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VLSI Circuit Placement with Rectilinear Modules
using Three-Layer Force-Directed

Self-Organizing Maps
Ray-I Chang and Pei-Yung Hsiao

Abstract— In this paper, a three-layer force-directed self-
organizing map is designed to resolve the circuit placement
problem with arbitrarily shaped rectilinear modules. The
proposed neural model with an additional hidden layer can
easily model a rectilinear module by a set of hidden neurons
to correspond the partitioned rectangles. With the collective
computing from hidden neurons, these rectilinear modules can
correctly interact with each other and finally converge to a good
placement result. In this paper, multiple contradictory criteria
are accounted simultaneously during the placement process, in
which, both the wire length and the module overlap are reduced.
The proposed model has been successfully exploited to solve
the time consuming rectilinear module placement problem. The
placement results of real rectilinear test examples have been
presented, which demonstrate that the proposed method is better
than the simulated annealing approach in the total wire length.
Furthermore, on the average, the central processing unit (CPU)
time for the proposed method running on a sequential machine
is 15 times faster than that required by the simulated annealing
method. The appropriate parameter values which yield good
solutions are also investigated.

Index Terms— Force-directed placement method, molecule
model, query-based learning, rectilinear circuit, three-layer
self-organizing maps.

I. INTRODUCTION

GIVEN a set of circuits and how they are connected to
each other, the objective of circuit placement problem

is to optimally locate these modules within a specified layout
region. It determines the locations of modules such that all the
constraints are satisfied and the estimated total wire length is
minimized. In the physical circuit layout, the connection wire
length between modules is minimized to reduce the delays
associated with longer wire nets and speed up the operation
of chip. Good circuit placement is a key aspect in the very
large scale integration (VLSI) design, which has been proven
to be NP-hard [1]. Although a number of heuristic algorithms
have been proposed in the past with varying successes [2]–[8],
[25]–[30], they are inherently sequential and unable to effi-
ciently exploit massively parallel architecture. Artificial neural
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networks with massive parallelism have been demonstrated
to resolve various optimization problems [9]–[11], [16]–[24],
[43]. The development of a high-speed neural-based CAD
system for the design of VLSI chips has become one of
the interesting research topics. Moreover, current researches
in neural-network implementations have shown the feasibility
of building analog electronic neural networks with hundreds
and thousands of neurons [12]–[13]. It also demonstrates that
the massive parallelism neural network, e.g., Hopfield nets
(HOP’s) [14] or Kohonen’s self-organizing maps (SOM’s)
[15], can be implemented as a hardware accelerator to ac-
celerate the time consuming VLSI CAD processes. In this
paper, a novel three-layer neural-network model based on
SOM is proposed to solve the circuit placement problem with
rectilinear modules. It is the first neural-based algorithm that
is proposed to place the arbitrarily shaped rectilinear modules.
Our experiments have shown that the proposed algorithm
is better than Sechen’s approach [25] in both the obtained
total wire length and the simulated CPU time on a sequential
machine. Moreover, the placement region is also smaller.

Over the years, a wide repertoire of neural-network-based
placement methods have been suggested. These methods can
be classified into two major categories, HOP-type networks
and SOM-type networks. The HOP with a symmetrical inter-
connection matrix has been applied to minimize the connection
wire length in one [16] and two-dimensional (2-D) circuit
placement problems [17]–[21]. In 1989, Yu [17] has tried to
obtain a placement result using HOP, but not with great suc-
cess. The results of computer simulation show that this model
gives much the same solutions as the min-cut algorithm. Kita
et al. [18] have demonstrated that the quality of the placement
solution obtained by means of this model is quite sensitive to
some model parameters. Recently, Naft [19] have adapted this
model for the traveling salesman problem (TSP) to multiob-
jective component placement based on wire length criteria and
thermal reliability. Although HOP is more reasonable to model
an optimization problem, the hardware complexity which
represents the problem by a permutation matrix is very high.
In 1990, neuron’s self-organization property was presented
to resolve the 2-D cell placement problem by Hemani and
Postula [22]. In this research, a set of output neurons have been
organized in a rectangular grid to correspond to the location
of cells. An approach called SOAP (self-organization assistant
placement) was presented [9] in 1992. In SOAP, SOM is
applied as a preprocessor of other heuristic algorithms. An
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improvement of SOAP was presented by Zhang and Mlynski
[23]. This approach is well suited for standard cell and gate
array placement. However, it is not suitable to arbitrarily-sized
macro cell placement. Recently, an unsupervised query-based
neural network [37] based on the force-directed cell placement
method [2] and Kohonen’s SOM was proposed [24]. The
force-directed method[41] explores the similarity between
cell placement problem and classical mechanics problem of
a system of bodies (circuit cells) attached to springs (wire
nets). According to the Hook’s law, the force exerted due to
the stretching of the springs is proportional to the distance
between the bodies connected to the spring. If the circuit
cells were allowed to move freely, they would move by the
force until the system achieved equilibrium. The same idea is
used for SOM where the neurons connected to each other by
networks are supposed to exert stimulus (forces) on each other.
Following the query-based learning technique [42], the input
samples can be queried by the force-directed method. This
method has been successfully applied to the circuit placement
problem with arbitrarily-sized cells in [24]. The experiments
have shown that this approach is better than the previous
neural-based placement methods in both the performance and
the hardware requirement.

At present, VLSI circuit has become so dense and so
complicated that a custom chip may contain lots of macro
blocks. It is noted that the macro blocks used in VLSI design
may be of arbitrary shapes. Compare to the physical custom
chip layout, the major drawback of traditional neural-network-
based placement algorithms is that they cannot handle the
circuit blocks with arbitrary rectilinear shapes. In practice, the
boundary of the modules are general rectilinear shape if the
rectilinear hull for the layout of the predesigned modules is
taken. The design process of a complex custom chip can cost
millions of dollars and a year or more may elapse in moving
from initial characterization of the chip to a working design.
Thus, the industries need a placement technique which can
well place the rectilinear modules with short turn-around time.
Moreover, if the placement procedure can take the general
rectilinear shape instead of taking the bounding rectangle
or the limited L-shaped hull of the modules, the chip area
can be optimally utilized as there will be less dead space.
In this paper, a highly parallel method based on the force-
directed SOM (FDSOM) [24] with additional hidden layer
is proposed to resolve the more complex rectilinear module
placement problem.

Key to this proposed approach is a novel representation
method which simply models a rectilinear module by a set of
decomposed rectangles, called themolecule model. Assume
that the output layer and the input layer in the proposed
neural network are used to represent the rectilinear modules
and the input sample vector, respectively. We can model
these decomposed rectangles by the neurons in an additional
hidden layer. The connection weights from input layer to
the output layer and the hidden layer are used to represent
the positions of rectilinear modules and their decomposed
rectangles, respectively. The adjustment of these weights can
be interpreted as the movement of the corresponding blocks.
The proposed network model is learned from a sequence

of module movements and gradually organized toward a
good placement solution. Different from the original two-layer
model, there are connections between each output neuron and
its corresponding hidden neurons tosynchronizethe motion
of each rectilinear module and its decomposed rectangles. In
the proposed three-layer model, the adaptation of an output
neuron is decided by the adaptations of all the corresponding
hidden neurons. In another word, the motion of a rectilinear
module is decided by the motions of the corresponding rect-
angles. This study investigates the possibility of utilizing the
collective computing property of neural network to obtain a
better decision from the complex-description system, called
collective-decision. Comparing with our previous [24] paper
with limited rectangular blocks and reduced circle cells, this
proposed three-layer SOM has lots of differences such as
the molecule modeling, the ideal distance, and the dynamic
objective function. Our experiments show that the proposed
network model with collective computing property can obtain
effective and efficient solutions for the rectilinear module
placement problem. Experiments showed that the obtained
total wire length was 16.5% better than the simulated annealing
approach [25] on the average. The central processing unit
(CPU) time running on a sequential machine was 15 times
faster than that required by the simulated annealing method
[15]. Besides, the applied layout area is also smaller. More
comparisons with the heuristic constructive approach and the
analytical method are also presented. The rest of this paper
is organized as follows. We first review the previous works
in the rectilinear module placement problem in Section II.
Next, the proposed problem definition and useful notations
are described in Section III. We also demonstrate that the
rectilinear module placement problem is well suited to be
solved by a collective computing neural model. In Section IV,
the organization and behavior of the proposed three-layer
neural network are described in comparison with the con-
ventional models. Section V presents the proposed rectilinear
module placement algorithm. Finally, experimental results
and the conclusion are given in Section VI and Section VII,
respectively.

II. PREVIOUS RECTILINEAR

MODULE PLACEMENT TECHNIQUES

In macro/custom chip layout, one can easily encounter a
circuit block that is either of rectilinear shape or that can be
approximated by a rectilinear-shaped block. The placement
of arbitrarily shaped rectilinear modules is more complicated
than that of rectangular modules. Most of the earlier works
in the circuit placement problem have implicitly assumed
that the shapes of the placement modules are rectangular
or limited type of rectilinear (like L-shape). Furthermore,
they have conducted experiments on rectangular placement
cases only. Unfortunately, the placement method that is good
for rectangular modules or limited L-shaped modules is not
necessarily applicable to the general rectilinear case. Without
taking the actual rectilinear modules into consideration, their
placement results always leave a lot of dead spaces and need a
larger layout area. Since the placement of rectilinear modules
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is so complex, only a few of algorithms are reported and tested
by real rectilinear modules.

In 1988, Sechen [25] presented a simulated annealing al-
gorithm to place rectilinear modules based on a theoretically
derived statistical annealing schedule. In this algorithm, two
cells can perturb with interchange or one cell can perturb with
translation, reflection, or rotation in one iteration. They accept
the movement if it reduces the objective function. On the other
hand, if it increases the objective function, the movement
is accepted or rejected based on the Boltzmann distribution
function. This process is repeated until the temperature is
too low or the system has no distinct change. Although it is
proven that the simulated annealing technique can potentially
achieve the global minimum, the computation cost is very
expensive that requires enormous amounts of execution time.
Furthermore, the obtained results are sensitive to process
parameters and sometimes unacceptable in practice. Recently,
Swartz and Sechen [28] have presented an algorithm based
on this method to resolve the timing driven placement of
rectilinear shaped macro cells. The timing constraint is simply
added to the original objective function. Then, the simulated
annealing technique is applied to minimize this new timing
driven objective function. A heuristic constructive algorithm
for the placement of rectilinear modules was presented by
Wimer and Koren [26] in 1988. This algorithm applies a
novel point list data structure to represent the partial layout
result, and uses the cluster growth technique to construct the
rest of the placement. The cluster growth algorithm first takes
the module with maximum connections as the seed and then
selects an unplaced module based on a selection function for
the next placement. The defined selection function measures
the module size and the number of connection wires to the
already placed modules to select the best module placement.
This algorithm decides the best placement position by a
place function which computes the average weighted center
of connection wires to the already placed modules without
module overlap. Although the computations of the constructive
method are simple and fast, as shown in our experiments, it
is not possible to the change previous decisions and have the
disadvantage to frequently trap into local minimum.

In 1993, Lee [30] has presented a bounded 2-D contour
searching algorithm to generate the floorplans with arbitrarily
shaped rectilinear modules. The spirit of this algorithm is sim-
ilar to some 2-D compaction techniques that tries to minimize
the chip area along a selected compacting direction. During
the compacting process, an additional novel incremental wire
length calculation method is presented to minimize the connec-
tion cost. This algorithm iteratively improves the design from a
given initial configuration and the system only accepts the best
one as the next configuration. This greedy property may cause
the algorithm to fall into a local minimum. Furthermore, the
placement results are dependent on their initial configurations.
Since the cell model used here is calledsoft module, which can
change its shape within a specified aspect ratio range, it is hard
to compare wit the conventional placement methods with fixed
shape cells. In 1994, Dinget al. [33] presented a two-phase
hybrid method with the min-cut approach [44] and simulated
annealing [25]. They applied the placement result of the

constructive method as the initial configuration for a medium-
temperature simulated annealing method. Experiments show
that this two-phase hybrid method [33] can obtain better
results than that of the constructive method [26] and the
simulated annealing method [25]. Moreover, it also takes fewer
computation time and smaller layout area than that of the
simulated annealing method.

III. N OTATIONS AND DEFINITIONS

The representation of a rectilinear block is so complicated
that most of the earlier works on circuit placement implicitly
assumed a rectangular hull for all modules. In this section, we
concentrate on the modeling of rectilinear modules and their
placement problem. We begin our description with a novel
molecule model to represent the arbitrary-shaped rectilinear
modules, and then proceed to an effective local connection
method for the wire nets among the rectilinear modules. The
issue of problem definition based on the proposed molecule
model and local connection method will also be discussed.
Our representation enables the rectilinear module placement
problem to be solved by a collective computing network
model.

A. Arbitrarily Shaped Rectilinear Module

The arbitrarily shaped rectilinear module can be defined as
a circuit block with the shape as a simple rectilinear polygon.
A simple rectilinear polygon is a polygon whose sides are
either vertical or horizontal and, for simplification, has no
holes in it. Throughout this paper, the analysis of the rectilinear
modules is based on a novel molecule modeling method that
models a rectilinear system by the composed molecules, the
elementary atoms and their structure. Our representation is
analogous to the atomic structure of a element in nature. For
example, the molecule of water (HO) is made up of two atoms
of hydrogen (H) and one atom of oxygen (O). The structure
of a water molecule is nearly L-shaped, and the unique
oxygen is at the corner-point of this structure. The proposed
molecule model is more reasonable to reflect the physical
rectilinear circuit module which is arisen from the composition
of some low-level rectangular circuit cells (rectangles, for
short). Thus, a rectilinear module (molecule) can be made up
by a set of rectangles (atoms) with some specified structures.
In this paper, the problem input for the rectilinear modules

and their decomposed rectangles
(for example, represents a set of
rectangles to make up ) are given. is the number of
rectilinear modules, and is the number of decomposed
rectangles for the rectilinear module. The decomposition
of a rectilinear module can be classified into two types: the
partition and the cover. If the resulting rectangles can overlap
with each other, then the decomposition is a “cover.” If the
resulting rectangles cannot overlap with each other, then the
decomposition is a “partition.” Both approaches have been
discussed in previous researches [31]. As the module overlap
is more complicated for the cover case, in this paper, we use
the partition case as the decomposition of a rectilinear module.
For each partitioned rectangle , , and are the and
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Fig. 1. A simple example to demonstrate the relationship between a rectilinear module b1 and its partitioned rectanglesb11; b12. All the variables and
constants used in this example are labeled to illustrate the relationship of these notations.

the coordinate of the middle of rectangle . The width
and the height of rectangle are and . Without
considering the module rotation and reflection, in this paper,
the structures of their decomposed rectangles would never
be changed. We can define the decomposed rectangles in a
rectilinear module assolid-connected, in which, the offsets
among these rectangles are kept constant. Thus, during the
placement process, we should keep the offsets among all the
rectangles in a set . For simplification, we give
and as two constants to represent theand the offset
from the middle of to the middle of . For the definition of
the middle of an arbitrarily shaped rectilinear module, we can
model the rectilinear modules with their bounding rectangles.
Assume that is the bounding rectangle of rectilinear module

. and are the and the coordinate of the middle of

. The width and the height of are and . Then,
we can define the middle of a rectilinear moduleas the
middle of its related bounding rectangle, and define the

-offset and the -offset from to as
and , respectively. Fig. 1 presents a simple
example to demonstrate the relationship between a rectilinear
module and its partitioned rectangular cells. All the variables
and constants used in this example are labeled to illustrate
the relationship of these notations. The problem input for the
limited layout region is given as and to represent the
width and the height of given placement region. During the
placement, the middle of each rectilinear moduleshould
satisfy the bounding constraint:
and , to minimize the chip area. This
means that the module should be at the inside of the placement
layout region. A simple example to demonstrate the bounding
constraints between a rectilinear module and the given layout
region is shown in Fig. 2.

B. Wire Connection and Problem Definition

In VLSI design, each wire net contains a set of pins around
the rectilinear modules or the pads around the layout region.
After circuit placement, the pins (or the pads) in the same
wire net will be connected by the router. Circuit placement
is to determine the locations of circuit modules such that the

Fig. 2. A simple example to demonstrate the bounding constraint between
the rectilinear moduleb1 and the given layout region with widthw and
heighth.

estimated total wire length is minimized. The problem input
for the connection wire nets are given as

where is the number of connection wire nets. Define
as the strength of connection for the wire net. The

strength of connection, in the simplest case, could be the
number of wires. In general, it could be defined as a weighted
function of many constraints depending on the application.
For example, in a timing driven placement problem, the
connection strengths on the critical path would be higher
than that of the others. For the simplification of computation,
most of the previous approaches assumed that the wires are
connected from, or to, the middles of rectilinear modules.
This assumption which derived from the rectangular case is
not accurate enough for the wire nets on the rectilinear case.
In this paper, we assume that the wires are connected from,
or to, the partitioned rectangles. The wire connection which
connects decomposed rectangles is calledlocal connection.
Note that this local connection model allows user to estimate
the total wire length with more precision without much effort.
In this paper, we follow the idea and represent the strength
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Fig. 3. A simple example to demonstrate the different representation of the wire net model.

of connections between each pair of rectangles with the local
connectivity matrix

. is defined as the summation of wire
connectivities between rectangle and rectangle . For the
self-organization process of output neurons, the strength of
connections between each pair of rectilinear modules (global
connections) are also given as the connectivity matrix

where

(1)

An example to illustrate the relationship of these notations
is shown in Fig. 3. Given the connectivity , the con-
nection wire length between the rectanglesand can be
simply defined as . The Euclidean distance

between and is defined as ,

where - xb and are
defined as the and coordinated displacement from the
middle of to the middle of , respectively.

We can define the circuit placement problem as a con-
strained optimization problem which shorten the connection
wire length among circuit blocks without module overlap.
In other words, circuit placement is to minimize the total
wire length under the criterion that the module overlap

is zero. As the module partitioning described above, we
can define and as follows. It is noted that these
definitions have satisfied the collective computing property and
can be easily modeled by a three-layer neural network

(2)

Fig. 4. A example with an L-shaped module and a rectangular module is
presented to demonstrate the ideal distance and the overlap distance.

In (2), the overlap distance, , is our symbolic represen-
tation of the module overlap between and . It can be
defined as follows:

(3)

where is the ideal minimum distance between and
that minimizes the connection wire length and module

overlap. Function (.) used in (3) is the 0-1-hardlimit thresh-
old function where if , otherwise .
Fig. 4 presents an example with a simple L-shaped module and
a rectangular module to demonstrate this novel representation
method. Note that, in this paper, the definitions of wire length
and module overlap are both dependent on their distance.
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Fig. 5. An example of collective computation is shown in which the motion of a rectilinear module can simply be decided by the summation of the
motions of the corresponding rectangles.

This definition is well suitable to model the placement problem
with SOM that represents the stimulus between neurons by
their distance.

IV. NETWORK ORGANIZATION AND BEHAVIOR

The problem definition described in (2) and (3) naturally
leads the rectilinear module placement problem to be imple-
mented on FDSOM with three collective computing layers:
input layer, hidden layer, and output layer. The traditional
FDSOM uses only two layers that correspond to the input
and the output layers. In this paper, the output layer which
describes the pattern classes in the real world is called macro-
description-layer. The additional hidden layer which represents
the micro features of the patterns is called micro-feature-layer.
With this micro-feature-layer, the proposed neural network
can represent a complex pattern by a set of simple features.
Computation between two sets of simple features is usually
simpler than that between two complex objects. In this paper,
we apply this idea to model the complex rectilinear modules
in circuit placement problem. The partitioned rectangles are
treated as a kind of features to represent their corresponding
rectilinear modules. Fig. 5 shows an example of the collective
computation where the motion of a rectilinear module can
be simply decided by the summation of the motions of the
corresponding rectangles.

For simplification, the neurons in the input layer, hid-
den layer, and output layer are called input-neurons, micro-
neurons, and macro-neurons, respectively. We can represent
the rectilinear module by a macro-neuron in this
proposed model. The micro-neuron corresponds to the
partitioned rectangle . Connection weight between micro-
neurons and specifies the strength of connection
between rectangles and . It is defined as the local
connectivity . The connectivity which represent
the connection weight between macro-neurons and
is used as their degree of neighboring. As in the SOM,
each input-neuron is corresponding to one coordinate of the
placement space. It uses onlyinput-neurons to represent a
-dimensional placement space. In the case of placement on

a 2-D space, it is and . The input-neuron
is used to represent theth coordinate value of the input

sample vector. Connection weight between input-neuron
and macro-neuron , say , specifies the th coordinate
value of the rectilinear module . It is called the th position
weight of the macro-neuron . This method can be easily
extended to the placement with various constraints on their
connection and dimension. For example, is an additional
weight needed for the placement on three-dimensional space
to represent the coordinate value. The same to the weights
of macro-neurons, connection weights between micro-neurons
and input-neurons are used to specify the location (,

) of each rectangle in a given 2-D region. The set
of micro-neurons which represents the partitioned rectangles
of a rectilinear module is called a micro-group. Neurons
in a micro-group are connected to an unique output-neuron
which represents the corresponding rectilinear module. The
relationship between the proposed neuron model and the
rectilinear placement model is illustrated in Fig. 6. Note that
the spatial relation of the partitioned rectangles are also a kind
of feature to represent a rectilinear module. It should be taken
into consideration for the design of our proposed algorithm.

The objective of this algorithm is to iteratively adapt
the weights of neurons, so as that the total wire length is
minimized without module overlap. To minimize the connec-
tion wire length, modules with more connections should be
placed closer together. Thus, we can use the self-organization
rule to adjust weights of neurons, so that neurons connected
closely in topology are placed closer. Kohonen’s rule for
self-organization is known to create an optimal 2-D feature
map of higher dimensional sample vectors. We input the
sample vectors from the network stimulus to adjusts weights
of the synapses. In this paper, the excitation stimulus and
the inhibition stimulus between neurons are used to repre-
sent the criteria of wire length and module overlap between
cells, respectively. Based on this proposed model, a self-
organization algorithm is proposed to find the positions of
modules such that the closely related modules are placed
near one another without overlapping, or, loosely speaking,
the whole interconnection wire length is minimized without
module overlap. Different from the rectangular case, during
the rectilinear module placement process, the adaptation of
the output neuron is feedback to its connected micro-neurons
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Fig. 6. The relationship between the proposed three-layered neural network and the rectilinear module placement problem.

to update the spatial relation of the partitioned rectangles.
In our proposed algorithm, the initial placement evolves in
a continuous manner toward the final solution. This contin-
uous representation is quite different from the one found in
the traditional algorithms (like HOP), where all intermediate
solutions being examined are various permutations of cells.
By associating iterative position rearrangements of modules
with the adaptations of neuron weights, a significant gain in
speed can also be achieved over the conventional software
algorithms running on sequential computers.

The criteria of less module overlap and shorter wire length
are contradictory. Odawaraet al. [3] have analyzed the circuit
placing of expert designers and found two phases in their
placement technique: relative placement phase and spacing
phase. In the first phase, wire length criterion is more im-
portant. The placement with some module overlap would be
permitted in this phase. In the second phase, the module
overlap criterion is more important. Expert designers remove
the module overlap such that the total wire length is kept as
low as possible. We can apply expert knowledge to minimize
these contradictory criteria simultaneously [39]. Our approach
is to define a dynamic objective function incorporating
wire length and module overlap with a gain function as
follows:

(4)

where the gain function is used to simulate the degree
of importance of the module overlap criterion from expert
knowledge. In this paper, we simply define the gain function

as a sigmoid function. The value of increases
gradually over time to preserve the current configuration
and to reduce the overlap and wire length between cells.

V. CIRCUIT PLACEMENT WITH RECTILINEAR MODULES

Although there are many algorithms presented to place
rectangular or limited L-shaped modules in a given region [33],

they are hard to extend to more complicated arbitrarily shaped
rectilinear case. Consider the circuit placement with rectilinear
modules, these algorithms always model the modules with
their bounding rectangles, and leave lots of dead space in their
placement results. In this paper, a rectilinear module placement
algorithm is proposed which applies the self-organizing opti-
mization technique and can be implemented with a hardware
accelerator.

A. Query-Based Self-Organizing Optimization Technique

Self-organizing neural networks offer a paradigm to under-
stand the internal representation of information in the brain,
in particular, the structures and internal organizations. Over
the years, a vast amount of effort has already been dedicated
to the study of the self-organizing optimization technique [9],
[22]–[24], [43]. In this paper, a query-based self-organizing
optimization algorithm using a three-layer FDSOM is studied.
We use an adaptation of Kohonen’s SOM as it is well
suited for implementation on massively parallel architecture. In
traditional self-organization algorithm, the topological relation
between neurons is represented as the lateral interaction. The
lateral interaction, stimulus of excitation and inhibition, is used
to preserve the degree of similarities and differences between
neurons. Using the problem criteria to query (or produce) the
input stimulus and adapting the representation weights, the
problem solution is achieved if the neurons are self-organized.
In this paper, the simultaneously considered criteria of module
overlap and wire length are represented as the inhibition
and excitation stimulus, respectively [24]. The total stimulus
function from micro-neuron to micro-neuron mn is
defined as

(5)

where function (.) is a penalty function to minimize the
wire length between rectangle and rectangle [41], and
it is also defined as the lateral excitation from micro-neuron
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to micro-neuron . We can simply define (.) as
follows [24]:

(6)

The overlap penalty function is calculated between micro-
neurons to reduce the module overlap. It is noted that the
traditional SOM usually uses the distance measurement to
represent the stimulus between neurons. We redefine the
overlap penalty function to preserve the ideal distance between
rectangles. The overlap penalty function from micro-
neuron to is defined as the inhibition from micro-
neuron to . As shown in [24], the overlap penalty
function can be simply defined as follows:

(7)

where is a 0-1-hardlimit threshold function used as
(3). This model is reasonable to reflect the connection and
overlap between rectangles directly. Therefore, the placement
problem can be solved if the related self-organization problem
is solvable. The intermodule and module-to-chip overlaps are
removed in such a way that the total wire length is kept as low
as possible. Using the collective computing of the three-layer
neural network described in Section IV, this query-based self-
organizing optimization technique can be easily applied to the
rectilinear module placement problem.

B. Rectilinear Module Placement Algorithm

In the following, an intuitive overview of the algorithm
will be described and then a more detailed description will be
given. The system flow of the algorithm is as shown in Fig. 7.
Initially, we set the positions of each macro-neuron as
random values and setup the positions of micro-neurons
by the corresponding macro-neuron and prespecified offset
( ). For each iteration, we randomly select a macro-
neuron, say , as the winner from a uniform distribution.
All the micro-neurons which connect to the winner macro-
neuron are set to be active. For each active micro-neuron, the
total stimulus (excitation and inhibition) work on it would
be computed. Then, using collective computation property,
we generate the input sample vector by the summation
of stimulus. Finally, the weights associated with the winner
macro-neuron and its neighbors are adapted to make
these neurons more responsive to the current input. The
macro-neuron moves toward the sample vector and induces its
micro-neurons to do so. Constraint of the bounded placement
region is modeled as the threshold function of macro-neurons.
The bounding threshold functions for macro-neuronare
easily defined as follows:

if

if

others

if

if

others
(8)

This process is repeated until the system is convergent. A more
detailed description of the proposed algorithm is described as
follows.

Step 1) Initialization: . Set the weight ( ) as
random values, and all neurons be nonactive. The
position weight ( ) can be initialized as (

).
Step 2) Randomly (or with some priorities) select a nonac-

tive macro-neuron, say . If there is no nonactive
macro-neuron, go to Step 7).

Step 3) Set the macro-neuron and the related micro-
neurons to be active. Compute the sample
vector

and

(9)

where

The total force (stimulus) function F(.) is defined
in (5).

Step 4) Update the position of macro-neuron and its
neighbors by Kohonen’s learning rule. For all such
macro-neurons , perform

(10)

where is the neighbor function and is the
topological distance between and . As the
bounded constraint in (8), we have

and

Note that, the moving distances of the neurons are
decreased as the number of iterations is increased
or as is increased.

Step 5) For all , update the position of corresponding
micro-neurons, say

(11)

Step 6) Go to Step 2).
Step 7) Increase. Set all neurons be nonactive. If (system

doesn’t converge) then go to Step 2).

Assume that the system is convergent if . A
large number of experiments are conducted to evaluate the
performance of the proposed algorithm.
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Fig. 7. The system flow of the proposed rectilinear module placement algorithm on a three-layer neural network.

VI. EXPERIMENTAL RESULTS

The proposed algorithm has been implemented in C lan-
guage on a Sun SPARC-IPC workstation. The current version
of the system is running under Sun OS 4.1.1. Results on
many test examples are given to illustrate the performance
and feasibility of the proposed algorithm. In this paper, test
data were grouped into two sets. The first two test examples,
TEST1 and TEST2, are taken from Dinget al. [33]. There
are 42 modules and 178 wire nets in test example TEST1,
and 50 modules and 211 wire nets in test example TEST2,
respectively. We compared the performance of the proposed
method with the constructive approach [26], the simulated
annealing method [25] and the two-phase hybrid approach
[33]. The obtained results show that the proposed algorithm is
better than the previous in both the area of layout region and
the total wire length. The next two test examples, TEST3 and
TEST4 [27], are arbitrarily-sized rectangular module place-
ment cases with 12 cells/140 wires and 28 cells/236 wires,
respectively. Their running results are given and compared
with BITOPT [27]. The next two test examples are TEST5 and
TEST6 with 70 rectilinear cells/335 wires and 100 rectilinear
cells/450 wires, respectively. The large test examples TEST7
with 225 rectilinear cells/50 676 wires and TEST8 with 1024
rectilinear cells/1 569 294 wires are also tested. The last two
test examples are called TEST9 and TEST10 with 20 more
complex rectilinear cells. Table I summarizes the statistics of
the test examples; the notations cell, net and type are the
number of modules, wire nets, and the shape of modules
respectively. In this section, we first investigate the efficiency
of the proposed molecule modeling method by testing with
the TEST1 example. The relations between the obtained layout
area/wire length and the applied gain term[as shown in (5)]
are also presented. Then, the solution quality of the proposed
algorithm is studied by testing with the TEST2 example.
The test results of large size test examples TEST5, TEST6,
TEST7, and TEST8 are proposed. Two more complex test

TABLE I
THE STATISTICS OF THE PRESENTED TEST EXAMPLES; THE

NOTATIONS CELL, NET AND TYPE ARE THE RESPECTIVE

NUMBER OF MODULES,WIRE NETS, AND THE SHAPE OF MODULES

examples TEST9 and TEST10 are also tested. This placement
algorithm is also examined taking some other rectangular
examples of different characteristics, e.g., TEST4 and TEST3.
Experimental results show that the total wire lengths obtained
are better than the previous.

A. Solution Efficiency for the Molecule Modeling Method

In order to demonstrate the solution efficiency for the pro-
posed molecule modeling method, Fig. 8 shows four snapshots
from a running trace of the placement of the test example
TEST1. The initial positions, as shown in Fig. 8(a), are
random numbers within the given placement region. Apply
the competitive rule of the self-organizing neural network,
modules are finally spread out over the whole region which
minimizes the total wire length without module overlap.
Furthermore, due to the collective computing of hidden-
neurons, we can see that most of the dead-spaces among
rectilinear modules are removed as shown in Fig. 8(d). The
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(a) (b)

(c) (d)

Fig. 8. Four snapshots from a running trace of the test example TEST1 are shown. (a) The initial positions are raandom numbers within the placement
region. (b) (c) With the competitive rule, modules are finally spread out over the whole region. (d) Due to the collective computing, most of the dead
spaces among the rectilnear modules are removed.

best total wire length obtained by the proposed algorithm from
100 placement trials is 9998. We do get a better result than
that achieved by the simulated annealing approach [25] and the
heuristic constructive approach [26], where they used 14 800
and 16129, respectively. During the placement of TEST1, the
change of total wire length and module overlap versus the
first 200 iteration number are shown in Fig. 9. Note that,
throughout this paper, the measurement of estimated module
overlap are taken from (2). As the definition of the dynamic
objective function, the placement with some module overlap is
permitted at the early stage to minimize the total wire length.
It is seen that the variation of total wire length is initially
high and is gradually degraded. As the process continues, we
cautiously remove the module overlap such that the total wire
length is kept as low as possible. Finally, the total wire length
converges to some constant value and the module overlap
reduces to zero. Our experiments also demonstrate that the
number of module overlap decreases rapidly while the total
wire length increases slowly to toward a good placement result.
Thus, the placement process is related to the changes of.
In the next section, we have observed the obtained layout area

and wire length for different dynamic objective functions to
obtain a better definition of function .

B. Layout Area/Wire Length with Different Decreasing Ratios

As described above, it can be found that all these processes
of dynamic objective are controlled by the decreasing gain
function . The large variation of total wire
length at the early stage is due to the large gain term which
illustrates the importance of total wire length minimization.
Then, the changes are reduced because the magnitude of
this gain term is decreased. For simplification, assume that

, and . The gain term is
called a decreasing ratio of function g(.). Fig. 10 shows the
impact of the decreasing ratio on the obtained total wire
length and module overlap. Although the total wire length
decreases along with the gain term, the module overlap
increases very fast if the value of is over 0.99. The results
also show that a decreasing ratio of 0.98 to 0.99 gives
a good compromise. We adopted a decreasing ratio of 0.98
throughout the following experiments. Note that the decreasing
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Fig. 9. The changes of total wire length and module overlap versus the first 200 iteration number are shown. At the early stage, the placement with
some module overlap is permitted to minimize the total wire length. As the process continues, we cautiously remove the module overlap such that the
total wire length is kept as low as possible.

Fig. 10. The impact of the decreasing ration on the obtained total wire length and the number of module overlap is presented. Although the total wire
length decreases along with the decreasing ratio, the module overlap is not free if the decreasing ration is over 0.99. Note that the decreasing of the total
wire length is slow if the decreasing ration is small. We select the decreasing ration as 0.98 throughout this paper.

of total wire length is slow if is smaller than 0.93 as shown
in the graph. The reason is that is usually small if
is small. Then, the major objective of the whole process is to
minimize the module overlap. In this case, the obtained total
wire length depends on its initial configuration and have no
distinct reduction. Fig. 11 shows the impact of the layout area

on the obtained total wire length and module overlap. Account
the total module size of test example TEST1 is 55 070. If
the size of the layout region is smaller than the total module
size, the module overlap is large and the obtained total wire
length is hard to estimate. If the size of layout region is larger
than the total module size, the module overlap is nearly zero
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Fig. 11. The impact of the layout area on the obtained total wire length and module overlap is presented. If the size of the layout region is smaller
than the total module size, the module overlap is large. If the size of the layout region is larger, the obtained total wire length is nearly a constant. If
shown that the proposed method can minimize the area of the layout region.

(a) (b)

Fig. 12. (a) The graph of percentage of trials versus the total wire length obtained during the 100 placement trials of the test example TEST2. All the trials
started from different randomly generated initial configurations. (b) The best solutoin obtained is presented.

and the total wire length is nearly a constant value in the
proposed algorithm. In other words, if the area of layout region
is large enough, the total wire length and the module overlap
are insensitive to the difference in the layout area. The results
show that the layout area within the range 60 000 to 70 000
is acceptable for TEST1. In the paper, we assume the area of
layout region is 83 496 (284 294). Our chip area utilization
is better than that of the simulated annealing approach and the
heuristic constructive approach, where they used 108 999 and
99840, respectively, including lots of dead spaces.

C. Solution Quality of the Proposed Method

The solution quality of the proposed solution model is
discussed through the comparison with three rectilinear cir-
cuit placement algorithms described in [26] (a constructive
approach), [25] (a simulated annealing approach), and [33]
(a two-phase hybrid approach). Fig. 12(a) demonstrates the
graph of percentage versus the total wire length obtained
during the 100 placement trials of test example TEST2. All
these trials are started from different randomly generated initial
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(a)

(b)

Fig. 13. (a) The obtained placement result for TEST4 with total wire length 35239. (b) The obtained placment result for TEST5 with total wire length 53954.

configuration. The average total wire length obtained by the
proposed model was 18 324.35. We did get a better result than
that achieved by the simulated annealing method [25] and
the constructive approach [26], where they used 20 426 and
29875, respectively. It is also better than that obtained by the
two-phase hybrid method [33] with 20 053 total wire length.
Our obtained solution is shown in Fig. 12(b). These results
show that the obtained total wire length is not sensitive to
the difference in the initial configuration. In other words, the
proposed algorithm successes in yielding a proper placement
under different configurations. The time behaviors as shown
in Fig. 8 give a possible answer, in which, the effect of
start configuration is reduced with the large in initial

time. Table II presents the detail comparison results of the
obtained total wire length for test examples TEST1 and TEST2
with three previous rectilinear circuit placement algorithms.
As described in [33], in this paper, the size of modules are
assumed to be the size of actual modules with the spaces left
around the modules for the wire routing. Our experiments
show that the proposed method can obtain smaller layout
area and fewer total routing length. In these comparisons,
the applied simulated annealing method [25] is started from
high-temperature and computed with 400iterations ( is
the number of circuit cells) to low-temperature. However,
as shown in Fig. 9, the number of iterations used for the
proposed method is only 200. Compared to the simulated
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(a) (b)

Fig. 14. (a) The placement result for the large-size problem with 225 cells. (b) The obtained placment result for the large-size problem with 1024 cells.

TABLE II
THE DETAIL COMPARISON RESULTS OF THEOBTAINED TOTAL

WIRE LENGTH FOR TEST EXAMPLES TEST1 AND TEST2 WITH

THREE PREVIOUS RECTILINEAR CIRCUIT PLACEMENT ALGORITHMS

annealing method, our placement result shows an average
16.5% improvement in total wire length and 93% improvement
in CPU time. In Ding et al.’s approach [33], the number
of iterations for this medium-temperature simulated annealing
method is given as 350. Experiments show that the proposed
method is also better than which uses 350iterations. Its CPU
time is smaller than that of [25], however, still larger than that
of the proposed method. Although simulated annealing could
give a better result if it run for a very long time. However, its
computation cost would be very expensive.

D. Other Test Examples

An algorithm that is good for the rectilinear model should be
also good for the rectangular model, as the latter is a special
case of the former. In this paper, two test circuits, TEST3
and TEST4, with rectangular modules have been tried. The

obtained total wire length for test examples TEST3 and TEST4
are 9099 and 7025, respectively. Comparing the placement
result, we find that the proposed algorithm achieved shorter
total wire length than BITOPT [27]. It obtains 9626 and
9470 for the total wire length of test examples TEST3 and
TEST4, respectively. Average wire length reduced by the
proposed algorithm over BITOPT is 15%. An algorithm that
is good for the rectilinear model should be also good for
the rectangular model, as the latter is a special case of the
former. An algorithm that is good for the rectilinear model
should be also good for the rectangular model, as the latter
is a special case of the former. Our experience indicates
that our algorithm is competitive with the other approaches
mentioned above. The obtained total wire length for large
size rectilinear test examples TEST5 and TEST6 are 35 239
and 53954, respectively. Their obtained placement results are
shown in Fig. 13(a) and (b). Besides, another two large size
problems, TEST7 and TEST8, with more than 1000 circuit
cells are also presented to demonstrate the effectiveness of the
proposed algorithm. Fig. 14(a) presents the obtained solution
for placing TEST7 within a 20 20 layout region. The
total wire length obtained was 466 441. The obtained solution
for placing TEST8 within an 100 100 layout region is
shown in Fig. 14(b) with the total wire length 50 198 793. Our
experiments demonstrate that the proposed method can handle
large size cell placement problems. These obtained results are
quite reasonable, in which, small circuit cells are placed in the
center of layout region. The narrow blocks are placed on the

and the coordinates surrounding with large cell blocks.
At last, two complex test examples TEST9 and TEST10 have
also been tested to show that the proposed method can handle
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(a) (b)

Fig. 15. The placement results for the complex test examples (a) TEST9
and (b) TEST10.

complex rectilinear cell placement problems. We have placed
TEST9 within a 16 8 layout region. The total wire length
obtained was 237.70. The obtained solution result for placing
TEST10 within an 11 11 layout region has the total wire
length 285.21. Their obtained placement results are shown in
Fig. 15(a) and (b).

VII. CONCLUSION

A three-layer neural-network model based on the force-
directed self-organizing maps is presented in the context to
solve the circuit placement problem with arbitrarily shaped
rectilinear modules. The pattern/feature representation method
is applied to model the complex rectilinear modules. Fur-
thermore, a new overlap penalty function with collective
computation is proposed. In this algorithm, both the relative
placement and the overlap-removing process are represented as
a single model and solved at the same time. The experimental
results are found to better than the previous methods. Note that,
in this paper, the placement problem is simplified by assuming
that modules can not be rotated during the process. We plan
to investigate these possible extensions to our approach.
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