus, the second challenge is how to
search the optimal codes efficiently. 3) Because traditional STF
coding methods focus on linear codes, it will be challenging
to examine if there exist nonlinear optimal STF block codes.

To our best knowledge, the design of STF block codes for
the MIMO-OFDM systems under the IEEE 802.15.3a channel
models considering all the three aforementioned challenges
has not been seen in the literature.

Here, we introduce some related works about space-
frequency (SF) codes and STF codes for the MIMO-OFDM
systems. In [3], the authors analyzed the rate-diversity tradeoff
for the MIMO-OFDM channels and presented two asymp-
totically optimal SF code constructions. In [4], the authors
investigated STF codes for MIMO-OFDM and found an
equivalence between antennas and subcarriers. The authors
then suggested a complexity-reduced scheme with coding
across subcarriers only. In [5], the authors proposed an adap-
tive STF coding scheme according to the space-frequency
water-filling procedure for MIMO-OFDM systems. In [6],
the authors considered STF codes over MIMO-OFDM block-
fading channels and derived a sphere packing lower bound
on the average word error probability and an upper bound
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for pairwise word error probability, but they did not show
how to design the optimal codes to achieve these bounds. In
[1], authors proposed a systematic design method for high-
rate full-diversity STF codes for broadband MIMO block-
fading channels. In [7], authors presented rate-two STF block
codes for multiband UWB-MIMO communication systems
using rotated multidimensional modulation. We will show by
simulation that our proposed STF codes have better BER
performance than the codes in [1] and [7] do.

The objective of this paper is to design the universally
optimal STF block codes for the MIMO-OFDM systems under
four kinds of IEEE 802.15.3a UWB channel models, i.e., CM
1–4. The rest of this paper is organized as follows. In Section
II, we introduce our system model. In Section III we describe
the design criterion, an efficient searching algorithm, and the
optimal codes in some examples. In Section IV, we discuss the
properties of our proposed optimal STF block codes. We show
the numerical results in Section V and give our concluding
remarks in Section VI.

II. SYSTEM MODEL

Figure 1 shows our system block diagram. First, we divide
the information bits into groups. Each group has two bits.
Then we pass the bits to our STF block encoder. For example,
if we want to encode across two transmit antennas and two
subcarriers, then the codeword can be expressed as a matrix.
Then we use an OFDM modulator to allocate every elements
in the codeword to corresponding subcarriers and transmit
antennas. That is, dij is allocated on the i-th subcarrier and
j-th antenna, for i = 1, 2 and j = 1, 2. The transmitted signals
pass the IEEE 802.15.3a UWB channel. The receiver recovers
the original information bits via inverse operations as in the
transmitter: We first use an OFDM demodulator to find the
codewords. Then we use a maximum likelihood (ML) STF
block decoder to find the original information bits.

III. THE UNIVERSALLY OPTIMAL STF BLOCK CODES

DESIGN

In this section, we describe a criterion and a efficient
searching algorithm of the universally optimal STF block
codes.

A. The Optimum Criterion

Our goal is to design the STF block codes to minimize
Pe in [8, (40)]. For given SNR ρ, number of transmit
antennas Nt, number of receive antennas Nr, number of
OFDM blocks jointly encoded K, and number of OFDM
subcarriers jointly encoded M , it is equivalent to maximize
the term q =

∏r
n=1 eign(S ◦ RM ) by designing the matrix

S = (D − D̂)(D − D̂)H, where D and D̂ are two distinct
STF block codes codewords, ◦ denotes the Hadamard product
[9], and RM is the auto-covariance matrix of which definition
can be found in [8]. Similar to the rank and determinant criteria
of the space-time block coding (STBC) [10], we have to
maximize the minimal q along the pairs of distinct codewords.

We first consider the simplest case. Let Ni be the number of
input information bits for each codeword D. Let M = Nt =
Ni = 2. Let b1, b2 ∈ {0, 1} be the two input bits. We use
the binary phase shift keying (BPSK) modulation. Let s1 and
s2 be the two corresponding symbols, then si = mod(bi) for

i = 1, 2, where mod(x) =

{
1, if x = 1,

−1, if x = 0.
The codeword D

is a 2× 2 matrix with each element being 1 or −1, i.e., D ∈
{1,−1}2×2. Then there are 22·2 = 16 different codewords.
Since there are two input bits, there are 22 = 4 possible inputs,
i.e., b1b2 ∈ {00, 01, 10, 11}. Hence, we have to choose four
distinct codewords for these four different inputs.

For the convenience of expression, let us define the de-
modulation function dem(x) � mod−1(x) and the mul-
tiple digits version of dem(·) is defined as dem(x) �
[dem(x1), dem(x2), · · · , dem(xm)], where the vector x stands
for an m-digit number and the i-th digit is xi for 1 ≤ i ≤ m.

The following equation gives each codeword D a
unique positive integer n as its subscript: Dn ={[

d11 d12

d21 d22

]
: bd(dem(d) + 1) = n

}
, where the function

bd(x) is to transform a binary number x into its decimal form
and d = [d11, d12, d21, d22]. Now, the set that contains all the
codewords is C = {D1,D2, . . . ,D16}. Let B be a subset of
C and B contains four codewords. Now, our problem can be
mathematically described as finding a set B∗ such that

B∗ = arg max
B⊂C,|B|=4

min
D,D̂∈B,D�=D̂

r∏
n=1

eign(S ◦RM ), (1)

where |B| is the number of elements of B.

B. An Efficient Searching Algorithm for the Optimal STF
Block Codes

In order to simplify the representation of our problem and
provide more insight, we introduce a graph representation to
our code space. We represent each codeword as a vertex with
number n, and between any two distinct vertices there is an
undirected edge with metric q. Then, for the M = Nt = Ni =
2 case, we can use a complete graph [11] with 16 vertices
which is denoted by K16 to represent our code space. Then
our problem becomes to find the optimal K∗

4 in K16 such that
the minimal metric in K∗

4 is the largest one among that of all
K4 in K16. There are

(
16
4

)
= 1820 distinct K4 in K16. To

find the minimal metric within each K4 we need to search for(
4
2

)
= 6 metrics. Thus, we need to do 1820 · 6 = 10920 times

of searching to find K∗
4 .

For general M , Nt, and Ni, there are 2MNt vertices for the
BPSK case. The complexity of the complete search becomes
O

((
2MNt

2Ni

)(
2Ni

2

))
. The complexity grows rapidly as M , Nt,

and Ni increase. Thus, it is necessary to find a more efficient
algorithm to search for the optimal STF block codes.

For the case M = Nt = Ni = 2 and CM1, we find that
the metric q takes only on eight different values. Sorting these
values in the decreasing order, we then have q ∈ {64, 16.3314,
16, 8, 4, 1.32562, 0.331406, 0}. We find that it will save
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many searching steps if we search K4 subject to the largest
m metrics for m = 1, 2, . . ., until we find all K∗

4 for a certain
value of m. Let use take the M = Nt = Ni = 2 case as
an example. For m = 1, we only consider the edges with the
largest metric 64. Obviously, it does not contain any K4. For
m = 2, we consider the edges with the largest two metrics:
64 and 16.3314. After searching, we also find that there is no
K4 in this graph. For m = 3, we consider the edges with the
largest three metrics: 64, 16.3314, and 16. We find that there
are totally eight K4 in this graph, they are: {1, 7, 12, 14}, {1,
8, 10, 15}, {2, 8, 9, 15}, {2, 8, 11, 13}, {3, 5, 12, 14}, {3,
6, 12, 13}, {4, 5, 11, 14}, and {4, 6, 9, 15}. Note that we do
not need to search for the case m > 3, because we already
find that the max-min value of q is 16.

We use the same method to search the optimal STF block
codes for CM2, CM3, and CM4. CM2 and CM3 both have the
same optimal STF block codes as CM1 does, but there are nine
optimal STF block codes for CM4. These nine codes contains
the eight optimal codes which are the same as that of CM1
and an additional codes {4, 6, 11, 13}. This is an interesting
discovery that for different channel model, the optimal codes
may be different. Thus, in order to design the optimal codes,
we have to take the channel model into account.

In order to design the codes that are optimal for all channel
model, we choose the eight optimal STF block codes for
CM1 out of

(
22·2

4

)
= 1820 candidates. The next step is to

transform these codes to a code structure. Take the code
{3, 5, 12, 14} as an example. According to the matrix-
indexing procedure we defined in Section III-A, we find these
four integers correspond to the following codewords: D3 =[−1 −1

1 −1

]
,D5 =

[−1 1
−1 −1

]
,D12 =

[
1 −1
1 1

]
,D14 =[

1 1
−1 1

]
. We assign these four codewords to the information

bits 00, 01, 10, and 11, respectively. Note that we can choose
another assignment and the max-min value of q will not
change. To discover the code structure from these codewords,
we first consider the element in the first row and first col-
umn of them. They are Di[1, 1] = {−1,−1, 1, 1}, where
i ∈ {3, 5, 12, 14}. Since each position can take values on −1
or 1, there are totally 24 = 16 possibilities. We establish a
truth table of these 16 values, as a function of s1 and s2.
For some cases, we find it is more convenient to express the
function in terms of b1 and b2. Use this table to check the
function f(s, b) for all the elements of Di, we finally find

the code structure is

[
s1 s2

−s2 s1

]
. It is the Alamouti coding

scheme [12]. The other seven optimal code structures are[
s1 s2

−s1s2 s1

]
,

[
s1 s2

s2 −s1s2

]
,

[
s1 s2

s2 −s1

]
,

[
s1 s2

−s1s2 −s1

]
,[

s1 s2

−s2 −s1s2

]
,

[
s1 s2

−s2 s1s2

]
, and

[
s1 s2

s1s2 −s1

]
.

The pseudo code of our proposed searching algorithm for
the optimal STF block codes can be found in Algorithm 1.
Note that in the ninth line we only consider the vertices with
degree being at least three because any vertex in a K4 must

satisfy this condition.

Algorithm 1: The searching algorithm for the optimal
STF block codes.

input : M , Nt, Ni, and CM.
output: B∗.

B∗ ← ∅1

G← K2MNt2

found ← False3

foreach 1 ≤ i, j ≤ 2MNt do4

S← (Di −Dj)(Di −Dj)H5

E(G)i,j ←
∏r

n=1 eign(S ◦RM (CM))6

metric ← list of distinct values of E(G) in7

decreasing order
for m← 1 to Length(metric) do8

F ← ({e : e ∈ E(G), e ≥ metric[m]}, {v : v ∈9

V (G),deg(v) ≥ 3})
foreach B, {B ⊂ F, |V (B)| = 2Ni} do10

if B is K2Ni then11

found← True12

B∗ ← B∗ ∪ {B}13

if found then14

return B∗15

C. Optimal STF Block Codes for the Other Cases

We use the algorithm described in Section III-B to find the
optimal STF block codes for the case M = Ni = 2 and
Nt = 3. We find that there are 54 different optimal STF
block codes for all the four CM out of

(
23·2

4

)
= 635376

candidates. In order to simplify the expression of the code
matrix, we define s3 � s1s2, si′ � −si for i = 1, 2, 3, and
sijk � [si sj sk]. Then, among these 54 optimal STF block
codes, 28 of them have the form of [sT

123′ sT
a ]T and the other

26 codes have the form of [sT
123 sT

b ]T , where a ∈ {3’12, 23’1,
13’2’, 3’12’, 23’1’, 3’21’, 132, 231, 21’3’, 3’1’2, 231’, 3’2’1’,
21’3, 3’1’2’, 312, 2’13’, 321, 2’3’1, 312’, 2’13, 2’3’1’, 1’3’2’,
32’1, 2’31, 31’2, 1’32, 2’31’, 31’2’} and b ∈ {13’2, 3’12,
23’1, 3’21, 3’12’, 23’1’, 3’2’1, 21’3’, 3’1’2, 132’, 231’, 21’3,
3’1’2’, 2’13’, 2’3’1, 1’3’2, 312’, 2’13, 321’, 2’3’1’, 2’31,
31’2, 32’1’, 2’31’, 31’2’, 1’32’}. For the case M = Ni = 2
and Nt = 4, we find 5148 different optimal STF block codes
for all the four CM out of

(
24·2

4

)
= 174792640 candidates. Due

to the space limit, we do not list all codes here. One of the

optimal STF block codes is

[
s1 s1 s2 −s1s2

s2 −s1s2 s1 s2

]
.

For the case M = 3 and Ni = Nt = 2, there is an
interesting fact. We find that there does not exist any optimal
STF block codes for all the four CM out of

(
22·3

4

)
= 635376

candidates. For the case M = Nt = 3 and Ni = 2, we find that
there does not exist any optimal STF block codes for all the
four CM out of

(
23·3

4

)
= 2829877120 candidates. For the case

M = 3, Nt = 4, and Ni = 2, we find that the set of optimal
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TABLE I
THE CODING GAIN OF THE OPTIMAL CODES WE HAVE FOUND IN SECTION

III.

Coding Gain (dB) CM1 CM2 CM3 CM4

Nt = 2 0 0 0 0

Nt = 3 0.64 0.66 0.71 0.84

Nt = 4 0.49 0.50 0.54 0.61

STF block codes for all the four CM are the same. There are
totally 1464 optimal codes out of

(
24·3

4

)
= 11710951848960

candidates and they are all nonlinear. For the case M = 4
and Ni = Nt = 2, we find that there does not exist
any optimal STF block codes for all the four CM out of(
22·4

4

)
= 174792640 candidates.

IV. PROPERTIES OF THE OPTIMAL STF BLOCK CODES

A. Coding Gain

The coding gain of a code can be computed via CG =
1

4Nt
[
∏r

n=1 eign(S ◦RM )]1/r. In Table I we list the coding
gain of the optimal codes we have found in Section III. For
the Nt = 2 case, the optimal STF block code is Alamouti
code. Its coding gain is one [10]. For the Nt = 3 and Nt = 4
cases, we find that the coding gain is greater than 0 dB by a
little amount. Thus, we can predict that the BER performance
of these three codes will be very close.

B. Diversity Order

The diversity order of a code is rKNr. The optimal codes
we found above all have the same value of r for the same
values of M , Ni, Nt, and CM and the same modulation. Thus,
for the same values of K and Nr, the optimal codes achieves
the same diversity order under the same condition. The values
of r for different kinds of optimal codes are listed in Table
II. From this table, we find a interesting fact. Sometimes the
optimal codes achieve different diversity order for different
values of CM. For example, when M = 3, Ni = 2, Nt = 2,
and the modulation is BPSK, the diversity order is two for
CM1 and CM2 and three for CM3 and CM4.

V. NUMERICAL RESULTS

Our simulation environment is an MIMO-OFDM system.
The number of total subcarriers is 128 and the sub-band
bandwidth is 528 MHz. We apply the IEEE 802.15.3a UWB
channel model CM 1–4 [2].

A. BER Comparison with STF Codes in [1] and [7]

Figure 2 shows the BER comparison of our code with
Chusing’s code [7] and Zhang’s code [1] for the M = 4, Ni =
2, Nr = 1, Nt = 2 case in the IEEE 802.15.3a UWB channel
model CM4. We can see that the diversity gains of the three
codes are the same, but our code has better BER performance
than Chusing’s and Zhang’s codes do. At BER = 10−4, the
coding gain between our code and Chusing’s code is about 8
dB and the coding gain between our code and Zhang’s code
is about 1 dB.

TABLE II
THE VALUES OF r WHICH IS THE RANK OF MATRIX S ◦ RM FOR

DIFFERENT KINDS OF OPTIMAL STF BLOCK CODES.

M Ni Nt CM modulation r

2 2 2 1–4 BPSK 2

2 2 2 1–4 QPSK 2

2 2 3 1–4 BPSK 2

2 2 4 1–4 BPSK 2

3 2 2 1,2 BPSK 2

3 2 2 3,4 BPSK 3

3 2 3 1 BPSK 2

3 2 3 2–4 BPSK 3

3 2 4 1–4 BPSK 3

4 2 2 1 BPSK 3

4 2 2 2,3 BPSK 2

4 2 2 4 BPSK 4

B. Impact of Number of Transmit Antennas Jointly Encoded
(Nt) for Two Subcarriers Jointly Encoded (M = 2)

Figure 3 shows the impact of number of transmit antennas
jointly encoded on the BER for CM1, CM2, CM3, and CM4
for the optimal STF block codes for the M = Ni = 2 case.
Figs. 3(a), 3(b), and 3(c) are for the cases Nt = 2, 3, and 4,
respectively. For each sub-figure, the BER decreases as CM
increases. This phenomenon can be explained by the coding
gain. In Table I, the coding gain increases as CM increases
for the cases Nt = 3 and 4, thus the BER decreases.

Moreover, we find a surprising fact. The BER in Figs. 3(a),
3(b), and 3(c) are almost the same for the same CM. In other
words, the BER for a certain CM does not change as the
number of transmit antennas increases. This result is quite
different from the STBC case. In STBC, increasing the number
of transmit antennas will decrease the BER performance [10].
Thus, we may conclude that in the MIMO-UWB systems,
using multiple transmit antennas does not provide significant
improvement to the BER performance, because the UWB
channels already possess rich diversity inherently. In the
uncoded UWB systems using multiple antennas, there exists
the same phenomenon [13].

VI. CONCLUSIONS

In this paper, we study the BER-minimized STF block codes
designed for the MIMO highly frequency-selective block fad-
ing channels. We consider the IEEE 802.15.3a UWB channel
model. Based on the BER analysis under the aforementioned
environment in [8], we provide a BER-minimized design
criterion, an efficient searching algorithm for the optimal STF
block codes, and optimal BER performance curves. Compared
with other space-frequency-time codes [1], [7] for MIMO-
OFDM communication systems under the UWB channel, our
code has about 1 and 8 dB coding gain at BER = 10−4,
respectively. On the other hand, increasing the number of
transmit antennas does NOT improve the BER performance
for the MIMO-UWB systems when M = 2.
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Fig. 1. The system block diagram.
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Fig. 2. The BER comparison of our code versus Zhang’s code [1] and
Chusing’s code [7] for four subcarriers jointly encoded, two input information
bits for each codeword, one receive antenna, and two transmit antennas jointly
encoded in the IEEE 802.15.3a UWB channel model CM4. The modulation
is BPSK.
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Fig. 3. The effect of different number of transmit antennas jointly encoded
(Nt) on the BER for CM1, CM2, CM3, and CM4 for the optimal STF block
codes for two subcarriers jointly encoded and two input information bits for
each codeword. The modulation is BPSK. (a) Nt = 2. (b) Nt = 3. (c)
Nt = 4.
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