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VLSI Circuit Placement with Rectilinear Modules
using Three-Layer Force-Directed
Self-Organizing Maps

Ray-I Chang and Pei-Yung Hsiao

Abstract—In this paper, a three-layer force-directed self- networks with massive parallelism have been demonstrated
organizing map is designed to resolve the circuit placement to resolve various optimization problems [9]-[11], [16]-[24],
problem with arbitrarily shaped rectilinear modules. The [43]. The development of a high-speed neural-based CAD

proposed neural model with an additional hidden layer can . .
easily model a rectilinear module by a set of hidden neurons system for the design of VLSI chips has become one of

to correspond the partitioned rectangles. With the collective the interesting research topics. Moreover, current researches
computing from hidden neurons, these rectilinear modules can in heural-network implementations have shown the feasibility
correctly interact with each other and finally converge to a good of building analog electronic neural networks with hundreds
placement result. In this paper, multiple contradictory criteria and thousands of neurons [12]-[13]. It also demonstrates that

are accounted simultaneously during the placement process, in th . lleli | network Hobfield net
which, both the wire length and the module overlap are reduced. '€ MassSive parallelism neural network, €.g., Hopheld nets

The proposed model has been successfully exploited to solve(HOP’s) [14] or Kohonen's self-organizing maps (SOM's)
the time consuming rectilinear module placement problem. The [15], can be implemented as a hardware accelerator to ac-
placement results of real rectilinear test examples have been celerate the time consuming VLSI CAD processes. In this
presented, which demonstrate that the proposed method is better paper, a novel three-layer neural-network model based on
than the simulated annealing approach in the totz_;\I wire. length. SOM i dt Ive the circuit ol ¢ bl ith
Furthermore, on the average, the central processing unit (CPU) vI'IS proposed 1o Solve the circuit placement probiem wi
time for the proposed method running on a sequential machine rectilinear modules. It is the first neural-based algorithm that
is 15 times faster than that required by the simulated annealing is proposed to place the arbitrarily shaped rectilinear modules.
method. The appropriate parameter values which yield good QOur experiments have shown that the proposed algorithm
solutions are also investigated. is better than Sechen’s approach [25] in both the obtained
Index Terms— Force-directed placement method, molecule total wire length and the simulated CPU time on a sequential
model, query-based learning, rectilinear circuit, three-layer machine. Moreover, the placement region is also smaller.
self-organizing maps. Over the years, a wide repertoire of neural-network-based
placement methods have been suggested. These methods can
|. INTRODUCTION be classified into two major categories, HOP-type networks
and SOM-type networks. The HOP with a symmetrical inter-

IVEN a set of circuits and how they are connected t0 . : . R .
connection matrix has been applied to minimize the connection

each other, the objective of circuit placement problemire length in one [16] and two-dimensional (2-D) circuit

is to optimally locate these modules within a specified IayOM\ﬁacement problems [17]-[21]. In 1989, Yu [17] has tried to

region. It determines the locations of modules such that all tRg - . .
g . e . . ogtaln a placement result using HOP, but not with great suc-
constraints are satisfied and the estimated total wire length’is s : .
o ) L . . cess. The results of computer simulation show that this model
minimized. In the physical circuit layout, the connection wirg .

. L ives much the same solutions as the min-cut algorithm. Kita
length between modules is minimized to reduce the dela .

. ) . al. [18] have demonstrated that the quality of the placement
associated with longer wire nets and speed up the operatio

X LS . . Solution obtained by means of this model is quite sensitive to

of chip. Good circuit placement is a key aspect in the ver .
) . ; ' ome model parameters. Recently, Naft [19] have adapted this

large scale integration (VLSI) design, which has been provén

to be NP-hard [1]. Although a number of heuristic algorithmgmdel for the traveling salesman problem (TSP) to multiob-

have been proposed in the past with varying successes [2]- E@tive component placement based on wire length criteria and
brop . P ying ﬁl rmal reliability. Although HOP is more reasonable to model
[25]-[30], they are inherently sequential and unable to effi-

. ) . . e an optimization problem, the hardware complexity which
ciently exploit massively parallel architecture. Artificial neura : R .
represents the problem by a permutation matrix is very high.

In 1990, neuron’s self-organization property was presented
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improvement of SOAP was presented by Zhang and Mlynstdd module movements and gradually organized toward a
[23]. This approach is well suited for standard cell and gagood placement solution. Different from the original two-layer
array placement. However, it is not suitable to arbitrarily-sizedodel, there are connections between each output neuron and
macro cell placement. Recently, an unsupervised query-bagsdcorresponding hidden neurons ggnchronizethe motion
neural network [37] based on the force-directed cell placemeasfteach rectilinear module and its decomposed rectangles. In
method [2] and Kohonen's SOM was proposed [24]. Thie proposed three-layer model, the adaptation of an output
force-directed method41] explores the similarity betweenneuron is decided by the adaptations of all the corresponding
cell placement problem and classical mechanics problem hiflden neurons. In another word, the motion of a rectilinear
a system of bodies (circuit cells) attached to springs (wireodule is decided by the motions of the corresponding rect-
nets). According to the Hook’s law, the force exerted due tngles. This study investigates the possibility of utilizing the
the stretching of the springs is proportional to the distaneellective computing property of neural network to obtain a
between the bodies connected to the spring. If the circlietter decision from the complex-description system, called
cells were allowed to move freely, they would move by theollective-decisionComparing with our previous [24] paper
force until the system achieved equilibrium. The same ideavdth limited rectangular blocks and reduced circle cells, this
used for SOM where the neurons connected to each otherfsgposed three-layer SOM has lots of differences such as
networks are supposed to exert stimulus (forces) on each otliee. molecule modeling, the ideal distance, and the dynamic
Following the query-based learning technique [42], the inpabjective function. Our experiments show that the proposed
samples can be queried by the force-directed method. Thitwork model with collective computing property can obtain
method has been successfully applied to the circuit placemeffective and efficient solutions for the rectilinear module
problem with arbitrarily-sized cells in [24]. The experimentplacement problem. Experiments showed that the obtained
have shown that this approach is better than the previd@al wire length was 16.5% better than the simulated annealing
neural-based placement methods in both the performance apgroach [25] on the average. The central processing unit
the hardware requirement. (CPU) time running on a sequential machine was 15 times
At present, VLSI circuit has become so dense and $aster than that required by the simulated annealing method
complicated that a custom chip may contain lots of macf5]. Besides, the applied layout area is also smaller. More
blocks. It is noted that the macro blocks used in VLSI desiggpmparisons with the heuristic constructive approach and the
may be of arbitrary shapes. Compare to the physical cust@malytical method are also presented. The rest of this paper
chip layout, the major drawback of traditional neural-networks organized as follows. We first review the previous works
based placement algorithms is that they cannot handle ihethe rectilinear module placement problem in Section II.
circuit blocks with arbitrary rectilinear shapes. In practice, th§ext, the proposed problem definition and useful notations
boundary of the modules are general rectilinear shape if tage described in Section Ill. We also demonstrate that the
rectilinear hull for the layout of the predesigned modules I€ctilinear module placement problem is well suited to be
taken. The design process of a complex custom chip can ceglved by a collective computing neural model. In Section 1V,
millions of dollars and a year or more may elapse in movirije organization and behavior of the proposed three-layer
from initial characterization of the chip to a working designneural network are described in comparison with the con-
Thus, the industries need a placement technique which ¢g@ntional models. Section V presents the proposed rectilinear
well place the rectilinear modules with short turn-around tim@odule placement algorithm. Finally, experimental results
Moreover, if the placement procedure can take the geneddid the conclusion are given in Section VI and Section VII,
rectilinear shape instead of taking the bounding rectand®spectively.
or the limited L-shaped hull of the modules, the chip area
can be optimally utilized as there will be less dead space.
In this paper, a highly parallel method based on the force- IIl. PREVIOUS RECTILINEAR
directed SOM (FDSOM) [24] with additional hidden layer MODULE PLACEMENT TECHNIQUES
is proposed to resolve the more complex rectilinear moduleln macro/custom chip layout, one can easily encounter a
placement problem. circuit block that is either of rectilinear shape or that can be
Key to this proposed approach is a novel representatiapproximated by a rectilinear-shaped block. The placement
method which simply models a rectilinear module by a set of arbitrarily shaped rectilinear modules is more complicated
decomposed rectangles, called tmelecule modelAssume than that of rectangular modules. Most of the earlier works
that the output layer and the input layer in the proposéd the circuit placement problem have implicitly assumed
neural network are used to represent the rectilinear moduthat the shapes of the placement modules are rectangular
and the input sample vector, respectively. We can modal limited type of rectilinear (like L-shape). Furthermore,
these decomposed rectangles by the neurons in an additicghely have conducted experiments on rectangular placement
hidden layer. The connection weights from input layer toases only. Unfortunately, the placement method that is good
the output layer and the hidden layer are used to represéon rectangular modules or limited L-shaped modules is not
the positions of rectilinear modules and their decomposedcessarily applicable to the general rectilinear case. Without
rectangles, respectively. The adjustment of these weights ¢aking the actual rectilinear modules into consideration, their
be interpreted as the movement of the corresponding blocgtacement results always leave a lot of dead spaces and need a
The proposed network model is learned from a sequenleeger layout area. Since the placement of rectilinear modules
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is so complex, only a few of algorithms are reported and testednstructive method as the initial configuration for a medium-

by real rectilinear modules. temperature simulated annealing method. Experiments show
In 1988, Sechen [25] presented a simulated annealing tilat this two-phase hybrid method [33] can obtain better

gorithm to place rectilinear modules based on a theoreticatigsults than that of the constructive method [26] and the

derived statistical annealing schedule. In this algorithm, tweimulated annealing method [25]. Moreover, it also takes fewer

cells can perturb with interchange or one cell can perturb wittomputation time and smaller layout area than that of the

translation, reflection, or rotation in one iteration. They acceptmulated annealing method.

the movement if it reduces the objective function. On the other

hand, if it increases the objective function, the movement .

is accepted or rejected based on the Boltzmann distribution

function. This process is repeated until the temperature iSThe representation of a rectilinear block is so complicated

too low or the system has no distinct change. Although it pgat most of the earlier works on circuit placemgnt implicitly
proven that the simulated annealing technique can potentigiySUmed a rectangular hull for all modules. In this section, we
achieve the global minimum, the computation cost is Veﬁpncentrate on the modellng_of rectlllnear module_s and their
expensive that requires enormous amounts of execution tirffgcement problem. We begin our dgscnptlon with a r_‘?"e'
Furthermore, the obtained results are sensitive to procgggleCUIe model to represent the arbltrar_y-shaped rectllln(_ear
parameters and sometimes unacceptable in practice. Rece dules, and the_n proceed to an effectllye local connection
Swartz and Sechen [28] have presented an algorithm bad¥ hod for the wire nets among the rectilinear modules. The
on this method to resolve the timing driven placement ¢fSU€ ©Of problem definition based on the proposed molecule
rectilinear shaped macro cells. The timing constraint is simply°d€! and local connection method will also be discussed.
added to the original objective function. Then, the simulatéd!’ reéPresentation enables the rectilinear module placement
annealing technique is applied to minimize this new timin roblem to be solved by a collective computing network
driven objective function. A heuristic constructive algorith odel.
for the placement of rectilinear modules was presented by .
Wimer and Koren [26] in 1988. This algorithm applies &\ Arbitrarily Shaped Rectilinear Module
novel point list data structure to represent the partial layoutThe arbitrarily shaped rectilinear module can be defined as
result, and uses the cluster growth technique to construct theircuit block with the shape as a simple rectilinear polygon.
rest of the placement. The cluster growth algorithm first takes simple rectilinear polygon is a polygon whose sides are
the module with maximum connections as the seed and theither vertical or horizontal and, for simplification, has no
selects an unplaced module based on a selection function fietes in it. Throughout this paper, the analysis of the rectilinear
the next placement. The defined selection function measurasdules is based on a novel molecule modeling method that
the module size and the number of connection wires to theodels a rectilinear system by the composed molecules, the
already placed modules to select the best module placemefiémentary atoms and their structure. Our representation is
This algorithm decides the best placement position by amalogous to the atomic structure of a element in nature. For
place function which computes the average weighted centstample, the molecule of water §8) is made up of two atoms
of connection wires to the already placed modules withouf hydrogen (H) and one atom of oxygen (O). The structure
module overlap. Although the computations of the constructied a water molecule is nearly L-shaped, and the unigue
method are simple and fast, as shown in our experimentspXygen is at the corner-point of this structure. The proposed
is not possible to the change previous decisions and have thelecule model is more reasonable to reflect the physical
disadvantage to frequently trap into local minimum. rectilinear circuit module which is arisen from the composition
In 1993, Lee [30] has presented a bounded 2-D contoofr some low-level rectangular circuit cells (rectangles, for
searching algorithm to generate the floorplans with arbitrarighort). Thus, a rectilinear module (molecule) can be made up
shaped rectilinear modules. The spirit of this algorithm is sinipy a set of rectangles (atoms) with some specified structures.
ilar to some 2-D compaction techniques that tries to minimida this paper, the problem input for the rectilinear modules
the chip area along a selected compacting direction. Duri®) = {b;|]1 < ¢ < m} and their decomposed rectangles
the compacting process, an additional novel incremental wiffer example,B;, = {b;;|1 < j < m;} represents a set of
length calculation method is presented to minimize the conneectangles to make up;) are given.m is the number of
tion cost. This algorithm iteratively improves the design from gectilinear modules, andn; is the number of decomposed
given initial configuration and the system only accepts the besttangles for the rectilinear modulg. The decomposition
one as the next configuration. This greedy property may causfea rectilinear module can be classified into two types: the
the algorithm to fall into a local minimum. Furthermore, theartition and the cover. If the resulting rectangles can overlap
placement results are dependent on their initial configuration@th each other, then the decomposition is a “cover.” If the
Since the cell model used here is calkaft modulewhich can resulting rectangles cannot overlap with each other, then the
change its shape within a specified aspect ratio range, it is hdetomposition is a “partition.” Both approaches have been
to compare wit the conventional placement methods with fixeliscussed in previous researches [31]. As the module overlap
shape cells. In 1994, Dingt al. [33] presented a two-phaseis more complicated for the cover case, in this paper, we use
hybrid method with the min-cut approach [44] and simulateithe partition case as the decomposition of a rectilinear module.
annealing [25]. They applied the placement result of theor each partitioned rectangdg;, «b;;, andyb;; are ther and

N OTATIONS AND DEFINITIONS
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Fig. 1. A simple example to demonstrate the relationship between a rectilinear module bl and its partitioned redtanglés All the variables and
constants used in this example are labeled to illustrate the relationship of these notations.

the ¢ coordinate of the middle of rectanglg;. The width

and the height of rectangle;; are wb;; and hb;;. Without Ayt ¥
considering the module rotation and reflection, in this paper 5
the structures of their decomposed rectangles would never :
be changed. We can define the decomposed rectangles inia v
rectilinear module asolid-connectedin which, the offsets 0
among these rectangles are kept constant. Thus, during the
placement process, we should keep the offsets among all the

rectanglesh;; in a setB; . For simplification, we givero;; Bounded
andyo;; as two constants to represent thend they offset Layout Region
from the middle ofb; to the middle oft;;. For the definition of ]

the middle of an arbitrarily shaped rectilinear module, we can
model the rectilinear modules with their bounding rectangles
Assume that!, is the bounding rectangle of rectilinear module height / 2
b;. z; andy; are thex and they coordinate of the middle of ke

bi. The width and the height o, are wb; and hb;. Then,

we can define the middle of a rectilinear moduleas the Fig. 2. A simple example to demonstrate the bounding constraint between
middle of its related bounding rectangbg, and define the thheeig:]et(l:]nlmear moduleébl and the given layout region with widthy and
z-offset and they-offset from b, to b;; aszo;; = xb;; —x; ’

andyo;; = yb;;— v;, respectively. Fig. 1 presents a simple

example to demonstrate the relationship between a rectilin€atimated total wire length is minimized. The problem input
module and its partitioned rectangular cells. All the variablder the connection wire nets are given A= {N;|1 < i <

and constants used in this example are labeled to illustratg wheren is the number of connection wire nets. Define
the relationship of these notations. The problem input for the as the strength of connection for the wire n¥f. The
limited layout region is given as and i to represent the strength of connection, in the simplest case, could be the
width and the height of given placement region. During theumber of wires. In general, it could be defined as a weighted
placement, the middle of each rectilinear modbjeshould function of many constraints depending on the application.
satisfy the bounding constraintod;/2 < z; < w — wb;/2 For example, in a timing driven placement problem, the
andhb; /2 < y; < h — hb;/2, to minimize the chip area. This connection strengths on the critical path would be higher
means that the module should be at the inside of the placemgrpin that of the others. For the simplification of computation,
layout region. A simple example to demonstrate the boundifgbst of the previous approaches assumed that the wires are
constraints between a rectilinear module and the giVen Iay%nnected from, or tol the middles of rectilinear modules.

region is shown in Fig. 2. This assumption which derived from the rectangular case is
_ _ o not accurate enough for the wire nets on the rectilinear case.
B. Wire Connection and Problem Definition In this paper, we assume that the wires are connected from,

In VLSI design, each wire net contains a set of pins arourd to, the partitioned rectangles. The wire connection which
the rectilinear modules or the pads around the layout regig@@nnects decomposed rectangles is caltezhl connection
After circuit placement, the pins (or the pads) in the sani¢ote that this local connection model allows user to estimate
wire net will be connected by the router. Circuit placemertbe total wire length with more precision without much effort.
is to determine the locations of circuit modules such that the this paper, we follow the idea and represent the strength



CHANG AND HSIAO: VLSI CIRCUIT PLACEMENT 1053

Physical
Layout b2

i

Micro/ ) \ Macro

bl

5y |emin21=1

cmli2,22 =2 b3
b22 em21,31 = 1 b2 - cI2=3
— cm2l, 11 =1 ~ bl c23=1
\\ > :
Ny |m2212=2 S 21 =3
\ \
cm31,21 =1 c32=1

/]

Fig. 3. A simple example to demonstrate the different representation of the wire net model.

of connections between each pair of rectangles with the local Overlap T R
connectivity matrixCM; = {em;; 4|0 < i,k <m,1 < j < Distance . :
mj,1 <1< my}. emgj e is defined as the summation of wire / |
connectivities between rectandlg and rectangléy;. For the ;
self-organization process of output neurons, the strength of e

connections between each pair of rectilinear modules (global /ﬂ

connections) are also given as the connectivity mattibd, =

cix|0t <4,k < m where /
T

mi My - L

Cik = Z Z CMiij - o | b

Jj=11=1

%
An example to illustrate the relationship of these notations s
is shown in Fig. 3. Given the connectivityn;, ;, the con- ' _
nection wire length between the rectanglgsandb;; can be Ideal Distance
simply defined asm;; ;% d;; 1;. The Euclidean distancg; ;, N

betweenb,; andd;; is defined asl;; 1; = [dx2.  , + dyz Fig. 4. A example with an L-shaped module and a rectangular module is
* * ikl i,kl"  presented to demonstrate the ideal distance and the overlap distance.
where da?iLkl = xby - Xbij and dyij,kl = ybkl - yb“ are

defined as ther and y coordinated displacement from the _ _ )

middle of by, to the middle ofb;;, respectively. In _(2), the overlap distance;; x:, is our symbolic represen-
We can define the circuit placement problem as a cof@tion of the module overlap betweép; andb;;. It can be

strained optimization problem which shorten the connectiéi¢fined as follows:

wire length among circuit blocks \{vithout .m.od.ule overlap. odi; 1 = (idij i — dija) X fulidijp — dija)

In other words, circuit placement is to minimize the total ’ 7 b + R " + wh

wire lengthCyy, under the criterion that the module overlap  id;; 1 = min< = M , = M )

Cuo is zero. As the module partitioning described above, we 2 x dyiga | 2 x [ dzij |

can defineCy r, and Cy;o as follows. It is noted that these X dij,kt 3)

definitions have satisfied the collective computing property a%ereid ., is the ideal minimum distance betweég and
. ij,k ;
can be easily modeled by a three-layer neural network b;; that minimizes the connection wire length and module

m om; om omy, overlap. Functionf,(.) used in (3) is the 0-1-hardlimit thresh-
Cwr = Z Z Z ZcmiLkI X dij ki old function wherefy,(xz) = 1 if = > 0, otherwisefy,(z) = 0.

i=1 j=1 k=i+1 I=1 Fig. 4 presents an example with a simple L-shaped module and

momi mo a rectangular module to demonstrate this novel representation
Cmo = Z Z Z ZOdij,kl- (2) method. Note that, in this paper, the definitions of wire length

i=1 j=1 k=il I=1 and module overlap are both dependent on their distdy)ge.
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/\ Computing
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Fig. 5. An example of collective computation is shown in which the motion of a rectilinear module can simply be decided by the summation of the
motions of the corresponding rectangles.

This definition is well suitable to model the placement problesample vector. Connection weight between input-neurgn
with SOM that represents the stimulus between neurons &yd macro-neurothn;, say w;;, specifies thejth coordinate
their distance. value of the rectilinear moduli. It is called thejth position
weight of the macro-neurohn,. This method can be easily
extended to the placement with various constraints on their
connection and dimension. For examplgz is an additional
The problem definition described in (2) and (3) naturallyeight needed for the placement on three-dimensional space
leads the rectilinear module placement problem to be implgy represent the coordinate value. The same to the weights
mented on FDSOM with three collective computing layersgsf macro-neurons, connection weights between micro-neurons
input layer, hidden layer, and output layer. The traditiong],q input-neurons are used to specify the locatioh;
FDSOM uses only two Iaye_rs that correspond to the inp%ij) of each rectanglé;; in a given 2-D region. The set
and the output layers. In this paper, the output layer whieff micro-neurons which represents the partitioned rectangles
describes the pattern classes in the real world is called macte-, rectilinear module is called a micro-group. Neurons
description-layer. The additional hidden layer which represents o micro-group are connected to an unique output-neuron

the micro features of the patterns is called micro-feature-layGihich represents the corresponding rectilinear module. The
With this micro-feature-layer, the proposed ne_zural netWOF}élationship between the proposed neuron model and the
can represent a complex pattern by a set of simple featur ctilinear placement model is illustrated in Fig. 6. Note that

Qomputatlon between two sets of simple .features IS USuay spatial relation of the partitioned rectangles are also a kind
simpler than that between two complex objects. In this paper, -
L o of feature to represent a rectilinear module. It should be taken

we apply this idea to model the complex rectilinear modules . : X ;
into consideration for the design of our proposed algorithm.

in circuit placement problem. The partitioned rectangles are The objective of this algorithm is to iteratively adapt

treated as a kind of features to represent their correspond{ag weidhts of neuron that the total wire lenath i
rectilinear modules. Fig. 5 shows an example of the collectivi inim?zg q ;i?houfl:ng di,lesgv:?lap aTo rﬁin?mailze thz ceongnec-s

computation where the motion of a rectilinear module cdh

be simply decided by the summation of the motions of tHion wire length, modules with more connections shoulid b'e
corresponding rectangles. placed closer together. Thus, we can use the self-organization

For simplification, the neurons in the input layer higrule to adjust weights of neurons, so that neurons connected

den layer, and output layer are called input-neurons, micfg©Sely in topology are placed closer. Kohonen's rule for

neurons, and macro-neurons, respectively. We can represiiforganization is known to create an optimal 2-D feature

the rectilinear moduleb; by a macro-neuromhn; in this Map of higher dimensional sample vectors. We input the
proposed model. The micro-neuramn;; corresponds to the sample vectors from thg network stlmulu§ to adjusts weights
partitioned rectanglé;;. Connection weight between micro-Of the synapses. In this paper, the excitation stimulus and
neuronsmn,; andmny; specifies the strength of connectiorfhe inhibition stimulus between neurons are used to repre-
between rectangles;; and by,. It is defined as the local sent the criteria of wire length and module overlap between
connectivity em;; 1. The connectivitye;; which represent cells, respectively. Based on this proposed model, a self-
the connection weight between macro-neuréns and hin; organization algorithm is proposed to find the positions of

is used as their degree of neighboring. As in the SONnodules such that the closely related modules are placed
each input-neuron is corresponding to one coordinate of thear one another without overlapping, or, loosely speaking,
placement space. It uses onfyinput-neurons to represent athe whole interconnection wire length is minimized without

k-dimensional placement space. In the case of placementrondule overlap. Different from the rectangular case, during
a 2-D space, it isv;; = x; andw;s = ;. The input-neuron the rectilinear module placement process, the adaptation of
in; is used to represent thgh coordinate value of the inputthe output neuron is feedback to its connected micro-neurons

IV. NETWORK ORGANIZATION AND BEHAVIOR
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Fig. 6. The relationship between the proposed three-layered neural network and the rectilinear module placement problem.

to update the spatial relation of the partitioned rectanglebey are hard to extend to more complicated arbitrarily shaped
In our proposed algorithm, the initial placement evolves irectilinear case. Consider the circuit placement with rectilinear

a continuous manner toward the final solution. This contimodules, these algorithms always model the modules with
uous representation is quite different from the one found their bounding rectangles, and leave lots of dead space in their
the traditional algorithms (like HOP), where all intermediatplacement results. In this paper, a rectilinear module placement
solutions being examined are various permutations of celiégorithm is proposed which applies the self-organizing opti-

By associating iterative position rearrangements of moduleszation technique and can be implemented with a hardware
with the adaptations of neuron weights, a significant gain accelerator.

speed can also be achieved over the conventional software

algorithms running on sequential computers. A. Query-Based Self-Organizing Optimization Technique

The criteria of less module overlap and shorter wire length i .
. .27 Self-organizing neural networks offer a paradigm to under-
are contradictory. Odawaset al. [3] have analyzed the circuit . : : N .
stand the internal representation of information in the brain,

placing of expert designers and found two phases in th?ﬁrgparticular, the structures and internal organizations. Over

plr?aclzseem?;\t taeeC?irr“s?ueaa::elat:/\\//?rep::ﬁemegritgzgieisa?:orsep?rfgﬁ years, a vast amount of effort has already been dedicated
P ' P " 9 to the study of the self-organizing optimization technique [9],
portant. The placement with some module overlap would

permitted in this phase. In the second phase, the mod 21-124], 143]. In this paper, a query-based self-organizing

overlan criterion is more important. Expert desianers remo%ﬁimizaﬂon algorithm using a three-layer FDSOM is studied.
P P - EXP 9 e use an adaptation of Kohonen’'s SOM as it is well

the module overlap such that the total wire length is kept_ 8Bited for implementation on massively parallel architecture. In

low as posmb!e. we can .apply expert knowledge to MINIMIZE ditional self-organization algorithm, the topological relation
these contradictory criteria simultaneously [39]. Our approa%h

. X . S ) ; ! etween neurons is represented as the lateral interaction. The
is to define a dynamic objective functiafi-p incorporating . . . - L

. . . . lateral interaction, stimulus of excitation and inhibition, is used
wire length and module overlap with a gain function

follows: % preserve Fhe degree of simil_arit_ies and differences between

' neurons. Using the problem criteria to query (or produce) the
Cep =(1—g(t) x Cwr +g(t) x Cyo (4) input stimulus and adapting the representation weights, the

problem solution is achieved if the neurons are self-organized.

where the gain function(t) is used to simulate the degredn this paper, the simultaneously considered criteria of module
of importance of the module overlap criterion from expeidverlap and wire length are represented as the inhibition
knowledge. In this paper, we simply define the gain functiosind excitation stimulus, respectively [24]. The total stimulus
g(t) as a sigmoid function. The value of(t) increases function from micro-neuronmn;; to micro-neuron my is
gradually over timet to preserve the current configuratiordefined as

and to reduce the overlap and wire length between cells.
F(dijn) = (1= 9(8) X Fo(dijra) +9(t) X Fo(dijr)  (5)

V. CIRCUIT PLACEMENT WITH RECTILINEAR MODULES  \yhere functionF,,(.) is a penalty function to minimize the

Although there are many algorithms presented to plagére length between rectangle and rectanglé; [41], and
rectangular or limited L-shaped modules in a given region [33},is also defined as the lateral excitation from micro-neuron
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mny to micro-neuronmn;;. We can simply defind”,(.) as This process is repeated until the system is convergent. A more

follows [24]:

Fy(dijr) = emiju X i
The overlap penalty function is calculated between micro-
neurons to reduce the module overlap. It is noted that the
traditional SOM usually uses the distance measurement tg,
represent the stimulus between neurons. We redefine the
overlap penalty function to preserve the ideal distance between
rectangles. The overlap penalty functidf(.) from micro-
neuronmny; to mn;; is defined as the inhibition from micro-
neuronmny; to mn;;. As shown in [24], the overlap penalty
function £,(.) can be simply defined as follows:

Fo(dijm) = —(ﬁ)Q X fr(idij 0 — dij ) (7)
1,K

where f3,(.) is a 0-1-hardlimit threshold function used as
(3). This model is reasonable to reflect the connection and
overlap between rectangles directly. Therefore, the placement
problem can be solved if the related self-organization problem
is solvable. The intermodule and module-to-chip overlaps are
removed in such a way that the total wire length is kept as low
as possible. Using the collective computing of the three-layer
neural network described in Section 1V, this query-based self-
organizing optimization technique can be easily applied to the
rectilinear module placement problem.

B. Rectilinear Module Placement Algorithm

In the following, an intuitive overview of the algorithm
will be described and then a more detailed description will be

S

Vi = (vag, vy ) vy = z3(t) +

detailed description of the proposed algorithm is described as
follows.

id;j ) (6) Step 1)

Initialization:t = 0. Set the weight £;,v;) as
random values, and all neurons be nonactive. The
position weight §;,, v:;) can be initialized asaf +
205, Yi + Yoij).

tep 2) Randomly (or with some priorities) select a nonac-

tive macro-neuron, sayn;. If there is no nonactive
macro-neuron, go to Step 7).

Step 3) Set the macro-neurdm; and the related micro-

neuronsmn;; to be active. Compute the sample
vector

Fa:i

\/ .F.’IZZ‘2 + .Fyi2

and
Fy;
vy = yi(t) + 5 5 9)
AV4 F.QZZ + Fyz
where

m;  om myg

Fa:i :Z Z ZF(dU:M) X M

J=1 k=1 =1 dhij

m;  m Mg

ru =3 3" 5 a0

d; ;1.
J=1 k=1 I=1 ikl

The total force (stimulus) function F(.) is defined
in (5).

given. The system flow of the algorithm is as shown in Fig. 7. Step 4) Update the position of macro-neurbnand its

Initially, we set the positions of each macro-neurlon; as
random values and setup the positions of micro-neurens

by the corresponding macro-neurbn; and prespecified offset
(x0i5,y0;;). For each iteration, we randomly select a macro-
neuron, sayhn;, as the winner from a uniform distribution.

All the micro-neurons which connect to the winner macro-
neuron are set to be active. For each active micro-neuron, the
total stimulus (excitation and inhibition) work on it would
be computed. Then, using collective computation property,
we generate the input sample vectdr by the summation

of stimulus. Finally, the weights associated with the winner
macro-neuronhn; and its neighbors are adapted to make
these neurons more responsive to the current inpufThe
macro-neuron moves toward the sample vector and induces its
micro-neurons to do so. Constraint of the bounded placement
region is modeled as the threshold function of macro-neurons.
The bounding threshold functions for macro-neurorare
easily defined as follows:

fz.(a) =w,/2

=w—w,/2

if (@ <w,/2)
if (a>w—w./2)

=q others

neighbors by Kohonen's learning rule. For all such
macro-neuron$_, perform

2.(t+ 1) = 2.(t) + n(u, t) X (va; — x.(t))
y=(t+1) = y=(t) + 1w, 1) X (vyi — y=(t)) (10)
wheren(u, t) is the neighbor function and is the

topological distance betweeh, and b;. As the
bounded constraint in (8), we have

z.(t+1) = fr.(z.(t +1)) andy.(t + 1)
= fyz(yz(t+ 1))

Note that, the moving distances of the neurons are
decreased as the number of iterations is increased
or asu is increased.

Step 5) For allb,, update the position of corresponding

micro-neurons, say.;

xb;(t+1) = b (t) + (z.(t+ 1) — z.(2))
ybo(t+1) = yboy(t) + (v(t + 1) — v.()). (11)

Step 6) Go to Step 2).

fy=(a) = h./2 if (a <h./2)
=h—h./2  if(a>h—h./2)

Step 7)

Increase Set all neurons be nonactive. If (system
doesn’t converge) then go to Step 2).

Assume that the system is convergenttif> t,q.. A

=q others

large number of experiments are conducted to evaluate the

(8) performance of the proposed algorithm.
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Random initial the syste@

1

( ™
Randomly select a macro-
neuron as winner.

The corresponding micro-
neurons are active.

Apply network stimulus to
-l generate learning vector.

. Adapte the winner and its
4 .
neighbors.

. Adapte the corresponding
micro-neurons.

Is the system
convergent 7

Fig. 7. The system flow of the proposed rectilinear module placement algorithm on a three-layer neural network.

VI. EXPERIMENTAL RESULTS TABLE |
. . . THE STATISTICS OF THE PRESENTED TEST EXAMPLES; THE
The proposed algorithm has been implemented in C lan- NoTaTIoNS CELL, NET AND TYPE ARE THE RESPECTIVE

guage on a Sun SPARC-IPC workstation. The current version Numser oF MODULESWIRE NETS, AND THE SHAPE OF MODULES

of the system is running under Sun OS 4.1.1. Results on _ T —
many test examples are given to illustrate the performanee— - emle | *fofcrrcells  Fofwirenels  cireuit shape hpe
and feasibility of the proposed algorithm. In this paper, test ~ 1¥5T1 4 178 Rectilinear
data were grouped into two sets. The first two test examples, 1EST2 50 21 Rectilinear
TEST1 and TEST2, are taken from Direg al. [33]. There TEST3 12 140 Rectangular
are 42 modules and 178 wire nets in test example TEST1, rtest4 28 236 Rectangular
and 50 modules and 211 wire nets in test example TEST2, g5 70 335 Rectilinear
respective!y. We compared' the performance of the 'proposed TESTS 100 250 Rectilinear
method with the constructive approach [26], the simulated ST s

annealing method [25] and the two-phase hybrid approach ’ 30676 Rectangular
[33]. The obtained results show that the proposed algorithm is "5 1024 1569294 Rectangular
better than the previous in both the area of layout region and  TES™ 20 50 Rectilinear
the total wire length. The next two test examples, TEST3 and _ TESTI0 20 50 Rectilinear

TEST4 [27], are arbitrarily-sized rectangular module place-

ment cases with 12 cells/140 wires and 28 cells/236 wires, ]
respectively. Their running results are given and compargj@mples TEST9 and TEST10 are also tested. This placement
with BITOPT [27]. The next two test examples are TEST5 arfygorithm is "’,‘ISO examined tgkl_ng some other rectangular
TEST6 with 70 rectilinear cells/335 wires and 100 rectilinedtX@mples of different characteristics, e.g., TEST4 and TESTS.
cells/450 wires, respectively. The large test examples TEsE¥perimental results sho_vv that the total wire lengths obtained
with 225 rectilinear cells/50 676 wires and TESTS with 1028'€ Detter than the previous.

rectilinear cells/1569 294 wires are also tested. The last two ) o _

test examples are called TEST9 and TEST10 with 20 mofe Solution Efficiency for the Molecule Modeling Method
complex rectilinear cells. Table | summarizes the statistics ofIln order to demonstrate the solution efficiency for the pro-
the test examples; the notations cell, net and type are ihesed molecule modeling method, Fig. 8 shows four snapshots
number of modules, wire nets, and the shape of moduligem a running trace of the placement of the test example
respectively. In this section, we first investigate the efficiencfEST1. The initial positions, as shown in Fig. 8(a), are
of the proposed molecule modeling method by testing wilindom numbers within the given placement region. Apply
the TEST1 example. The relations between the obtained laythwt competitive rule of the self-organizing neural network,
areal/wire length and the applied gain tegnfas shown in (5)] modules are finally spread out over the whole region which
are also presented. Then, the solution quality of the proposathimizes the total wire length without module overlap.
algorithm is studied by testing with the TEST2 exampld-urthermore, due to the collective computing of hidden-
The test results of large size test examples TEST5, TEST®&urons, we can see that most of the dead-spaces among
TEST7, and TEST8 are proposed. Two more complex testtilinear modules are removed as shown in Fig. 8(d). The
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Fig. 8. Four snapshots from a running trace of the test example TEST1 are shown. (a) The initial positions are raandom numbers within the placement
region. (b) (c) With the competitive rule, modules are finally spread out over the whole region. (d) Due to the collective computing, most of the dead
spaces among the rectilnear modules are removed.

best total wire length obtained by the proposed algorithm froamd wire length for different dynamic objective functions to
100 placement trials is 9998. We do get a better result thahtain a better definition of function(t).

that achieved by the simulated annealing approach [25] and the

heuristic constructive approach [26], where they used 14 800

and 16129, respectively. During the placement of TEST1, tle Layout Area/Wire Length with Different Decreasing Ratios

change of total wire length and module overlap versus theas described above, it can be found that all these processes
first 200 iteration number are shown in Fig. 9. Note thagf dynamic objective are controlled by the decreasing gain
throughout this paper, the measurement of estimated mOdﬂJﬁCtiory/(t) = 1 — g(t). The large variation of total wire
overlap are taken from (2). As the definition of the dynamiength at the early stage is due to the large gain term which
objective function, the placement with some module overlapiifustrates the importance of total wire length minimization.
permitted at the early stage to minimize the total wire lengtithen, the changes are reduced because the magnitude of
It is seen that the variation of total wire length is initiallythis gain term is decreased. For simplification, assume that
high and is gradually degraded. As the process continues, We + 1) = ¢/(t) x g, and0 < g, < 1. The gain terny, is
cautiously remove the module overlap such that the total wigalled a decreasing ratio of functiof(g. Fig. 10 shows the
length is kept as low as possible. Finally, the total wire lengifhpact of the decreasing ratig. on the obtained total wire
converges to some constant value and the module overlapgth and module overlap. Although the total wire length
reduces to zero. Our experiments also demonstrate that tlegreases along with the gain tewn, the module overlap
number of module overlap decreases rapidly while the tofiacreases very fast if the value gf is over 0.99. The results
wire length increases slowly to toward a good placement resudiso show that a decreasing ratjp of 0.98 to 0.99 gives
Thus, the placement process is related to the changg&pf a good compromise. We adopted a decreasing ratio of 0.98
In the next section, we have observed the obtained layout ateeughout the following experiments. Note that the decreasing
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Fig. 9. The changes of total wire length and module overlap versus the first 200 iteration number are shown. At the early stage, the placement with
some module overlap is permitted to minimize the total wire length. As the process continues, we cautiously remove the module overlap such that the
total wire length is kept as low as possible.
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Fig. 10. The impact of the decreasing ration on the obtained total wire length and the number of module overlap is presented. Although the total wire
length decreases along with the decreasing ratio, the module overlap is not free if the decreasing ration is over 0.99. Note that the decreastimg of the t
wire length is slow if the decreasing ration is small. We select the decreasing ration as 0.98 throughout this paper.

of total wire length is slow ifg,. is smaller than 0.93 as shownon the obtained total wire length and module overlap. Account
in the graph. The reason is thaft(¢) is usually small ifg. the total module size of test example TEST1 is 55070. If
is small. Then, the major objective of the whole process is the size of the layout region is smaller than the total module
minimize the module overlap. In this case, the obtained totsike, the module overlap is large and the obtained total wire
wire length depends on its initial configuration and have rlength is hard to estimate. If the size of layout region is larger
distinct reduction. Fig. 11 shows the impact of the layout ard¢an the total module size, the module overlap is nearly zero
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Fig. 11. The impact of the layout area on the obtained total wire length and module overlap is presented. If the size of the layout region is smaller
than the total module size, the module overlap is large. If the size of the layout region is larger, the obtained total wire length is nearly a fconstant. |
shown that the proposed method can minimize the area of the layout region.
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Fig. 12. (a) The graph of percentage of trials versus the total wire length obtained during the 100 placement trials of the test example TESTialsAll the tr
started from different randomly generated initial configurations. (b) The best solutoin obtained is presented.

and the total wire length is nearly a constant value in th@. Solution Quality of the Proposed Method
proposed algorithm. In other words, if the area of layout regionThe solution quality of the proposed solution model is

is large enough, the total wire length and the module overl P . . - .
. g . : ascussed through the comparison with three rectilinear cir-
are insensitive to the difference in the layout area. The results

show that the layout area within the range 60000 to 70083t Placement algorithms described in [26] (a constructive
is acceptable for TESTL1. In the paper, we assume the aredBProach), [25] (a simulated annealing approach), and [33]
layout region is 83496 (284 294). Our chip area utilization (& two-phase hybrid approach). Fig. 12(a) demonstrates the
is better than that of the simulated annealing approach and @faph of percentage versus the total wire length obtained
heuristic constructive approach, where they used 108 999 ahiting the 100 placement trials of test example TEST2. All
99840, respectively, including lots of dead spaces. these trials are started from different randomly generated initial
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Fig. 13. (a) The obtained placement result for TEST4 with total wire length 35239. (b) The obtained placment result for TEST5 with total wire [Bhgth 539

configuration. The average total wire length obtained by thiene. Table Il presents the detail comparison results of the
proposed model was 18 324.35. We did get a better result thabtained total wire length for test examples TEST1 and TEST2
that achieved by the simulated annealing method [25] amdth three previous rectilinear circuit placement algorithms.
the constructive approach [26], where they used 20426 afAd described in [33], in this paper, the size of modules are
29875, respectively. It is also better than that obtained by taesumed to be the size of actual modules with the spaces left
two-phase hybrid method [33] with 20 053 total wire lengtharound the modules for the wire routing. Our experiments
Our obtained solution is shown in Fig. 12(b). These resulshiow that the proposed method can obtain smaller layout
show that the obtained total wire length is not sensitive #rea and fewer total routing length. In these comparisons,
the difference in the initial configuration. In other words, théhe applied simulated annealing method [25] is started from
proposed algorithm successes in yielding a proper placembigh-temperature and computed with 4@Gterations ¢ is
under different configurations. The time behaviors as showime number of circuit cells) to low-temperature. However,
in Fig. 8 give a possible answer, in which, the effect ois shown in Fig. 9, the number of iterations used for the
start configuration is reduced with the larg€t) in initial proposed method is only 260 Compared to the simulated
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Fig. 14. (a) The placement result for the large-size problem with 225 cells. (b) The obtained placment result for the large-size problem witk.1024 cell

TABLE I obtained total wire length for test examples TEST3 and TEST4
THe DeTalL COMPARISON RESULTS OF THEOBTAINED TOTAL are 9099 and 7025, respectively. Comparing the placement
WIRE LENGTH FOR TEST EXAMPLES TEST1 AND TEST2 WITH . . .
THREE PREVIOUS RECTILINEAR CIRCUIT PLACEMENT ALGORITHMS result, we find that the proposed algomhm achieved shorter
total wire length than BITOPT [27]. It obtains 9626 and
Test Examples [26] (25] [33] Ours 9470 for the total wire length of test examples TEST3 and
layout area 99840 108999 83496 sza06  TEST4, respectively. Average wire length reduced by the
TEST1 | wire length 16129 14800 12368 Laag*  Proposed algorithm over BITOPT is 15%. An algorithm that
CPU time 49,49 2016.86 67797 s34y 1S good for the rectilinear model should be also good for

the rectangular model, as the latter is a special case of the

layoutarea | 102898 128426 108224 108224 former. An algorithm that is good for the rectilinear model
TEST2 | wire length 29875 20426 20053 18324"  should be also good for the rectangular model, as the latter

CPU time 85.07' 3453.26 1306.83" 19470 js a special case of the former. Our experience indicates
* The average total wire length of 100 placement trials. that our algorithm is Competitive with the other approaches

mentioned above. The obtained total wire length for large
) size rectilinear test examples TEST5 and TEST6 are 35239
annealing method, our placement result shows an averaggy 53954, respectively. Their obtained placement results are
_16.5% |mprovement.|ntotal wire length and 93% improvemet,q\vn in Fig. 13(a) and (b). Besides, another two large size
in CPU time. In Dinget al's approach [33], the number , ohems TEST7 and TESTS, with more than 1000 circuit
of iterations for this medium-temperature simulated annealingis are also presented to demonstrate the effectiveness of the
method is given as 350. Experiments show that the proposed,on,qed algorithm. Fig. 14(a) presents the obtained solution
method is also better than which uses @berations. Its CPU for placing TEST7 within a 20x 20 layout region. The
time is smaller than that of [25], however, still larger than thah,| \yire length obtained was 466 441. The obtained solution
of the proposed method. Although simulated annealing COLﬂgr placing TEST8 within an 100« 100 layout region is
give a be_tter result if it run for a very Iong time. However, it%hown in Fig. 14(b) with the total wire length 50 198 793. Our
computation cost would be very expensive. experiments demonstrate that the proposed method can handle
large size cell placement problems. These obtained results are
quite reasonable, in which, small circuit cells are placed in the
An algorithm that is good for the rectilinear model should beenter of layout region. The narrow blocks are placed on the
also good for the rectangular model, as the latter is a speciabhnd they coordinates surrounding with large cell blocks.
case of the former. In this paper, two test circuits, TESTAt last, two complex test examples TEST9 and TEST10 have
and TEST4, with rectangular modules have been tried. Thiso been tested to show that the proposed method can handle

D. Other Test Examples
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and (b) TEST10.
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Fig. 15. The placement results for the complex test examples (a) TES

(b)

[15]

[16]

complex rectilinear cell placement problems. We have placed
TEST9 within a 16x 8 layout region. The total wire length 17]
obtained was 237.70. The obtained solution result for placilllg
TEST10 within an 11x 11 layout region has the total wire[18]
length 285.21. Their obtained placement results are shown in

Fig.

15(a) and (b). [19]

VII. CONCLUSION

[20]

A three-layer neural-network model based on the force-
directed self-organizing maps is presented in the context [tq)
solve the circuit placement problem with arbitrarily shaped
rectilinear modules. The pattern/feature representation metqg
is applied to model the complex rectilinear modules. Fur-
thermore, a new overlap penalty function with collectivé23]
computation is proposed. In this algorithm, both the relative
placement and the overlap-removing process are represente@£gsr.-I Chang and P. Y. Hsiao, “Arbitrarily sized cell placement by self-
a single model and solved at the same time. The experimental

results are found to better than the previous methods. Note t

in this paper, the placement problem is simplified by assuming
that modules can not be rotated during the process. We plan

to investigate these possible extensions to our approach.
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