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Abstract The hypercube family Qn is one of the most well-known interconnection
networks in parallel computers. With Qn, dual-cube networks, denoted by DCn, was
introduced and shown to be a (n + 1)-regular, vertex symmetric graph with some
fault-tolerant Hamiltonian properties. In addition, DCn’s are shown to be superior to
Qn’s in many aspects. In this article, we will prove that the n-dimensional dual-cube
DCn contains n+1 mutually independent Hamiltonian cycles for n ≥ 2. More specif-
ically, let vi ∈ V (DCn) for 0 ≤ i ≤ |V (DCn)|− 1 and let 〈v0, v1, . . . , v|V (DCn)|−1, v0〉
be a Hamiltonian cycle of DCn. We prove that DCn contains n+1 Hamiltonian cycles
of the form 〈v0, v

k
1, . . . , vk

|V (DCn)|−1, v0〉 for 0 ≤ k ≤ n, in which vk
i �= vk′

i whenever
k �= k′. The result is optimal since each vertex of DCn has only n + 1 neighbors.

Keywords Hypercube · Dual-cube · Hamiltonian cycle · Hamiltonian connected ·
Mutually independent

1 Introduction

An n-dimensional hypercube Qn is a graph with the vertex set {0,1}n and there is an
edge between any two vertices that differ exactly in one bit position. The hypercube
family is one of the most well-known and popular interconnection networks due to
its excellent properties such as the recursive structure, symmetry, small diameter, low
degree, easy routing, and so on; see [7, 8, 12, 14, 30].
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The dual-cube family DCn, n ≥ 1, was first introduced by Li, Peng, and Wu [17].
They make 2n+1 copies of Qn and divide them into two classes, Class 0 and Class 1.
Each class consists of 2n copies of Qn and each copy is called a cluster. By prop-
erly adding edges, they connect every pair of clusters from the opposite classes with
an edge and prove that DCn is a (n + 1)-regular, vertex symmetric graph that con-
tains some properties superior to hypercubes. Notice that the number of vertices of
an n-dimensional dual-cube DCn is equal to the number of vertices of a (2n + 1)-
dimensional hypercube Q2n+1. Each vertex in Q2n+1 is adjacent to 2n+ 1 neighbors
and the total number of edges of Q2n+1 is (2n + 1) × 22n. On the other hand, each
vertex in DCn is adjacent to n + 1 neighbors and the total number of edges of DCn

is (n + 1) × 22n. Although any DCn has much less edges than Q2n+1 with the same
number of vertices, the diameter of DCn, 2n+ 2, is of the same order of the diameter
of Q2n+1, which is 2n + 1. Other advanced subjects such as fault-tolerant cycle em-
bedding and multiple disjoint paths construction in dual-cubes are also investigated
[13, 15–20].

The concept of mutually independent Hamiltonian cycles arises from the follow-
ing application [22]. If k pieces of data must be sent from a message center u, and
the data must be processed at each intermediate receiver (and the process takes time)
before they are sent back to the center, then the existence of mutually independent
cycles from u guarantees that there will be no waiting time for the parallel process-
ing. Recently, many studies about mutually independent Hamiltonian cycles on hy-
percubes and their variants are published [22–24]. In this article, we prove that the
n-dimensional dual-cube DCn contains n + 1 mutually independent Hamiltonian cy-
cles for n ≥ 2. The result is optimal since DCn is a (n + 1)-regular graph. The article
is organized as follows. In Sect. 2, we introduce the graph terminologies and nota-
tions used in this paper, the precise definition of DCn and the new labeling of its
vertices. In Sect. 3, we prove that DCn, n ≥ 2, contains n + 1 mutually independent
Hamiltonian cycles.

2 Preliminaries

For the graph definitions and notations, we follow [3]. G = (V ,E) is a graph if V is
a finite set and E is a subset of {(u, v) | (u, v) is an unorder pair of V }. We say that
V is the vertex set and E is the edge set of G. Two vertices u and v are adjacent if
(u, v) ∈ E. The total number of vertices of G is denoted by |V (G)|. For a vertex u of
G, we denote the degree of u by deg(u) = |{v | (u, v) ∈ E}|. A graph G is k-regular
if, for every vertex u ∈ G, deg(u) = k.

A path is represented by 〈v0, v1, v2, . . . , vk〉, where all vertices are distinct. We
also write the path 〈v0, v1, v2, . . . , vk〉 as 〈v0,Q1, vi, vi+1, . . . , vj ,Q2, vt , . . . , vk〉,
where Q1 is the path 〈v0, v1, . . . , vi−1, vi〉 and Q2 is the path 〈vj , vj+1, . . . , vt−1, vt 〉.
If a path P = 〈v0, v1, v2, . . . , vk−1, vk〉, then P −1 denotes the path 〈vk, vk−1, . . . , v2,

v1, v0〉. A Hamiltonian path between u and v, where u and v are two distinct vertices
of G, is a path joining u to v that visits every vertex of G exactly once. A graph G is
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Fig. 1 The hypercubes Q1,
Q2, and Q3

Hamiltonian connected if there exists a Hamiltonian path between any two different
vertices of G. Two paths P1 = 〈u0, u1, . . . , um〉 and P2 = 〈v0, v1, . . . , vm〉 from a to
b are independent [22] if u0 = v0 = a, um = vm = b, and ui �= vi for 1 ≤ i ≤ m − 1.
Paths with the same number of vertices from a to b are mutually independent [22] if
every two different paths are independent.

A graph G = (B ∪ W,E) is bipartite if V (G) is the union of two disjoint sets B

and W and E ⊆ {(u, v) | u ∈ B,v ∈ W }. It is easy to see that any bipartite graph with
at least three vertices is not Hamiltonian connected. A bipartite graph G is Hamil-
tonian laceable if there exists a Hamiltonian path between any two vertices from the
opposite partite sets.

A cycle is a path of at least three vertices such that the first vertex is the same as the
last vertex. A Hamiltonian cycle of G is a cycle that visits every vertex of G exactly
once. A Hamiltonian graph is a graph with a Hamiltonian cycle. The length of a cy-
cle C is the number of edges/vertices in C. Two cycles C1 = 〈u0, u1, . . . , uk, u0〉 and
C2 = 〈v0, v1, . . . , vk, v0〉 beginning at s are independent if u0 = v0 = s and ui �= vi

for 1 ≤ i ≤ k [23]. Cycles beginning at s with equal length are mutually independent
if every two different cycles are independent. Let G be a graph. We say that G con-
tains n mutually independent Hamiltonian cycles if there exist n Hamiltonian cycles
in G such that the n cycles begin at the same vertex s and are mutually independent.
There are numerous studies in mutually independent Hamiltonian cycles. Readers
can refer to [10, 24, 26, 28].

An n-dimensional hypercube, denoted by Qn, is a graph with 2n vertices, and each
vertex u can be distinctly labeled by an n-bit binary string, u = un−1un−2 · · ·u1u0.
There is an edge between two vertices if and only if their binary labels differ in
exactly one bit position. See Fig. 1 for an illustration. Sun et al. proved that the n-
dimensional hypercube Qn contains n mutually independent Hamiltonian cycles for
n ≥ 4 [28]. Other studies about hypercubes are in [4, 5, 9, 12, 21, 25, 29–31, 33].

The dual-cube family DCn, n ≥ 1, was first introduced by Li and Peng in
2000 [15]. Its nice structure has drawn the attention of many researchers [11, 15–20].
A dual-cube DCn is obtained from a basic component Qn as follows. Make 2n+1

copies of Qn and divide them into two classes, Class 0 and Class 1. Each class con-
sists of 2n copies of Qn and each copy is called a cluster. We shall label the 2n clus-
ters in each class by {0,1}n, called the cluster id. Any vertex u ∈ V (DCn) is given a
vertex id, which is a (2n + 1)-bit binary string. Let u = u2nu2n−1 · · ·unun−1 · · ·u0.
If u2n = 0, then the next n bits u2n−1 · · ·un is called the cluster id and the last n bits
un−1 · · ·u0 is called the vertex id. If u2n = 1, then the next n bits u2n−1 · · ·un is called
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Fig. 2 The graph DC2. Notice that label of each vertex u ∈ V (DC2) consists of 5 bits. The first bit is the
class id. The two bits with the underline are called the cluster id, and the other two bits in Italic form are
called the vertex id

the vertex id and the last n bits un−1 · · ·u0 is called the cluster id. The following dia-
gram gives an illustration.

u ∈ Class 0: 0
Cluster id

︷ ︸︸ ︷

u2n−1u2n−2 · · ·un

Vertex id in Qn
︷ ︸︸ ︷

un−1un−2 · · ·u0;

u ∈ Class 1: 1

Vertex id in Qn
︷ ︸︸ ︷

u2n−1u2n−2 · · ·un

Cluster id
︷ ︸︸ ︷

un−1un−2 · · ·u0 .

Given two vertices u = u2n · · ·u0 and v = v2n · · ·v0, there is an edge between u and
v in DCn if and only if the following conditions are satisfied:

• u and v differ in exactly one bit position i, where 0 ≤ i ≤ 2n;
• if 0 ≤ i ≤ n − 1, then u2n = v2n = 0;
• if n ≤ i ≤ 2n − 1, then u2n = v2n = 1.

By the definition of DCn and the study of [20], we know that DCn is an (n + 1)-
regular bipartite graph. Any vertex u in DCn is adjacent to n vertices in the same
cluster and to one vertex in some cluster of the other class. There is no edge between
clusters of the same class. The edges within the same cluster are called regular-edges,
and the edges connecting two clusters of distinct classes are called cross-edges. An
illustration of DC2 is given in Fig. 2.
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Fig. 3 Using the new labeling scheme which was proposed by Chen and Kao in [6] for V (DC2), we label
each vertex in DC2 by (i, j, k), where i is the class id, j the cluster id, and k the vertex id

In 2008, Chen and Kao [6] proposed a more convenient new labeling for vertices
of dual-cubes. Dual-cube DCn consists of two classes, Class 1 and Class 2. For i ∈
{1,2}, Class i has 2n copies of Qn, namely, Gi,1, . . . ,Gi,2n

, and each Gi,j is called a
cluster. For i ∈ {1,2}, let OGi = {Gi,j | 1 ≤ j ≤ 2n and j is odd} and EGi = {Gi,j |
1 ≤ j ≤ 2n and j is even}. Notice that each of OG1, OG2, EG1, and EG2 consists of
2n−1 clusters. We shall label any vertex in Gi,j of DCn by (i, j, k), where k is the
vertex id in Qn. Two vertices (i, j, k) and (i′, j ′, k′) are adjacent in DCn if and only
if one of the following conditions are satisfied:

(1) i = i′, j = j ′ and the vertices k and k′ are adjacent in Qn;
(2) |i − i′| = 1, j = k′, and k = j ′.

The edges satisfying (1) are regular-edges. The edges satisfying (2) are cross-edges,
which connect different pairs of clusters belonging to the two classes. Vertices in a
certain cluster use cross-edges to reach vertices in distinct clusters in the opposite
class. Therefore, by regarding each cluster as a vertex, DCn becomes a complete
bipartite graph K2n,2n . Every cross-edge has the corresponding end vertices in the two
clusters of the opposite classes. For example, the cross-edge connecting the clusters
G1,i and G2,j has end vertices (1, i, j) ∈ G1,i and (2, j, i) ∈ G2,j . Notice that DCn

is vertex symmetric. Figure 3 depicts DC2 using the new labeling scheme mentioned
above.
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3 Mutually independent Hamiltonian cycles in dual-cubes

In this section, we use the new labeling scheme proposed in [6]. Throughout this
section, we assume that vertex (i, j, k) is black (resp. white) in DCn if i+j +k is even
(resp. odd), without loss of generality. The following two results were established in
[27] and [28].

Lemma 1 [27] The hypercube Qn is Hamiltonian laceable for any positive integer n.

Theorem 1 [28] The n-dimensional hypercube contains n − 1 mutually independent
Hamiltonian cycles for n ∈ {1,2,3} and contains n mutually independent Hamil-
tonian cycles for n ≥ 4.

Assume that b = (i, j, k) is a black vertex, w = (3 − i, k, j) is a white vertex, and
b and w are connected by a cross-edge in DCn for i = 1,2 and 1 ≤ j, k ≤ 2n. The
following results are true:

• If i = 1, j is odd and k is even, then b ∈ OG1 and w ∈ EG2.
• If i = 1, j is even and k is odd, then b ∈ EG1 and w ∈ OG2.
• If i = 2, j is odd and k is odd, then b ∈ OG2 and w ∈ OG1.
• If i = 2, j is even and k is even, then b ∈ EG2 and w ∈ EG1.

Therefore, we have the following property.

Property 1 In DCn, a black vertex in OG1, EG2, EG1, or OG2 is adjacent to a white
vertex in EG2, EG1, OG2, or OG1, respectively.

Theorem 2 The 2-dimensional dual-cube DC2 contains 3 mutually independent
Hamiltonian cycles.

Proof Note that DC2 is vertex symmetric. We assume that any Hamiltonian cycle be-
gins at the vertex (1,1,1) without loss of generality. The three required cycles C1, C2,
and C3 beginning at (1,1,1) are constructed specifically. Please see Appendix A. �

Theorem 3 The 3-dimensional dual-cube DC3 contains 4 mutually independent
Hamiltonian cycles.

Proof Since DC3 is vertex symmetric, we assume that any Hamiltonian cycle begins
at the vertex (1,7,1) without loss of generality. We construct the four required cycles
C1, C2, C3, and C4 beginning at (1,7,1). Please see Appendix B. �

Let ai ’s and a′
i ’s be clusters of DCn, where 1 ≤ i ≤ 2n+1. We say that two cluster

sequences S1 = 〈a1, a2, . . . , aj 〉 and S2 = 〈a′
1, a

′
2, . . . , a

′
j 〉 are independent if ai �= a′

i

for 1 ≤ i ≤ j . Cluster sequences with equal length are pairwise independent if any
pair of the cluster sequences is independent. For any two positive integers r and d ,
[r]d denotes r(mod d).
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Lemma 2 For n ≥ 2, there exist 2n−1 − 1 pairwise independent cluster sequences of
the form 〈a1, a2, . . . , a2n+1−1〉 in DCn −{G1,2n−1}, where a[i]4=0 ∈ OG1 −{G1,2n−1},
a[i]4=1 ∈ EG2, a[i]4=2 ∈ EG1, and a[i]4=3 ∈ OG2.

Proof In DCn, there are 2n−1 clusters in each of EG1, EG2, OG1, and OG2.
So OG1 − {G1,2n−1} contains 2n−1 − 1 clusters. We divide the cluster sequence
〈a1, a2, . . . , a2n+1−1〉 into four subsequences. That is, S1 = 〈a1, a5, . . . , a2n+1−3〉,
S2= 〈a2, a6, . . . , a2n+1−2〉, S3= 〈a3, a7, . . . , a2n+1−1〉, and S4= 〈a4, a8, . . . , a2n+1−4〉.

For 1 ≤ i ≤ 3, Si has 2n−1 elements and there exist 2n−1 choices for each element.
Using the structure of a Latin square with 2n−1 × 2n−1 entries, we know that there
exist 2n−1 possible combinations of clusters in Si , denoted by S̄k

i for 1 ≤ k ≤ 2n−1,

such that {S̄k
i }2n−1

k=1 are pairwise independent cluster sequences.
Similarly, S4 has 2n−1 − 1 elements and we have 2n−1 − 1 choices for each ele-

ment. Hence, there exist 2n−1 − 1 possible combinations of clusters in S4, denoted

by S̄k
4 for 1 ≤ k ≤ 2n−1 − 1, such that {S̄k

4 }2n−1−1
k=1 are pairwise independent cluster

sequences.
Therefore, for n ≥ 2, there exist (2n−1 −1) pairwise independent cluster sequences

〈a1, a2, . . . , a2n+1−1〉 in DCn − {G1,2n−1}. �

Lemma 3 Let 〈a1, a2, . . . , a2n+1−1〉 be a cluster sequence of DCn −{G1,2n−1}, where
a[i]4=0 ∈ OG1 −{G1,2n−1}, a[i]4=1 ∈ EG2, a[i]4=2 ∈ EG1, and a[i]4=3 ∈ OG2. Assume
that u is a white vertex in a1 and v is a black vertex in a2n+1−1, then there is a Hamil-
tonian path 〈u = x1,H1, y1, x2,H2, y2, . . . , x2n+1−1,H2n+1−1, y2n+1−1 = v〉 between
u and v, where xi is a white vertex, yi is a black vertex, {xi, yi} ∈ V (ai), and Hi is a
Hamiltonian path of ai joining xi to yi for every 1 ≤ i ≤ 2n+1 − 1.

Proof By Property 1, a black vertex yi in ai is adjacent to a white vertex xi+1 in ai+1
by a cross-edge for 1 ≤ i ≤ 2n+1 − 2. Notice that each cluster is a hypercube, u = x1
is a white vertex in a1 and v = y2n+1−1 is a black vertex in a2n+1−1. By Lemma 1,
there is a Hamiltonian path Hi in cluster ai joining xi to yi for 1 ≤ i ≤ 2n+1 − 1.
Then 〈u = x1,H1, y1, x2,H2, y2, . . . , x2n+1−1,H2n+1−1, y2n+1−1 = v〉 is the desired
Hamiltonian path. �

Theorem 4 For n ≥ 4, there are n + 1 mutually independent Hamiltonian cycles in
DCn.

Proof We want to construct n+1 mutually independent Hamiltonian cycles, denoted
by C̄i for 1 ≤ i ≤ n + 1, for DCn. Since DCn is vertex symmetric, without loss of
generality, we assume C̄i starts at (1,2n − 1,1) for 1 ≤ i ≤ n + 1. By Theorem 1
and the fact that each cluster Gi,j in DCn is Qn, there are n mutually independent
Hamiltonian cycles C1,C2, . . . ,Cn beginning at the white vertex (1,2n − 1,1) in the
cluster G1,2n−1. Without loss of generality, let Ci = 〈v∗

1 , vi
2, v

i
3, . . . , v

i
2n−1, v

i
2n , v

∗
1〉

for 1 ≤ i ≤ n, where v∗
1 = (1,2n − 1,1). Please see Fig. 4 for an illustration.

Notice that vi
m is a white vertex if m is odd and vi

m is a black vertex if m is
even. Besides, 2n−1 − 1 ≥ n + 1 when n ≥ 4. By Lemma 2, we know that there exist
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Fig. 4 An illustration for
Theorem 4

2n−1 − 1 pairwise independent cluster sequences for n ≥ 4. The 2n−1 − 1 pairwise
independent cluster sequences are enough for us to construct the n + 1 mutually
independent Hamiltonian cycles below. There are three cases.

Case 1. To construct {C̄i : 1 ≤ i ≤ n − 1}. We consider the mutually independent
Hamiltonian cycles C1,C2, . . . ,Cn−1 in G1,2n−1. Note that vi

2 is adjacent to a white
vertex v̄i

2 and vi
3 is adjacent to a black vertex v̄i

3 by cross-edges for 1 ≤ i ≤ n − 1.
By Lemma 2, there exist n − 1 (≤ 2n−1 − 1) pairwise independent cluster sequences
Ti = 〈ai

1, a
i
2, . . . , a

i
2n+1−1

〉 in DCn − {G1,2n−1} for 1 ≤ i ≤ n − 1 such that v̄i
2 ∈ ai

1

and v̄i
3 ∈ ai

2n+1−1
. By Lemma 3, there is a Hamiltonian path Pi joining v̄i

2 to v̄i
3 in Ti

for 1 ≤ i ≤ n − 1. Hence, C̄i = 〈v∗
1 , vi

2, v̄
i
2,Pi, v̄

i
3, v

i
3, . . . , v

i
2n , v

∗
1〉, 1 ≤ i ≤ n − 1, are

the desired cycles.

Case 2. To construct C̄n. In DCn, the black vertex vn
2n is adjacent to the white ver-

tex v̄n
2n and the white vertex vn

1 is adjacent to the black v̄n
1 by cross-edges. In DCn −

{G1,2n−1}, by Lemma 2, there is a cluster sequence Tn = 〈an
1 , an

2 , . . . , an
2n+1−1

〉, which
is pairwise independent with Ti for 1 ≤ i ≤ n−1 such that v̄n

2n ∈ an
1 and v̄∗

1 ∈ an
2n+1−1

.
According to Lemma 3, there is a Hamiltonian path Pn joining v̄n

2n to v̄∗
1 in Tn. There-

fore, C̄n = 〈v∗
1 , vn

2 , . . . , vn
2n , v̄

n
2n ,Pn, v̄

∗
1 , v∗

1〉 is the desired cycle.

Case 3. To construct C̄n+1. The white vertex v∗
1 is adjacent to the black vertex v̄∗

1
and the black vertex vn

2 is adjacent to the white vertex v̄n
2 by cross-edges in DCn.

Because of Lemma 2, there is a cluster sequence Tn+1 = 〈an+1
1 , an+1

2 , . . . , an+1
2n+1−1

〉
in DCn − {G1,2n−1}, which is pairwise independent with Ti for 1 ≤ i ≤ n such that
v̄∗

1 ∈ an+1
1 and v̄n

2 ∈ an+1
2n+1−1

. By Lemma 3, there is a Hamiltonian path Pn+1 joining

v̄∗
1 to v̄n

2 in Tn+1. So C̄n+1 = 〈v∗
1 , v̄∗

1 ,Pn+1, v̄
n
2 , vn

2 , . . . , vn
2n , v

∗
1〉 is the desired cycles.

Please see the Fig. 5.
By Case 1, Case 2, and Case 3, the n + 1 mutually independent Hamiltonian cy-

cles C̄1, C̄2, . . . , C̄n+1 in DCn for n ≥ 4 are constructed. This completes the proof. �
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Fig. 5 An illustration for Case 1, Case 2, and Case 3 in Theorem 4. Notice that the gray areas are in
G1,2n−1

4 Conclusion

In [28], it was shown that the hypercube Qn, when n ∈ {2,3}, contains only n − 1
mutually independent Hamiltonian cycles. However, to our surprise, Theorem 2 and
Theorem 3 show that DC2 contains 3 mutually independent Hamiltonian cycles and
DC3 contains 4 mutually independent Hamiltonian cycles. In addition, according to
Theorem 4, there are n + 1 mutually independent Hamiltonian cycles in DCn for
n ≥ 4. Therefore, we have the following result.

Corollary 1 The n-dimensional dual-cube DCn contains n+1 mutually independent
Hamiltonian cycles for n ≥ 2.

Due to the fact that each vertex of DCn is connected to (n + 1) vertices, there are
not any more Hamiltonian cycles emerging from the same vertex in addition to the
n+1 mutually independent Hamiltonian cycles shown above. Therefore, our result is
optimal. Another internet architecture that is more cost-effective (more scalable) than
the traditional hypercubes and considered as a clever variation to the hypercube is the
multi-ring [1, 2, 32]. Various studies such as the fault-tolerant cycle embedding and
the existence of mutually independent Hamiltonian cycles in the multi-ring networks
will be interesting topics to be explored.

Acknowledgements This research was partially supported by the National Science Council of the Re-
public of China under contract NSC 96-2115-M-033-002-MY2.

Appendix A: The three required cycles of Theorem 2

C1 = 〈(1,1,1), (1,1,2), (1,1,3), (1,1,4), (2,4,1), (2,4,2), (1,2,4), (1,2,1),

(2,1,2), (2,1,3), (1,3,1), (1,3,2), (2,2,3), (2,2,4), (2,2,1), (2,2,2),
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(1,2,2), (1,2,3), (2,3,2), (2,3,1), (2,3,4), (2,3,3), (1,3,3), (1,3,4),

(2,4,3), (2,4,4), (1,4,4), (1,4,3), (1,4,2), (1,4,1), (2,1,4), (2,1,1),

(1,1,1)〉;
C2 = 〈(1,1,1), (1,1,4), (2,4,1), (2,4,2), (2,4,3), (2,4,4), (1,4,4), (1,4,3),

(1,4,2), (1,4,1), (2,1,4), (2,1,1), (2,1,2), (2,1,3), (1,3,1), (1,3,4),

(1,3,3), (1,3,2), (2,2,3), (2,2,4), (2,2,1), (2,2,2), (1,2,2), (1,2,1),

(1,2,4), (1,2,3), (2,3,2), (2,3,3), (2,3,4), (2,3,1), (1,1,3), (1,1,2),

(1,1,1)〉;
C3 = 〈(1,1,1), (2,1,1), (2,1,4), (1,4,1), (1,4,2), (2,2,4), (2,2,3), (2,2,2),

(2,2,1), (1,1,2), (1,1,3), (2,3,1), (2,3,2), (2,3,3), (2,3,4), (1,4,3),

(1,4,4), (2,4,4), (2,4,3), (1,3,4), (1,3,3), (1,3,2), (1,3,1), (2,1,3),

(2,1,2), (1,2,1), (1,2,2), (1,2,3), (1,2,4), (2,4,2), (2,4,1), (1,1,4),

(1,1,1)〉.

Appendix B: The four required cycles of Theorem 3

C1 = 〈(1,7,1), (1,7,2), (1,7,3), (1,7,6), (1,7,7), (1,7,8), (1,7,5), (2,5,7),

(2,5,2), (2,5,1), (2,5,8), (2,5,5), (2,5,4), (2,5,3), (2,5,6), (1,6,5),

(1,6,4), (1,6,1), (1,6,8), (1,6,7), (1,6,2), (1,6,3), (1,6,6), (2,6,6),

(2,6,3), (2,6,2), (2,6,7), (2,6,8), (2,6,1), (2,6,4), (2,6,5), (1,5,6),

(1,5,3), (1,5,4), (1,5,5), (1,5,8), (1,5,1), (1,5,2), (1,5,7), (2,7,5),

(2,7,4), (2,7,3), (2,7,6), (2,7,7), (2,7,2), (2,7,1), (2,7,8), (1,8,7),

(1,8,2), (1,8,3), (1,8,6), (1,8,5), (1,8,4), (1,8,1), (1,8,8), (2,8,8),

(2,8,1), (2,8,4), (2,8,5), (2,8,6), (2,8,7), (2,8,2), (2,8,3), (1,3,8),

(1,3,5), (1,3,4), (1,3,3), (1,3,6), (1,3,7), (1,3,2), (1,3,1), (2,1,3),

(2,1,6), (2,1,5), (2,1,4), (2,1,1), (2,1,8), (2,1,7), (2,1,2), (1,2,1),

(1,2,8), (1,2,5), (1,2,4), (1,2,3), (1,2,6), (1,2,7), (1,2,2), (2,2,2),

(2,2,7), (2,2,6), (2,2,3), (2,2,4), (2,2,5), (2,2,8), (2,2,1), (1,1,2),

(1,1,1), (1,1,8), (1,1,7), (1,1,6), (1,1,5), (1,1,4), (1,1,3), (2,3,1),

(2,3,2), (2,3,7), (2,3,8), (2,3,5), (2,3,6), (2,3,3), (2,3,4), (1,4,3),

(1,4,6), (1,4,7), (1,4,2), (1,4,1), (1,4,8), (1,4,5), (1,4,4), (2,4,4),
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(2,4,5), (2,4,8), (2,4,1), (2,4,2), (2,4,3), (2,4,6), (2,4,7), (1,7,4),

(1,7,1)〉;
C2 = 〈(1,7,1), (1,7,4), (2,4,7), (2,4,2), (2,4,3), (2,4,6), (2,4,5), (2,4,8),

(2,4,1), (2,4,4), (1,4,4), (1,4,1), (1,4,8), (1,4,7), (1,4,2), (1,4,3),

(1,4,6), (1,4,5), (2,5,4), (2,5,5), (2,5,6), (2,5,3), (2,5,2), (2,5,1),

(2,5,8), (2,5,7), (1,7,5), (1,7,8), (1,7,7), (1,7,2), (1,7,3), (1,7,6),

(2,6,7), (2,6,6), (2,6,3), (2,6,4), (2,6,5), (2,6,8), (2,6,1), (2,6,2),

(1,2,6), (1,2,5), (1,2,4), (1,2,3), (2,3,2), (2,3,7), (2,3,8), (2,3,1),

(2,3,4), (2,3,5), (2,3,6), (2,3,3), (1,3,3), (1,3,6), (1,3,5), (1,3,4),

(1,3,1), (1,3,8), (1,3,7), (1,3,2), (2,2,3), (2,2,6), (2,2,7), (2,2,2),

(1,2,2), (1,2,1), (1,2,8), (1,2,7), (2,7,2), (2,7,3), (2,7,4), (2,7,1),

(1,1,7), (1,1,8), (1,1,1), (1,1,4), (1,1,5), (1,1,6), (1,1,3), (1,1,2),

(2,2,1), (2,2,4), (2,2,5), (2,2,8), (1,8,2), (1,8,3), (1,8,4), (1,8,1),

(1,8,8), (1,8,5), (1,8,6), (1,8,7), (2,7,8), (2,7,7), (2,7,6), (2,7,5),

(1,5,7), (1,5,2), (1,5,3), (1,5,6), (1,5,5), (1,5,4), (1,5,1), (1,5,8),

(2,8,5), (2,8,8), (2,8,7), (2,8,2), (2,8,1), (2,8,4), (2,8,3), (2,8,6),

(1,6,8), (1,6,5), (1,6,4), (1,6,3), (1,6,6), (1,6,7), (1,6,2), (1,6,1),

(2,1,6), (2,1,3), (2,1,2), (2,1,1), (2,1,4), (2,1,5), (2,1,8), (2,1,7),

(1,7,1)〉;
C3 = 〈(1,7,1), (1,7,8), (1,7,5), (1,7,4), (1,7,3), (1,7,6), (1,7,7), (2,7,7),

(2,7,2), (2,7,3), (2,7,6), (2,7,5), (2,7,4), (2,7,1), (2,7,8), (1,8,7),

(1,8,2), (1,8,3), (1,8,6), (1,8,5), (1,8,4), (1,8,1), (1,8,8), (2,8,8),

(2,8,5), (2,8,4), (2,8,3), (2,8,6), (2,8,7), (2,8,2), (2,8,1), (1,1,8),

(1,1,5), (1,1,4), (1,1,3), (1,1,6), (1,1,7), (1,1,2), (1,1,1), (2,1,1),

(2,1,8), (2,1,6), (2,1,4), (2,1,3), (2,1,2), (2,1,7), (2,1,6), (1,6,1),

(1,6,8), (1,6,7), (1,6,2), (1,6,3), (1,6,6), (1,6,5), (1,6,4), (2,4,6),

(2,4,7), (2,4,2), (2,4,3), (2,4,4), (2,4,1), (2,4,8), (2,4,5), (1,5,4),

(1,5,1), (1,5,8), (1,5,5), (1,5,6), (1,5,7), (1,5,2), (1,5,3), (2,3,5),

(2,3,8), (2,3,1), (2,3,2), (2,3,7), (2,3,6), (2,3,3), (2,3,4), (1,4,3),

(1,4,2), (1,4,7), (1,4,8), (1,4,1), (1,4,4), (1,4,5), (1,4,6), (2,6,4),

(2,6,5), (2,6,8), (2,6,1), (2,6,2), (2,6,7), (2,6,6), (2,6,3), (1,3,6),
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(1,3,7), (1,3,2), (1,3,3), (1,3,4), (1,3,1), (1,3,8), (1,3,5), (2,5,3),

(2,5,4), (2,5,1), (2,5,8), (2,5,5), (2,5,6), (2,5,7), (2,5,2), (1,2,5),

(1,2,8), (1,2,1), (1,2,4), (1,2,3), (1,2,6), (1,2,7), (1,2,2), (2,2,2),

(2,2,3), (2,2,4), (2,2,1), (2,2,8), (2,2,5), (2,2,6), (2,2,7), (1,7,2),

(1,7,1)〉;
C4 = 〈(1,7,1), (2,1,7), (2,1,6), (2,1,3), (2,1,4), (2,1,5), (2,1,8), (2,1,1),

(2,1,2), (1,2,1), (1,2,8), (1,2,5), (1,2,4), (1,2,3), (1,2,6), (1,2,7),

(1,2,2), (2,2,2), (2,2,7), (2,2,8), (2,2,1), (2,2,4), (2,2,5), (2,2,6),

(2,2,3), (1,3,2), (1,3,7), (1,3,8), (1,3,1), (1,3,4), (1,3,5), (1,3,6),

(1,3,3), (2,3,3), (2,3,6), (2,3,7), (2,3,2), (2,3,1), (2,3,8), (2,3,5),

(2,3,4), (1,4,3), (1,4,2), (1,4,7), (1,4,8), (1,4,1), (1,4,4), (1,4,5),

(1,4,6), (2,6,4), (2,6,1), (2,6,8), (2,6,7), (2,6,2), (2,6,3), (2,6,6),

(2,6,5), (1,5,6), (1,5,3), (1,5,4), (1,5,1), (1,5,2), (1,5,7), (1,5,8),

(1,5,5), (2,5,5), (2,5,8), (2,5,1), (2,5,4), (2,5,3), (2,5,2), (2,5,7),

(2,5,6), (1,6,5), (1,6,6), (1,6,3), (1,6,4), (1,6,1), (1,6,2), (1,6,7),

(1,6,8), (2,8,6), (2,8,7), (2,8,8), (2,8,5), (2,8,4), (2,8,3), (2,8,2),

(2,8,1), (1,1,8), (1,1,1), (1,1,2), (1,1,3), (1,1,4), (1,1,5), (1,1,6),

(1,1,7), (2,7,1), (2,7,4), (2,7,5), (2,7,6), (2,7,3), (2,7,2), (2,7,7),

(2,7,8), (1,8,7), (1,8,6), (1,8,5), (1,8,8), (1,8,1), (1,8,2), (1,8,3),

(1,8,4), (2,4,8), (2,4,1), (2,4,2), (2,4,3), (2,4,4), (2,4,5), (2,4,6),

(2,4,7), (1,7,4), (1,7,5), (1,7,6), (1,7,3), (1,7,2), (1,7,7), (1,7,8),

(1,7,1)〉.
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