
2980
IEICE TRANS. COMMUN., VOL.E93–B, NO.11 NOVEMBER 2010

PAPER

An Efficient LDPC Decoder Architecture with a High-Performance
Decoding Algorithm

Jui-Hui HUNG†a), Nonmember and Sau-Gee CHEN†, Member

SUMMARY In this work, a high performance LDPC decoder architec-
ture is presented. It is a partially-parallel architecture for low-complexity
consideration. In order to eliminate the idling time and hardware com-
plexity in conventional partially-parallel decoders, the decoding process,
decoder architecture and memory structure are optimized. Particularly,
the parity-check matrix is optimally partitioned into four unequal sub-
matrices that lead to high efficiency in hardware sharing. As a result,
it can handle two different codewords simultaneously with 100% hard-
ware utilization. Furthermore, for minimizing the performance loss due
to round-off errors in fixed-point implementations, the well-known mod-
ified min-sum decoding algorithm is enhanced by our recently proposed
high-performance CMVP decoding algorithm. Overall, the proposed de-
coder has high throughput, low complexity, and good BER performances.
In the circuit implementation example of the (576,288) parity check matrix
for IEEE 802.16e standard, the decoder achieves a data rate of 5.5 Gbps
assuming 10 decoding iterations and 7 quantization bits, with a small area
of 653K gates, based on UMC 90 nm process technology.
key words: channel coding, LDPC, decoder, algorithm, hardware

1. Introduction

Low-density parity check (LDPC) code was introduced in
1962 [1], which can achieve performance close to Shan-
non bound. Hence, LDPC code has been adopted by many
state-of-the-arts communication systems, such as the DVB-
S2, DMB-TH and IEEE 802.16e systems. It is a binary
linear block code whose parity-check matrix is sparse with
much fewer 1’s than a common matrix. A sparse parity-
check matrix facilitates simple decoding algorithms and
low-complexity decoder designs.

The m×n parity-check matrix H of a LDPC code is of-
ten represented by a bipartite graph, called Tanner graph [2],
which is composed of n bit nodes v j, j=1 to n, and m check
nodes ci, i=1 to m. Those bit nodes and check nodes are
connected by edges defined by nonzero entries of the check
matrix. Tanner graph shows a clear picture of all the infor-
mation exchange links in a decoding process as depicted in
Fig. 1 an example of 4 check nodes and 8 bit nodes. The
number of 1’s in each column of H determines the number
of edges for each bit node connected to check nodes, and
the number of 1’s in each row of H determines the connec-
tions from each check node to bit nodes. In a Tanner graph,
a check node and a bit node need to execute their own check

Manuscript received March 4, 2010.
Manuscript revised June 17, 2010.
†The authors are with the Institute of Electronics, National

Chiao Tung University, 1001 University Road, Hsinchu, Taiwan
300, ROC.

a) E-mail: drpaholisi.ee96g@g2.nctu.edu.tw
DOI: 10.1587/transcom.E93.B.2980

Fig. 1 Tanner graph of a parity check matrix.

node equation (CNE) and bit node equation (BNE).
Although LDPC codes are efficient, huge computation

is required particularly for the decoding processes. As a re-
sult, serial LDPC decoder architectures are not suitable for
practical applications. To meet the decoding throughput re-
quirement, fully-parallel LDPC decoders [3]–[5] were pro-
posed. In those architectures, each CNE and BNE is real-
ized by its own check node unit (CNU) and bit node unit
(BNU), respectively. However, the incurred large area and
long on-chip wire delays are the major drawbacks. To re-
duce these problems, partially-parallel architectures [6]–[8]
were introduced, which contain some parallel CNUs and
BNUs shared by all the CNEs and BNEs, respectively. The
area reduction is dependent on the degree of parallelism.
The partially-parallel architecture in [8] can concurrently
decode two codewords at a time, which can get almost dou-
ble throughput rate improvement over the single-codeword
designs [6], [7], at the cost of some additional controller cir-
cuits, memory and a large number of multiplexers.

In this work, an efficient decoding schedule and its as-
sociated architecture are proposed which can concurrently
decode two codewords more efficiently than the design of
[8]. The decoding schedule is optimized so that it greatly
reduces the number of multiplexers required in the design
of [8]. Besides, in order to reduce the required number of
CNUs and BNUs, generally current partially-parallel archi-
tectures need to reorder the columns and rows of H [7]–[10].
Nonetheless, for the decoding correctness, one needs to re-
order the decoding results back to the original order. Thus,
it will introduce additional area and time penalty. Here,
without reordering H, this works simply divide H into four
optimally-partitioned unequal-size sub-matrices that lead to
low-complexity and efficient architectures with shared BNU

Copyright c© 2010 The Institute of Electronics, Information and Communication Engineers

HUNG and CHEN: AN EFFICIENT LDPC DECODER ARCHITECTURE WITH A HIGH-PERFORMANCE DECODING ALGORITHM
2981

and CNU. In all, the proposed LDPC decoder achieves both
high time and area performances.

In LDPC decoding, the sum-product algorithm (SPA)
[11] provides excellent decoding performances. Neverthe-
less, it has very high computational complexity that im-
pedes its practical applications. Some decoding algorithms
are proposed to reduce the SPA computational complexity,
such as the min-sum algorithm (MSA) [12] and the modi-
fied MSA [13]. In addition, for the consideration of low-
power and low-complexity designs, fixed-point implementa-
tions instead of floating-point implementations are adopted.
However, fixed-point realizations always cause quantiza-
tion errors and rounding errors. Therefore, decoding per-
formances will be significantly degraded. To remedy the
problem, recently we proposed an improved MSA, called
CMVP algorithm [14]. It achieves better performances than
the mentioned decoding algorithms, under the condition of
the same fixed-point precision. Besides, the hardware over-
head of the CMVP algorithm over conventional modified
MSA is small. In the proposed decoder architecture, we
will combine this decoding algorithm for high-performance
fixed-point decoding results.

This paper is organized as follows. In Sect. 2, the
widely used SPA and MSA decoding algorithms are intro-
duced. Section 3 details the design specifications and ar-
chitecture of the proposed LDPC decoder, as well as the
concept of CMVP algorithm. The specifications are defined
after extensive simulations for determining the fixed-point
word lengths, subject to the best tradeoff of cost and perfor-
mance. Section 4 presents the hardware synthesis and chip
implementation results. Finally, Sect. 5 is the conclusion.

2. Decoding Algorithms for LDPC Codes

Generally, LDPC decoding is based on the mentioned high-
performance SPA [11], whose message is in the form of log-
likelihood ratio (LLR): L(x) = log (P{x = 0}/P{x = 1}). In
this algorithm, the LLR message Lbi→c j sent by bit node bi

to check node c j is defined by the following BNE:

Lbi→c j = channel(bi) +
∑

ck∈C\c j

Lck→bi (1)

where C\c j is a set containing all the check nodes connected
to bit node bi, excluding check node c j; channel(bi) is the
received LLR channel value of bit node bi. In the equation,
Lc j→bi is the LLR message passed from check node c j to bit
node bi as defined by the following CNE:

Lc j→bi =
∏

bk∈B\bi

sign(Lbk→c j)φ

⎛⎜⎜⎜⎜⎜⎜⎝
∑

bk∈B\bi

φ(|Lbk→c j|)
⎞⎟⎟⎟⎟⎟⎟⎠ (2)

where B\bi is a set containing all the bit nodes connected
to check node c j excluding bit node bi, and φ(x) = ln((ex +

1)/(ex − 1)). It is hard to implement Eq. (2) which involves
logarithm and exponential functions. The MSA [12] as
shown below is a popular and low-complexity approxima-
tion to Eq. (2),

Fig. 2 The flow chart of iterative decoding for LDPC codes.

Lc j→bi ≈
⎛⎜⎜⎜⎜⎜⎜⎝
∏

bk∈B\bi

sign(Lbk→c j)

⎞⎟⎟⎟⎟⎟⎟⎠ min
bk∈B\bi

(
|Lbk→c j|

)
. (3)

Since the value of Eq. (3) is larger than the value of
Eq. (2), the modified MSA [13] multiplies Eq. (3) by a nor-
malization factor β which is smaller than one for a better ap-
proximation to Eq. (2). After the execution of all the CNEs
and BNEs, the bit-node message of bit node bi can be up-
dated by

Lbi = channel(bi) +
∑
ck∈C

Lck→b j = Lbi→c j + Lc j→bi (4)

and the decoded value of bit node bi is obtained from the
hard-decision value of Lbi.

Figure 2 shows the conventional decoding process
(composed of the white functional blocks) of a LDPC code,
and the additional proposed decoding process (composed of
the shaded functional blocks). Conventional LDPC decod-
ing process involves back-and-fourth message update iter-
ations between check nodes and bit nodes. The decoded
bits are output when the decoded information bits satisfy
the zero syndrome vector constraint, i.e., xHT = �0, or when
the iteration number exceeds a maximum number, where x
denotes the decoded codeword in row vector form. The in-
troduced extra process further enhances the decoding cor-
rectness by saving some bit-node messages of Eq. (4) for
later use by the additional CMVP unit, as will be introduced
in the next section.

3. The Proposed LDPC Decoder Architecture

For the demonstration of the proposed architecture, we con-
sider a LDPC code example of code rate 1/2 and a 288-by-
576 parity-check matrix H, as defined in the IEEE 802.16e

2982
IEICE TRANS. COMMUN., VOL.E93–B, NO.11 NOVEMBER 2010

standard. Before introducing the proposed LDPC decoder
architecture, some hardware specifications are decided as
follows. Figure 3 shows the bit error rate (BER) simulation
results vs. SNR, in various iteration numbers, using BPSK
modulation and the modified MSA with the normalization
factor β=0.75 in AWGN channel. As shown, 10 decoding
iterations is a good choice in terms of cost and performance
for this design example.

Since practical implementation is in fixed-point op-
erations, we need to determine adequate word length (in
bits). Let [t: f] denote the fixed-point quantization format,
where t and f represent the total word length and the frac-
tion length, respectively. Based on the simulation results
of 10 iterations, the [7:5] format is chosen in the proposed
design, which achieves good decoding performances with
short word length and accordingly low hardware complex-
ity.

Fig. 3 Decoding performances of the floating-point modified MSA in
various iteration numbers.

3.1 The Partition of H

According to Tanner graph, the row and column numbers of
H correspond to the BNE and CNE numbers, respectively.
For the design of a partially-parallel LDPC architecture, H
matrix can be partitioned into M × M sub-matrices. Conse-
quently, there will have M CNE sets and M BNE sets. In the
partially-parallel structure design, all the M CNE sets and M
BNE sets will share the same CNU set and BNU set for their
operations, respectively. According to our analysis, M=2 is
a better choice over other M values. It leads to simple con-
trol hardware design and facilitates concurrent decoding op-
erations of two independent codewords with 100% hardware
utilization efficiency, based on a new scheduling scheme, as
will be detailed later. Therefore, the parity-check matrix H
is divided into four unequal-size sub-matrices (i.e., h00, h01,
h10 and h11), and the syndrome vector s of codeword vector
x can be rewritten as:

s = xHT = [x0 x1]

[
h00 h01

h10 h11

]T
(5)

where x0 and x1 are sub-vectors of x.
Specifically, the optimized h00 and h10 are both 144 ×

240 matrices, while both h01 and h11 are 144 × 336 matri-
ces. Correspondingly, sub-vectors x0 and x1 are 240 × 1
and 336 × 1 vectors, respectively. The reason why H is un-
equally partitioned is that it facilitates balanced CNU and
BNU realizations in the proposed decoder. As a result, the
reordering of the rows and columns of H [9] is unnecessary
in the proposed design. Hence, higher hardware utilization
rate, shorter delay time and smaller hardware area can be
achieved, compared with the design of [7]–[10]. Detailed
explanation on the optimized matrix partition will be given

Fig. 4 The optimized H partition of the proposed LDPC decoder, for the (576,288) code in the
802.16e standard.

HUNG and CHEN: AN EFFICIENT LDPC DECODER ARCHITECTURE WITH A HIGH-PERFORMANCE DECODING ALGORITHM
2983

Fig. 5 The proposed LDPC decoder architecture.

in the latter subsections on CNU and BNU designs.
Figure 4 shows the detailed pattern of the example

288 × 576 parity-check matrix H, where the sub-matrices
of H are separated by the dark solid lines. For convenience,
each BNE and CNE set is further divided into many sub-
sets as marked in the second bottom row and the second
rightmost column, respectively. An entry in the matrix rep-
resents a 24-by-24 sub-matrix; those entries with −1 value
correspond to zero matrices, while a non-negative entry rep-
resents a specific cyclically-shifted identity matrix defined
by the entry value [15]. Note that the entries with zero val-
ues represent the 24-by-24 unit matrix. A specific number
in the second top row indicates the input number to each of
its 24 corresponding BNEs defined by those 24 × 24 sub-
matrices just beneath the number. For example, since the
column corresponding to subset number 1 of BNE set 1 has
three entry values other than −1, there are three inputs to
each of the 24 BNEs of this subset. Similarly, a specific
number in the second leftmost column represents the num-
ber of inputs to all of its corresponding 24 CNEs in the CNE
subset.

3.2 Decoding Steps of the Proposed Architecture

As shown in Fig. 2, in the iterative decoding process, be-
fore updating the bit node messages, one needs to update
the check node messages first, and vice versa. It means that
CNU and BNU will be respectively idling when BNU and
CNU are operating, in the case of decoding a single code-
word at a time. This results in low hardware utilization ef-
ficiency. Hence, to achieve 100% utilization rate of both
CNU and BNU sets, the proposed partially parallel archi-
tecture (as shown in Fig. 5) processes two codewords at a
time by interleaving and reordering data sequences in the
decoding procedures. Besides, as mentioned before, some
bit-node messages computed by BNUs are stored in CMVP
unit. This architecture contains an input buffer, the men-
tioned CNU and BNU sets, two message memory units (i.e.,
MMU0 and MMU1) and a CMVP unit for enhancing the
decoding accuracy. Note that the input buffer is divided into

IB0 and IB1 buffers; and each can hold 576 channel values
of a codeword.

Before introducing the proposed two-codeword decod-
ing process and decoder structure in detail, the basic oper-
ation steps of decoding a single codeword x are explained
first as below, followed by the process of decoding two code
words at a time.

3.2.1 Basic Decoding Steps for a Single Codeword

Let the message value set of a codeword x corresponding
to the sub-matrix hmn be denoted as Lmn which dynamically
includes all the message values of either Lc j→bi or Lbi→c j

associated with sub-matrix hmn, m, n=0 or 1.

Operation (1) Update check node messages for CNE
set 1: Update check node messages for CNE set 1: CNU
set updates the message value set pair of {L00, L01} accord-
ing to Eq. (3), and temporarily stores the updated values in
MMU0.
Operation (2) Update check node messages for CNE
set 2: Similar to Operation (1), CNU set updates the mes-
sage value set pair of {L10, L11}, and temporarily stores the
updated values in MMU0.
Operation (3) Reorder check node messages: The mes-
sage value sets L00, L01, L10 and L11 in MMU0 are reordered
and paired as {L00, L10} and {L11, L01} for BNE set 1 and
BNE set 2 operations, respectively.
Operation (4) Load check node messages for BNE set 1:
MMU0 feeds the value set pair {L00, L10} to BNU set inputs,
and at the same time IB0 sends the first 240 channel values
of x (i.e., x0) parallelly to the inputs of BNU set for BNE
set 1 operations described by Eq. (1) and Eq. (4) (which will
be performed in Operation (5)).
Operation (5) Update bit node messages for BNE set 1:
BNU set updates the message value sets L00 and L10 (ac-
cording to Eq. (1)) and temporarily stores the updated val-
ues in MMU1. Besides, BNU set also computes and sends
the corresponding bit-node messages (described by Eq. (4))
to MMU1, and stores the necessary information for CMVP
unit. Then, IB circularly shifts right by 240 positions within
one clock cycle. That means x0 is now in the leftmost part
of IB1, while x1 is in the rightmost part of IB0.
Operation (6) Load check node messages for BNE set 2:
Similar to Operation (4), MMU0 feeds the value set pair
{L11, L01} to BNU set inputs, and IB0 concurrently provides
336 x1 channel values to the inputs of BNU set for BNE
set 2 operations (which will be performed in Operation (7)).
Operation (7) Update bit node messages for BNE set 2:
Similar to Operation (5), BNU set updates the message
value sets L11 and L01, and temporarily stores the updated
values in MMU1. Besides, BNU set also sends the corre-
sponding bit-node messages to CMVP unit for further error
correction of decoded bits. After that, IB circularly shifts
right by 336 positions within one clock cycle. At this mo-
ment, the entire x channel values are now in IB1.
Operation (8) Reorder bit node messages: The message

2984
IEICE TRANS. COMMUN., VOL.E93–B, NO.11 NOVEMBER 2010

Fig. 6 The timing diagram of the message passing process between BNU/CNU and MMU0/MMU1.

value sets L00, L01, L10 and L11 in MMU1 are reordered and
paired as {L00, L01} and {L11, L10}.
Operation (9) Load bit node messages for CNE set 1:
MMU1 feeds the value set pairs {L00, L01} to the input of
CNU sets.
Operation (10) Load bit node messages for CNE set 2:
Similar to Operation (9), MMU1 feeds the value set pairs
{L11, L10} to the input of CNU sets.
Operation (11) Final enhancement of the decoded bits:
Based on the hard-decision values of the bit-node messages
stored for CMVP unit, CMVP unit performs further correc-
tion operations of the decoded bits, and output the decoded
codeword.

3.2.2 Decoding Steps for Two Codewords at a Time

Basically, the two-codeword processing can be regarded as
two independent single-codeword processings operated in
parallel and interleaved fashion. Besides, to reduce control
complexity, these two decoding processes will be terminated
only when the iteration numbers reach a set value.

Consider two independent codewords’ channel values
x(0) and x(1). Further, denote Operation (i0) and Oper-
ation (i1) as Operation (i) of x(0) and x(1) in the single-
codeword operation, respectively. Then the complete con-
current LDPC decoding steps (in terms of clock cycles) of
x(0) and x(1) on the proposed decoder architecture can be de-
scribed below, assuming that initially the channel values (in
LLR form) of two codeword x(0) and x(1) has been already
shifted into IB0 and IB1, respectively:

Step 1) Load channel values of x(0): IB0 feed all 576 x(0)

channel values to CNU set. After that, IB0 and IB1 swap
their contents (i.e., x(1) and x(0) are in IB0 and IB1, respec-

tively) within one clock cycle.
Step 2) Update check node messages of x(0) and load
channel values of x(1): Execute Operation (10) and feed
all 576 x(1) channel values instantly from IB0 to CNU set
simultaneously. Then, IB0 and IB1 exchange their contents
(i.e., x(0) and x(1) are in IB0 and IB1, respectively).
Steps i=3 to 11) Parallel iteration steps for two code-
words: Execute Operation ((i−1)0) and Operation ((i−2)1)
simultaneously.
Step 12) Check termination condition and load bit node
messages of x(1): If the maximum iteration number is not
reached, execute Operation (10) and Operation (101) simul-
taneously and then go to Step 3.
Step 13) Final enhancement of the decoded bits x(0) and
load bit node messages of x(1): Execute Operation (110)
and Operation (101).
Step 14) Final enhancement of the decoded bits x(1): Ex-
ecute Operation (111)

When the decoding process for these two codewords is
completed, the decoder can immediately begin a new decod-
ing process for the next pair of codewords by repeating the
whole decoding process.

Figure 6 shows the timing snapshots of the data flow
between CNU/BNU and the memory units MMU0/MMU1
when decoding two codewords at a time, where L(0)

mn and
L(1)

mn are the message values of codewords x(0) and x(1), re-
spectively, corresponding to sub-matrix hmn. In the fig-
ure, the rounded-corner rectangles in the upper part (i.e.,
MMU0) and sharp-corner rectangles in the lower part (i.e.,
MMU1) represent the message value set Lmn passed from
check nodes to bit nodes and bit nodes to check nodes, re-
spectively. Detailed MMU structure and mechanism will be
given in the next section. This timing diagram shows only

HUNG and CHEN: AN EFFICIENT LDPC DECODER ARCHITECTURE WITH A HIGH-PERFORMANCE DECODING ALGORITHM
2985

Fig. 7 The proposed MMU0 and MMU1 architecture.

three decoding iterations for simplicity.
As shown, there is no idling time slot in BNU set, CNU

set, MMU0 and MMU1 in the iterative decoding process,
owing to the proposed interleaving and reordering schemes.

3.3 Function Units of the Proposed Architecture

3.3.1 Input Buffer (IB)

As shown in Fig. 5, the input buffer (IB) is a specialized
shift register divided into two equal parts IB0 and IB1; and
each part has 576 words for storing the channel values of a
codeword. Furthermore, without loss of generality, it is as-
sumed that each input channel value word is in [7:5] fixed-
point format. For hardware simplicity, the communication
between IB and CNU/BNU is through IB0. As such, sig-
nificant amount of MUXs and wire interconnections can be
saved compared to the design of [8]. The whole BNE set is
divided into two BNE sets which have 240 and 336 inputs
respectively. Accordingly, the shift register can do circu-
lar right-shift operations by one word position (for initially
loading channel values), 240 word positions (for Operation
(5)), 336 word positions (for Operation (7)) or 576 word po-
sitions (for IB0 and IB1 data swapping in Step 1)), within
one clock cycle. Moreover, all the data and partial data of
IB0 can be selectively connected to CNU set (for loading
the input data) and BNU set (for updating the bit node mes-
sages) at the same time.

3.3.2 MMU

As shown in Figs. 6 and 7, both MMU0 and MMU1 have
four memory sub-blocks as marked with letters A, B, C and
D, where sub-blocks A, B and D capture the outputs from
CNU set for MMU0, or from BNU set for MMU1; sub-
blocks C and D of MMU0 and MMU1 deliver their stored
message values to BNU and CNU, respectively. Detailed
MMU structure is shown in Fig. 7. Specifically, the in-
put data pairs to MMU, i.e., {L00, L01} and {L11, L10} are
for MMU0 while {L00, L10} and {L11, L01} are for MMU1,
are stored in sub-blocks {A, B} and {A, D}, respectively.
Besides, MMU feeds the reordered data to its succeeding
function unit from the sub-blocks {C, D} as shown in the
figure. As depicted, the proposed MMU architecture only
needs one multiplexer and four memory sub-blocks instead
of three multiplexer and five memory sub-blocks in [8]. Due
to these merits, the proposed design has a lower hardware
complexity than that of [8], while it is also free of any idling

Fig. 8 The block diagram of the proposed complete CNU architecture.

Fig. 9 The seven-input CNU architecture in the proposed LDPC decoder.

time slots in the iteration process.

3.3.3 CNU Set

Since the numbers of inputs to all the CNEs are uniformly
either 6 or 7, the total 12 CNE subsets are equally partitioned
into CNE set 1 and set 2, each contains 6 CNE subsets, as
shown in Fig. 4. Hence, both CNE set 1 and set 2 contain
24 × 6 CNEs. Therefore, the decoder only requires a set
of 24 × 6 parallel CNUs shared by the two CNE sets and
each CNU in the CNU set is responsible for the execution
of a CNE (i.e., Eq. (3)) in CNE set 1and another CNE in
CNE set 2. As such, each CNU should be able to handle the
maximum input numbers of those two CNEs. According
to CNE input numbers in Fig. 4, the input number of each
CNU is either six or seven. As shown in Fig. 8, the complete
CNU set contains three 24 × 6-input and three 24 × 7-input
CNU subsets. That means each 24 × 6-input CNU subset
and 24 × 7-input CNU subset comprises 24 six-input CNUs
and 24 seven-input CNUs, respectively. Notice that since all
the CNUs inside the 2nd and 6th CNU subsets have seven
inputs, when they are executing the six-input CNEs of the
2nd and 6th CNE subsets in CNE set 2, those unused 7th
inputs are fed with the maximum information value so that
those inputs will not affect the outputs.

The seven-input CNU architecture, shown in Fig. 9, has
been proposed in our preliminary result [16]. In this fig-
ure, thick and thin lines represent the multi-bit and single-bit
buses, respectively. The six-input CNU has a similar struc-
ture to the seven-input CNU. Besides, for low-complexity

2986
IEICE TRANS. COMMUN., VOL.E93–B, NO.11 NOVEMBER 2010

Table 1 Mapping between BNU subsets and BNE subsets.

and high-performance consideration, all the CNUs are de-
signed to execute the modified min-sum algorithm [13] with
a normalization factor of 0.75 which is equal to 2−1+2−2.
This choice facilitates simple implementation of the normal-
ization operations. In the figure, the output of a Min cell is
the minimal value of its two inputs.

A SMTC unit converts a CNU output in sign-
magnitude representation to 2’s-complement representation
before sending it to a BNU. It is because that finding the ab-
solute minimal value is easier by using sign magnitude rep-
resentation than the 2’s complement representation, while
2’s complement representation is more suitable for addition
and subtraction operations. Hence, the 2’s complement data
are converted back to the sign magnitude representations by
using the TCSM modules after the BNU operations. Be-
sides, for the consideration of the best balanced circuit delay
time, SMTC and TCSM modules are included in CNUs and
BNUs, respectively.

3.3.4 BNU Set

Since both BNE set 1 and BNE set 2 will share the same
BNU set, they should be optimally arranged in the matrix
partition, as shown in Fig. 4. Specifically, 10 and 14 BNE
subsets are allocated to BNE set 1 and set 2, respectively.
Since each BNE subset comprises 24 BNEs, BNE set 1 and
set 2 contain 24× 10 and 24× 14 BNEs, respectively. Based
on this arrangement, the proposed BNU sets consists of 24×
10 parallel BNUs shared by the two BNE sets. The 24 × 10
BNUs are basically one-to-one mapped to the 24×10 BNEs
of BNE set 1, and they can be reconfigured to execute all the
24 × 14 BNEs of BNE set 2.

The complete BNU-set architecture is very similar to
the complete CNU-set architecture shown in Fig. 8, except
that the CNU subsets are replaced by BNU subsets and there
are ten BNU subsets with six or three inputs. Besides, In-
put1 and Input2 to the BNU set are from MMU0, and BNU
set has an addition output bus connected to CMVP unit. The
BNU architecture is a direct mapping from BNE set 1. Con-
sequently, according to Fig. 4, there are ten BNU subsets and
their numbers of inputs are the same as those of BNE set 1.
Table 1 shows the detailed mapping between the BNU sub-
sets and BNE set 1 and set 2. Inside the BNU set, as men-
tioned before, a six-input adder of the 6th, 8th and 10th BNU
subsets (for executing BNE set 1 operations) is efficiently

Fig. 10 The six-input BNU architecture in the proposed LDPC decoder.

designed to perform three independent two-input addition
operations (for executing BNE set 2 operations), and a three-
input adder in executing BNE set 1 is directly employed as
a two-input adder for executing BNE set 2, as shown in Ta-
ble 1. Figure 10 shows the six-input BNU architecture. On
the other hand, all the BNUs inside the 5th, 7th and 9th BNU
subsets have three inputs, are capable of executing both the
three-input BNEs and the two-input BNEs. Without affect-
ing the execution results, those unused third inputs are fed
with the zero value for executing the two-input BNEs. Be-
sides, due to the size difference of BNE set 1 and set 2, the
results of the 1st and 4th BNU subsets for executing BNE
set 2 will not be fed to MMU1.

Notice that the output word length will be clipped to
fit the input word length after all the add/sub operations for
avoiding word length mismatch.

3.3.5 CMVP Unit

In practical realization, for the consideration of low-power
and low-complexity designs, fixed-point implementation in-
stead of floating-point implementation is adopted. However,
fixed-point realizations always cause quantization errors. As
such, decoding performances will be significantly degraded.
To remedy this problem, intuitively, a fixed-point quanti-
zation with enough word length is needed. However, do-
ing this way will significantly increase the hardware area
and power consumption. To alleviate the problem, recently
we proposed a post-processing algorithm in [14] which en-
hances the decoding correctness of the existing decoding
algorithms (including SPA, MSA and modified MSA) by
defining the following additional auxiliary decoding oper-
ation as briefly explained below. The performance of this
algorithm approaches that of the floating-point MSA with
small hardware overhead. Please refer to [14] for detailed
introduction of the algorithm.

3.3.5.1 Concept of the CMVP Algorithm

The CMVP algorithm consists of the following three differ-
ent processes, including the confidence test, the persistency
test and the majority vote to help decode the message bits:

HUNG and CHEN: AN EFFICIENT LDPC DECODER ARCHITECTURE WITH A HIGH-PERFORMANCE DECODING ALGORITHM
2987

Confidence test: In a decoding process, the LLR of a mes-
sage bit (as defined by Eq. (4)) is utilized to decide whether
the message bit should be decoded as 0 or 1. Intuitively,
we expect that a message bit would be very likely wrongly
decoded if its absolute LLR value is close to zero. There-
fore, the CMVP algorithm defines a confidence threshold C
to assist the judgment of the correctness of a tested bit, i.e.,
if the absolute LLR value of a tested bit in the latest itera-
tion is less than the confidence threshold, the tested bit will
be treated as an unreliable bit.
Persistency test: By intuition and observation, one can ex-
pect that the later iteratively bit-node messages are more
credible than the earlier ones. Hence, CMVP algorithm
considers the tested bit as reliable, if its last P iteratively
bit-node messages (obtained from the adopted decoding al-
gorithm, such as SPA, MSA or modified MSA) remain con-
stant; otherwise this bit will be regarded as an unreliable bit.

After the confidence test and the persistency test, the
unreliable bits (i.e., those message bits remained to be de-
cided) will be subject to the following majority vote opera-
tion to finalize their bit values.
MajorityVote: This process is intended to enhance the cor-
rectness probability of a tested bit; the proposed CMVP al-
gorithm further performs the majority vote on the latest MV
iteratively bit-node messages of the unreliable bit after the
confidence and persistency tests. Then, the majority vote
result is the final decoded value of the unreliable bit.

As a result, the proposed decoder needs to store the last
MV or P (depending on which one is larger) iterative hard-
decision values of the bit-node messages for CMVP unit.
The CMVP algorithm is summarized below.

3.3.5.2 Detailed Flow of the CMVP Algorithm

At the end of conventional LDPC decoding operations (by
using SPA, MSA or modified MSA), CMVP algorithm is
performed according to the following six steps. Notice that
the last MV or P iterative hard-decision values of the bit-
node messages obtained from the adopted decoding algo-
rithm have been stored in the memory of CMVP unit before
executing CMVP algorithm.

Step 1) Initialize: Set C, P and MV to some prescribed
proper values. Set the value of bit count variable Nb to 1.
Denote LNb as the LLR value of the Nb-th bit in Eq. (4).
Step 2) Test the confidence: If |LNb| ≥ C, set this bit to the
latest decoding result and go to Step 5.
Step 3) Test the persistency: If the last P iterated decoding
results of the Nb-th bit are all the same, set this bit to the
latest decoding result and go to Step 5.
Step 4) Perform majority vote: Execute the majority vote
based on the last MV decoding results of the tested bit, if it
has more 1 than 0, set this bit to 1, and vice versa.
Step 5) Check termination condition: Nb = Nb + 1. If Nb

is less than or equal to the code length, go to Step 2.
Step 6) End of the algorithm: Output the decoded bits.

Figure 11 shows the flow chart of the CMVP algorithm

Fig. 11 The flow chart of the CMVP algorithm.

which corresponds to the CMVP block in Fig. 2. Notice that
this algorithm can be flexibly adjusted by considering differ-
ent combinations of the design factors, such as including all
the testing factors (i.e., C, MV and P) or any two factors out
three possible factors or only one factor for low complexity
design requirements.

In designing CMVP architecture, we need to decide the
optimal C, MV and P values first. Since it is hard to derive
the optimal values by theoretical analysis, computer simula-
tions were conducted to properly decide the values. Simula-
tion results show that MV=3 and C=1 achieve the best per-
formance among all the tested settings. In this case, there
is no need to consider P, because the maximum P value is
equal to the trivial value of one according to the constraint
that P should be smaller than half of MV value and larger
than 1. Figure 12 compares the performances of the CMVP
algorithm (assuming MV=3 and C=1) combined with the
modified MSA and the modified MSA alone. As shown, the
proposed algorithm achieves better performances than the
modified MSA by more than 0.2 dB.

It is very easy to test the condition if |LNb| ≥ C by us-
ing TCSM unit, because if we select C=1 with [7:5] quan-
tization scheme mentioned before, (i.e. C will be ‘0100000’
in sign magnitude representation), we only need to check
the second bit from the MSB of TCSM output for each bit
node. Note that the MSB of TCSM output is the sign bit.
The combined TCSM and CMVP architecture is shown in
Fig. 13 where thick and thin lines represent the multi-bit and
single-bit buses, respectively. In the figure, there are two
3 × 1-bit memory units (because MV=3) which respectively
store the last three iterative hard-decision values of the bit-
node messages x(0) and x(1) from BNUs. The control signal
“Codeword no.” is used to select the right memory unit to

2988
IEICE TRANS. COMMUN., VOL.E93–B, NO.11 NOVEMBER 2010

be accessed at the right time.

4. Implementation

As mentioned before, the proposed design processes two
different codewords concurrently without any stalls. It takes
four clock cycles to complete a decoding iteration for each
codeword, including two cycles for CNUs and two cycles
for BNUs. For channel value loading, each codeword takes

Fig. 12 Fixed-point simulations of the proposed CMVP algorithm
combined with the modified MSA, iteration number=10.

Fig. 13 The Combined [7:5] TCSM and CMVP unit, C=1 and MV=3.

Table 2 Comparison of LDPC decoders.

one extra cycle. Since the maximum iteration number of
decoding a codeword is 10 in the proposed design, the to-
tal amount of clock cycles needed to complete the decoding
of two different codewords is 1+1+10*4=42 cycles. More-
over, since the synthesized clock frequency is 400 MHz, the
decoding throughput is 400*[1152*(1/2)]/42≈5.5 Gbps.

The proposed LDPC decoder is compared with some
other designs, as listed in Table 2. Notice that the 2nd and
3rd columns are the proposed decoders with and without
the CMVP algorithm, respectively. As mentioned before,
adopting CMVP algorithm can further improve the decod-
ing performance by more than 0.2 dB in this design case.
One can see that the area and power overheads of the CMVP
algorithm are 4K gates and 2 mW, which only occupy 0.7%
and 1% of the total area and power consumption, respec-
tively.

Since the compared designs are implemented with
different IC process technologies, code structures, code
lengths, code rates, word lengths and iteration numbers, it
is hard to do a precise comparison. However, some observa-
tions still can be concluded. As shown, compared with the
fully parallel designs [4], [5], the proposed design operates
with a smaller iteration number and a longer word length. It
is for the consideration of good trade-off between hardware
complexity and decoding performance as described in the
beginning of Sect. 3. Besides, the throughput of 5.5 Gbps
is much higher than 1.024 Gbps of [4] and 3.3 Gbps of [5],
at the same time it only costs 2/5 area of [4] and slightly
smaller than that of [5].

Compared with the partially parallel design in [7], the
proposed design has a slightly larger area (in terms of gate
counts), probably because that the decoder of [7] only de-
codes a codeword at a time and needs no additional memory
control circuit to handle the second codeword. However,
note that [7] does not specifies the word length of its design
and the word length could have noticeable impact on the
area size. Regarding the throughput performance, the new
design is five times that of [7].

As mentioned in Sect. 3.2, the proposed structure is

HUNG and CHEN: AN EFFICIENT LDPC DECODER ARCHITECTURE WITH A HIGH-PERFORMANCE DECODING ALGORITHM
2989

based on an optimized decoding schedule and special mem-
ory arrangement. The proposed design requires less mem-
ory sub-blocks and multiplexers than the designs of [8]. Be-
sides, the designed six-input BNU can be dynamically ad-
justed to execute three two-input BNEs at the same time.
Hence, the BNUs attain high area utilization in executing
BNE set 1 and BNE set 2. These design features help the
proposed decoder to achieve 100% hardware utilization rate
which is more efficient than [8].

Compared with the design of [17] assuming the same
IC process technology and iteration number, the proposed
design has a much higher throughput than 2.2 Gbps of
[17], even thought the clock rate of the proposed design
is 400 MHz which is much slower than 950 MHz of [17].
Besides, the power consumption of proposed design is also
much less than the design of [17]. Overall, in terms of time
and area performances, the proposed designs are better than
the compared designs.

5. Conclusion

A partially parallel, high-throughput and area-efficient
LDPC decoder architecture has been proposed in the work.
Owing to an optimized scheduling scheme and combined
MMU design for message passing, the proposed design
achieve 100% utilization rate in CNU and BNU, while re-
quire smaller memory size than the existing designs. Based
on the structure, a decoder for the (576,288) LDPC code of
802.16e standard is realized. In addition, in order to reduce
the decoding error and compensate the performance loss due
to fixed-point realization of an LDPC decoder, a CMVP al-
gorithm is employed in the proposed design with very small
hardware overhead. The design concepts and techniques can
also be well applied to other LDPC decoder designs with
different specifications.

Acknowledgments

This work is supported in part by the grants NSC 95-2219-
E-009-004 and MOEA 95-EC-17-A-01-S1-048, Taiwan.

References

[1] R.G. Gallager, Low-density parity-check codes, MIT Press, MA,
1963.

[2] R. Tanner, “A recursive approach to low complexity codes,” IEEE
Trans. Inf. Theory, vol.IT-27, no.3, pp.533–547, Sept. 1981.

[3] C.J. Howland and A.J. Blanksby, “Parallel decoding architectures
for low density parity check codes,” Proc. IEEE ISCAS’01, vol.4,
pp.742–745, May 2001.

[4] A.J. Blanksby and C.J. Howland, “A 690-mW 1-Gb/s 1024-b, rate-
1/2 low-density parity-check code decoder,” IEEE J. Solid-State Cir-
cuits, vol.37, no.3, pp.404–412, March 2002.

[5] A. Darabiha, A.C. Carusone, and F. Kschischang, “A 3.3-Gbps bit-
serial block-interlaced min-sum LDPC decoder in 0.13-μm CMOS,”
Proc. IEEE CICC’07, pp.459–462, San Jose, California, Sept. 2007.

[6] Z. Cui and Z. Wang, “Area-efficient parallel decoder architecture for
high rate QC-LDPC codes,” Proc. IEEE ISCAS’06, pp.5107–5110,
May 2006.

[7] S.H. Kang and I.C. Park, “Loosely coupled memory-based decod-
ing architecture for low density parity check codes,” IEEE Trans.
Circuits Syst. I, vol.53, no.5, pp.1045–1056, May 2006.

[8] C.-C. Lin, K.-L. Lin, H.-C. Chang, and C.-Y. Lee, “A 3.33 Gb/s
(1200,720) low-density parity check code decoder,” Proc. IEEE ES-
SCIRC’05, pp.211–214, Sept. 2005.

[9] I.C. Park and S.H. Kang, “Scheduling algorithm for partially parallel
architecture of LDPC decoder by matrix permutation,” Proc. IEEE
ISCAS’05, pp.5778–5781, May 2005.

[10] Y. Chen and K.K. Parhi, “Overlapped message passing for quasi-
cyclic low-density parity check codes,” IEEE Trans. Circuits Syst. I,
vol.51, no.6, pp.1106–1113, June 2004.

[11] D.J.C. MacKay, “Good error-correcting codes based on very sparse
matrices,” IEEE Trans. Inf. Theory, vol.45, no.2, pp.399–431, March
1999.

[12] X.Y. Hu, E. Eleftheriou, D.M. Arnold, and A. Dholakia, “Efficient
implementation of the sum-product algorithm for decoding LDPC
codes,” Proc. IEEE GLOBECOM’01, vol.02, pp.1036–1036E, Nov.
2001.

[13] J. Chen and M.P.C. Fossorier, “Near optimum universal belief prop-
agation based decoding of low-density parity check codes,” IEEE
Trans. Commun., vol.50, no.3, pp.583–587, March 2002.

[14] J.H. Hung and S.G. Chen, “A low-complexity high-performance de-
coding algorithm for fixed-point LDPC decoder,” Proc. IEEE IC-
SPCS’08, pp.1–5, Dec. 2008.

[15] Part 16: Air Interface for Fixed and Mobile BroadbandWireless Ac-
cess Systems Amendment for Physical and Medium Access Con-
trol Layers for Combined Fixed and Mobile Operation in Licensed
Bands, IEEE P802.16e-2005, 2005.

[16] J.H. Hung and S.G. Chen, “A systematic optimized comparison al-
gorithm for fast LDPC decoding,” Proc. IEEE ISSPIT’07, pp.922–
926, Dec. 2007.

[17] K. Zhang, X. Huang, and Z. Wang, “High-throughput layered de-
coder implementation for quasi-ldpc codes,” IEEE J. Sel. Areas
Commun., vol.27, no.6, pp.985–994, Aug. 2009.

Jui-Hui Hung received his B.S. degree from
National Chi Nan University, Taiwan, in 2005
and M.S. degree in electrical engineering, from
the Institute of Electronics, National Chiao Tung
University. He is currently a Ph.D. student at the
same Institution. His research interests include
digital signal processing, channel coding, VLSI
architecture and bio-information.

Sau-Gee Chen received his B.S. degree
from National Tsing Hua University, Taiwan, in
1978, M.S. degree and Ph.D. degree in electrical
engineering, from the State University of New
York at Buffalo, NY, in 1984 and 1988, respec-
tively. During 2003 and 2006, he was director
of Institute of Electronics, Department of Elec-
tronics Engineering, National Chiao Tung Uni-
versity, Taiwan. Currently, he is a professor at
the same organization. His research interests in-
clude digital communication, multi-media com-

puting, digital signal processing, and VLSI signal processing. He has pub-
lished more than 100 conference and journal papers, and holds several US
and Taiwan patents.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

