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Introduction

The application of physics to finan-

cial and economic problems is 

not a new paradigm. Many prin-

ciples of physics have been employed to 

derive various models of financial engi-

neering, such as the widely held ran-

dom walk theory of stock pr ice 

fluctuation which can be simulated by 

the Brownian motion, and the pricing 

model of options which applies the heat 

equation to closed-form solutions. 

Recently, quantum 

mechanics has 

been applied 

i n  m a r k e t 

microstructure 

analysis to perform simu-

lation [1] [2]. Further, statistical physics 

has been employed to simulate the 

probability and stochastic process in 

economic and financial issues [3] [4]. All 

of these have given rise to the study of 

physical phenomenon in economic and 

financial activities, which is termed 

“econophysics” [5].

This article aims to discuss the 

application of computational intelli-

gence (CI) techniques in combination 

with classical concepts in physics in 

devising investment strategies. In the 

analysis of investment strategies, many 

CI techniques are employed to predict 

market trends, such as the neural net-

work (NN) [8] [9], the support vector 

machine (SVM) [10] [14], and particle 

swarm optimization (PSO) techniques 

[11]. Other techniques such as evolu-

tionary computing (EC) and genetic 

algorithm (GA) are utilized to identify 

the knowledge rules of trading [12] 

[13]. However, changes in market 

behavior are dynamic and time variant. 

Thus, using a single CI technique can 

occasionally be better than traditional 

statistic models, but the trading models 

may pose risks from the changing mar-

ket. Recently, the hybrid model and the 

data mining concept, which combine 

multiple CI techniques into multiple 

stages, have emerged 

to improve the 

trading mod-

el’s stabil i ty 

and profitability 

[7]. For example, fuzzy 

logic is employed to differentiate the 

parameters in the first stage, and then 

similarity search is used for data cluster-

ing in the second stage.

A novel perspective for analyzing the 

dynamic physical behavior behind his-

torical financial data is proposed in this 

article, which is focused on the move-

ment or change in the future of a time 

series. This perspective differs from that 

of “econophysics” research, which focus-

es on analyzing dynamic physical behav-

ior by stochastic process, such as 

geometric Brownian motion. The philo-

sophical background for adopting 

dynamic physical behavior analysis orig-

inates from fundamental mathematics—

the Taylor series expansion.

The Taylor series of a function ƒ(x), 

which is infinitely differentiable in a 

neighborhood of a number x0, is the 

power series:
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which, in a more compact form, can be 

written as follows:
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where n! denotes the factorial of n, and 

f 1n2 1x0 2  denotes the nth derivative of f 

evaluated at point a; the zeroth deriva-

tive of f is defined to be f itself.

First-order and second-order Taylor 

series expansions are mostly adopted 

because computing high-order derivatives 

in the Taylor series is very complicated. 

The Taylor series may also be generalized 

to the functions of multivariables. The 

first-order and second-order Taylor series 

expansions of a multivariable function 

can be written respectively as 
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Assume in a financial market that the 

price P is the function of two variables, 

x and y. According to the second-order 

Taylor series expansion, the differential 

of P can be expressed as
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The financial market price expressed in 

Taylor series expansion has been widely 

used in financial engineering, such as for 

the derivation of the Black-Scholes 

option pricing model, and for measuring 

the sensitivity of a bond’s market price 

to interest rate movements by its dura-

tion and convexity.

Observed form Taylor series expan-

sion, both sides of the equation can be 

recognized as cause-and-effect relation-

ships. The right side of the equation sig-

nifies the cause, which will lead to the 

effect expressed in the left side of equa-

tion. Any numerical variation of the 

cause, including the first and second 

derivatives, will alter the value of the 

effect. This phenomenon is commonly 

observed in dynamic physical behavior, 

where the first derivative is often used to 

illustrate the momentum, and the sec-

ond derivative often pertains to the 

impulse. Consequently, the traditional 

cause-and-effect analysis by qualitative 

methodology can be utilized instead of 

the quantitative approach by introducing 

the classical physics concept. 

The difference between cause and 

effect is difficult to measure owing to 

the absence of an absolute criterion. A 

feasible approach involves transferring 

the cause and effect into a relative mag-

nitude. Inspired by the philosophy of 

classical physics concepts and the Taylor 

series, the n-order derivative—which 

may be represented as dynamic physical 

behaviors such as velocity, acceleration, 

momentum [6], impulse, potential ener-

gy, kinetic energy, and so on—facilitates 

the analysis of the difference between 

cause and effect in financial dynamics.

When applying dynamic physical 

behavior analysis to financial trading, the 

relative magnitude of physical behavior 

measurement is derived by differencing 

time series, which reflects financial mar-

ket dynamics. For example, when the 

first differencing of price time series, 

specifically the first derivative or slope 

which can be considered as the momen-

tum, is positive, the price series is 

uptrend. Additionally, when the second 

differencing of price time series, specifi-

cally the second derivative or convex 

which can be considered as the impulse, 

is positive as well, the price series is still 

uptrend and will be sustained for a lon-

ger period as compared to a series 

whose first derivative is positive and 

whose second derivative is negative. 

Based on these mathematical principles, 

capturing dynamic physical behaviors 

for explaining social science phenome-

non is a powerful tool in building the 

forecasting model under a nonlinear 

dynamic environment.

Three applications of financial invest-

ment decision are presented in the fol-

lowing section to illustrate the idea and 

process behind dynamic physical behav-

ior analysis. 

Selected Applications

Financial Time Series Analysis
The capability to look ahead and pre-

dict future trends is vital in making 

financial investment decisions. Time 

series models are preferred forecasting 

models adopted for financial markets. 

These models can loosely be classified 

into two categories. One is the linear 

model, which includes the simple 

regression method and the Box-Jenkins 

approach, such as the autoregressive 

moving average (ARMA) and autore-

gressive integrated moving average 

(ARIMA) models. The other is the non-

linear model, such as the generalized 

autoregressive conditional heteroskedas-

ticity (GARCH) family models, which 

are most commonly used in economics 

and finance. These typical time-series 

models are known as parametric models 

as well. They are derived from stochastic 

processes, employing parameters to esti-

mate the relationship between previous 

data points and following data points. 

However, a number of restrictions must 

be considered when applying the para-

metric modeling process. For example, 

the time series must possess stationary 

or time-invariant characteristic.

Majority of financial market price 

series are non-stationary and time vari-

ant. The returns series exhibits a fat-

tailed and leptokurtic distr ibution. 

Consequently, when applying these 

typical time-series models to financial 

time-series data, the data must be pre-

processed by transformation to fulfill 

the stationary request. In a case involv-

ing finance, the original price series is 

converted to return series by differenc-

ing; however, the property of the origi-

nal price series may be eliminated. 

Instead of typical time-series models, 

using CI techniques to model time 

series is an alternative approach. Having 

emerged in recent decades, this is like-

wise known as the non-parametric 

model. The advantage of using a CI-

based model is that the characteristics 

of time series are unrestricted. The 

nonparametric modeling approaches 

are capable of dealing with high non-

linearities and complex time-series data 

without conversion.

The relationship between the previ-

ous data points and the following data 

points of the time series can be consid-

ered as the cause-and-effect relation-

ship. It is an extremely suitable 

modeling by CI techniques combined 

Inspired by the philosophy of classical physics 
concepts and the Taylor series, the n-order 
derivative—which may be represented as 
dynamic physical behaviors such as velocity, 
acceleration, momentum [6], impulse, potential 
energy, kinetic energy, and so on—facilitates the 
analysis of the difference between cause and 
effect in financial dynamics.
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with dynamic physical behavior  analysis. 

Financial market dynamics are affected 

by various factors in the real world. 

Forecasting the following data points 

according to previous data points is 

insufficient. Referencing more infor-

mation which can describe the time 

series’ behavior can help increase the 

accuracy of forecasting. Therefore, a 

number of related time series derived 

from differencing time series may be 

adopted to determine the relationship. 

The first-order difference of time series 

can represent price velocity, and the 

second-order difference can represent 

price acceleration. According to the 

Taylor series expansion concept, price 

series is composed of price velocity and 

price acceleration. Consequently, using 

the original time series accompanied by 

its first- and second-order differencing 

time series for CI-based models is 

believed to create more meaning.

Further, Taylor series expansion and 

dynamic physical behavior can extend 

the longitudinal data analysis of time 

series to cross-section data analysis. The 

most typical time-series models merely 

consider univariate analyses. However, 

CI models have the capacity to proceed 

to multivariate analyses. The first- and 

second-order differencing time series 

are dependent on the original time 

series and are treated as redundant in 

statistics. However, simultaneously con-

sidering these dependent time series is 

helpful in analyzing the state-space of 

the time series, which is similar to the 

state-space model for engineering and 

the spatial econometrics models [14] for 

the social sciences. Through this, time 

series can be expressed in state-space or 

vector form for using CI techniques in 

advanced analysis, which is difficult to 

perform using typical time series mod-

els, such as cluster analysis, pattern rec-

ognition, features retrieval, temporal data 

mining, knowledge discovery, and so on.

Pricing Model for 
Financial Engineering
A number of studies have combined sta-

tistical physics with arbitrage pricing 

theory to assess the value of derivative 

instruments and design the pricing 

model for evaluating derivatives in the 

real world. However, the model struc-

tured on statistics seeks to determine the 

most possible price by using the proba-

bility distribution of statistics; the real 

price probability distribution does not 

always follow the hypothesized probabil-

ity distribution. Applying the widely 

used European option pricing model, 

the Black-Scholes (B-S) model, as exam-

ple, it is assumed that a stock’s future 

price has a lognormal distribution. The 

assumption of probability distribution is 

based on geometric Brownian motion, 

and the solution of the partial differential 

equation in the B-S model utilizes the 

heat equation of physics. However, there 

exist disparities between the real price 

and the price calculated by the option 

pricing model. Therefore, a number of 

subsequent studies adopted a new prob-

ability distribution assumption and other 

numerical partial differential equations in 

an attempt to arrive at a more accurate 

pricing model. Accordingly, the jump 

diffusion model, binomial tree model, 

and other more accurate pricing models 

were developed. However, the option 

price can sensitively reflect the market 

trend in the future. These models only 

assume the distribution of a stock’s future 

price and do not forecast the market 
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FIGURE 1 The visualized interface for cluster trajectory analysis of financial statements.

The relationship between the previous data 
points and the following data points of the time 
series can be considered as the cause-and-effect 
relationship. It is an extremely suitable modeling 
by CI techniques combined with dynamic physical 
behavior analysis.
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trend of a stock in the future. Thus, the 

option prices in the future are still diffi-

cult to forecast for making trading deci-

sions in practice.

Neural networks possess non-linear 

regression capability in CI techniques, so 

they are tapped as methods for improv-

ing the option pricing model in a num-

ber of studies. In earlier research, the B-S 

model’s output values were mostly uti-

lized as the input values of the NN 

model [15]. However, comparing the 

results of the NN and B-S models, only 

in certain conditions would the pricing 

model’s accuracy be superior to that of 

the B-S model. Further, in subsequent 

research, scholars learned that the esti-

mation of implied volatility primarily 

influences the pricing of option. There-

fore, recent studies have focused on 

assessing implied volatility [16] or pro-

posing a new error correction model 

combined with the original B-S model 

[17] to improve the pricing model’s 

accuracy or hedge efficiency [18].

Instead of directly adopting the basic 

theory model’s original variables as input 

for the NN model, combining the out-

put value of the basic theory model 

with the dynamic physical behavior as 

input can result in more advantages. The 

dynamic physical behavior is basically 

employed to describe the financial mar-

ket’s temporal and spatial environment, 

and it can be applied to evaluate implied 

volatility, modify the deviation of the 

B-S model, or improve the efficiency of 

hedging. For example, to correspond to 

price fluctuation in the real world, the 

original result computed by the B-S 

model can be combined with any other 

type of physical characteristic and be 

input into the NN model. With the 

exception of using the result of the B-S 

model as one of the input nodes, the 

commonly used indicators of technical 

analysis, such as the moving average 

convergence divergence (MACD) indi-

cator comprised of a fast line, a signal 

line, and a histogram, can be inputted as 

well. These dynamic physical behaviors 

will undergo comparisons by computing 

the relationship of relative magnitude 

via supervised learning network. Thus, 

the NN model provides option price 

 forecasting in the future, which assists 

the trader in estimating the differences 

between the B-S model price and the 

real market price, allowing them to 

devise sound trading decisions.

This approach can also be utilized in 

financial engineering tasks such as risk 

management, yield curve modeling, 

credit evaluation, pricing new financial 

instruments, and so on. The approach 

can provide several advantages, such as 

allowing the model developed from CI 

to retain its original traits of financial 

engineering theory. Further, in practical 

financial trading, the model can consider 

the market trend in the future and pro-

vide assessment references of the differ-

entiated values between theory models 

and the real world.

Advanced financial engineering 

research focusing on volatility is a new 

direction for dynamic physical behavior 

analysis and CI techniques. When con-

sidering the delta hedge by option, using 

a specific number of days of historical 

data to estimate the applicable volatility 

in the future for option pricing is diffi-

cult. Using CI technique as an alternative 

approach, the volatility can be estimated 

by using data which have a similar pat-

tern of dynamic physical behavior. In 

addition, even the estimation of volatility 

can be abandoned when the option delta 

hedge strategy is carried out. This is 

because the risk of option hedge can be 

directly assessed from historical data by 

using data mining techniques. Further, 

CI techniques combined with dynamic 

physical behavior analysis can ease the 

similarity search of time series.

Portfolio Management 
and Security Selection
The most fundamental issue of invest-

ment decisions, which is the most time 

consuming as well, is the formulation of 

a security selection decision. Whether 

performing tactical asset allocation or 

strategic asset allocation strategies, the 

key issue is selection of the portfolio’s 

underlying assets. This is a common 

problem in practical implementation. 

For purposes of academic research, 

security selection issues are considered 

as the optimal portfolio problems or 

asset allocation problems. CI techniques 

have been applied to these problems, 

which employ fuzzy logic for portfolio 

optimization [19] [20], as well as GA 

[21] and PSO [22] in allocating assets to 

ensure that investment portfolios will 

gain the maximum profit with mini-

mum risks. These studies often focus on 

the Markowitz portfolio theory and 

Sharpe ratio, which mainly address risks 

and return, or portfolio volatility 

according to historical market data. 

However, they failed to forecast the 

future of the market.

An investment portfolio consists of 

underlying assets, including securities, 

options, bonds, and mutual funds, to 

name a few. Each asset has different 

selecting criteria to process the alloca-

tion and management of portfolios, and 

to match the investment goal. As for 

stock investments, the growth investing 

strategy or value investing strategy is tra-

ditionally employed [23], considering its 

price-to-book (P/B), price-to-earnings 

(P/E), and price-to-sales (P/S) ratios. 

However, selecting stocks according to 

these indicators is difficult when aiming 

for stable profits in the future. Therefore, 

funds managers often set specific invest-

ment strategies in advance and select 

underlying assets based on these. 

The equity long-short strategy is one 

of the most popular strategies that suc-

ceed regardless of whether the market 

also succeeds or fails. The market risk is 

hedged by taking both long and short 

equity positions. The simplest formula-

tion equity long/short strategies are 

designed to buy an undervalued stock 

and sell an overvalued stock, and then 

profit from a change in the spread 

between two stocks. By well selection 

stock, the short positions are most likely 

to underperform the market, and the 

The main reason behind the use of CI techniques 
is to conduct qualitative analysis.
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long positions are likely to outperform 

the short position on a relative basis. Thus, 

the position may still be profitable if both 

stocks decline insofar as the long position 

declines less that the short position. This 

type of investment strategy has been 

gradually improved and applied on hedge 

funds in recent years, reaping remarkable 

profits. As for distinguishing undervalued 

or overvalued stocks, combining CI tech-

niques and physics concepts can result in 

relevant investment decisions.

The main reason behind the use of 

CI techniques is to conduct qualitative 

analysis. Stock selection employs the 

dividend discount model, price-earnings 

ratio analysis, book value per share anal-

ysis, discounted cash flow technique, 

capital asset pricing model (CAPM), and 

arbitrage pricing theory, whether by 

growth investment or value investment 

strategy. These theories and models are 

mostly quantitative analyses, and since 

stock selection criteria are based on 

numeric values calculated from histori-

cal data, these are unable to forecast the 

future trend of the selected stocks. Qual-

itative analysis may provide more infor-

mation for stock selection, which 

includes the future trend for a specific 

time period, speed of change, duration, 

and so on. It likewise lends decision 

makers a view of the future.

The following is an example of con-

structing a portfolio of equity long-

short strategy by the CI approach. First, 

two groups of underlying equities are 

identified—one is the undervalued 

stocks for the long position, and the 

other is the overvalued stocks for the 

short position. For each underlying 

equity, their published financial state-

ments are respectively taken as the 

benchmark to measure similarity with 

the blue chip stocks. These may be the 

constituent of an index tracked by 

exchange traded funds (ETFs), and the 

distress stocks which may have experi-

enced financial crisis. To align the two 

g roups, c luster ing a lgor i thm is 

employed, such as a self-organized map 

(SOM). After clustering, each underly-

ing stock is clustered, and the position 

of the cluster to which it belongs is 

plotted on the cluster distribution maps, 

where the upper right side of the map 

can be considered as the cluster of 

undervalued stocks, and the lower left 

side can be considered as the cluster of 

overvalued stocks.

To conduct qualitative analysis of 

clustered individual stocks, dynamic 

physical behavior analysis can be used. 

In Figure 1, two analysis models are 

defined for equity selection. One is the 

value and growth model, in which the 

original financial statement data are 

adopted for clusters similarity measure-

ment. The other is the physical model, 

in which the first- and second-order 

variations of financial statement data 

are adopted. By using either value and 

growth model or physical model, for 

each equity, the trajectory of the clus-

ter position to which it belongs on the 

distr ibution map is sketched when 

continuously perform clustering in 

several periods. Analyzing the trajecto-

ry of clusters [24] can be interpreted as 

the changes in energy or can refer to 

the external forces which influence the 

future trend of the equity. If the equity 

is on a trajectory toward the cluster of 

blue chip stocks, then it may be under-

valued. If it is in the opposite direction, 

that is, toward the cluster of distressed 

stocks, then it may be overvalued. 

Therefore, the problem of selecting 

portfolio stocks can be analyzed using 

a qualitative instead of the traditional 

quantitative method, providing a visu-

alized interface to help investors build 

their view of future trends.

Conclusion
The methodology of combining 

dynamic physical analysis and CI tech-

niques for financial investment decisions 

support is introduced in this paper. Sim-

ilar to most social science studies, rea-

soning and inference are created based 

on the causality model. The dynamic 

physical behavior can help CI-based 

models to clearly describe the change in 

market trend and to recognize the 

implied relationship between cause and 

effect. This novel methodology can be 

applied to forecast the market dynamics 

for financial investment decisions instead 

of being limited to traditional financial 

models. Ultimately, this decreases the 

gap between financial theory and practi-

cal trading.
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