
Power-State-Aware Buffered Tree Construction

Iris Hui-Ru Jiang
Dept of Electronics Engineering
National Chiao Tung University
Hsinchu 30010, Taiwan
hrjiang@faculty.nctu.edu.tw

Ming-Hua Wu
Realtek Semiconductor Corp.
Hsinchu Science Park
Hsinchu 300, Taiwan
aqdest.ee94g@gmail.com

Abstract—Interconnect delay and low power are two of the
main issues in nano technology. Buffer insertion during routing
effectively reduces interconnect delay; power state management
and multiple supply voltage significantly lower power consump-
tion. However, buffering without considering power states in
multiple supply voltage designs may cause the signal integrity
problem. This paper first considers power states into buffered
tree construction. Based on a hierarchical approach combined
with dynamic programming, we can simultaneously minimize
power, satisfy timing constraints and maintain signal integrity.

I. INTRODUCTION
In nano technology, interconnect delay and power con-
sumption are two of the main concerns. Interconnect delay
can be reduced by buffer insertion, wire sizing, gate sizing
and etc. [1], [2], [3], [4], [5]; among them, buffer insertion
is an effective way. Due to limited routing resources at the
post-layout stage, buffer insertion during routing has been
widely adopted in the past decade.
On the other hand, low power has been extensively studied
in literature. Multiple supply voltage (MSV) [6], [7] and
power state management [8], [9] have large, and even huge,
benefits on power [10]. In a multiple supply voltage de-
sign, each cell can be driven by one from several voltage
levels. Although this method can reduce dynamic power
quadratically, a signal going through differently leveled cells
induces leakage currents and raises the integrity issue. To
overcome them, an extra level converter is required if a
lower voltage cell drives a higher one. Moreover, arbitrarily
assigning voltage levels may make power/ground planning
difficult. Therefore, we can cluster cells with the same supply
source into a group, thus physically partitioning a design into
voltage islands [11], [12], [13], [14].

�

�

��������	
�

�

��
��������������� ������������������ ������������������

������������������
��
��������������� ���������������

Fig. 1. Under a given power state, the right-hand sided path is infeasible

���

���

�	

�
�

�� �	

���

��

�
� ���

�	 ��

�	

���

��

�
�

�	

�
�

��

���
���

�	

���

��

���

�

�	 ��

��� ���

��� ���
���

��	

�

�	 ��

��� ���

��� ���
���

��	

�

�	 ��

��� ���

��� ���
���

��	

�

�	 ��

��� ���

��� ���
���

��	

�

�	 ��

��� ���

��� ���
���

��	 ���

�

�	 ��

��� ���

��� ���
���

��	

Fig. 2. A buffered tree should be feasible for all possible power states

In addition, circuits are not always running at the high
performance mode, e.g., several voltage islands may idle
sometimes, but still consume power. With power state man-
agement, we can adjust the supply voltages, and further turn
off idle islands. However, in this case, we shall carefully do
routing and buffer insertion. Fig. 1 shows an MSV design
with two voltage islands turned off under a given power
state. The right-hand sided path costs only one high voltage
buffer, but it conducts an incorrect signal because of no
power supply. Moreover, a design may dynamically switch
among several power states. As demonstrated in Fig. 2, given
a source s and two sinks t1 and t2, the net should work at
two power states P1 and P2. Voltage islands VI5 and VI6 are
turned off at P1, while VI1 and VI5 are turned off at P2. To
maintain signal integrity for both states, the net is routed
as Fig. 2(a) and 2(b). However, this long wire may violate
timing constraints. Then, a buffer is inserted in VI1; this

978-1-4244-2658-4/08/$25.00 ©2008 IEEE 21

�

��

��
��

��

��

��	

�

��

��
��

��

��

�
	

Fig. 3. The dotted block is the low voltage island and the small rectangles
are available buffer locations (a) Sink t2 might violate its timing constraint
and incur a long transition (b) Sinks t2 and t3 can meet timing constraints
for always

buffer solves timing violation at P1 as Fig. 2(c) but fails at
P2 as Fig. 2(d) because of no power supply. If we can create
a new voltage island VI7 as Fig. 2(e) and 2(f), then the net
will maintain signal integrity and satisfy timing constraints
for both states.
Based on these observations, it is desirable to construct
a buffered routing tree with power state consideration, such
that the net is feasible for all possible power states. However,
no existing works considered power states during routing and
buffer insertion so far.
Several works handled simultaneous routing and buffer
insertion for single supply voltage designs [2], [3], [5]; most
of them used dynamic programming in a bottom-up fashion
derived from [4]. Both [2] and [5] considered only two-pin
nets, while [3] grew a multi-pin buffered tree under fix buffer
locations. [3] constructed subtrees from sinks first, and then
recursively merged subtrees with disjoint sinks and pruned
inferior partial solutions until completing a tree. Furthermore,
[13] and [14] extended buffered tree construction to dual
supply voltage designs. [13] recursively visited children
nodes from the source first, and then enumerated all possible
solutions in a bottom-up fashion. However, [13] assumed the
source was driven by high voltage, and forbade low voltage
buffers to drive high ones. Thus, level converters were not
used inside the routing tree, and only few level converters
were needed right before high voltage sinks. [14] removed
this impractical restriction and proposed an algorithm for a
simplified dual voltage design with only one low voltage
island. Because the low voltage island may be turned off
sometimes, if the source and any sink are outside of it, [14]
prohibited buffers from being placed inside. As shown in
Fig. 3(a), the source s and three sinks t1, t2 and t5 are outside
the low voltage island; therefore, no buffer is inserted inside
it. If sink t3 is timing critical, this restriction may make it
violating its timing constraint and incurring a long transition.
Fig. 3(b) shows an alternative solution, where the timing of
sink t3 can be improved by an inserted buffer, and the timing
of t2 still can be well-maintained. Hence, this restriction is
unnecessary, and considering only one low voltage island is
somewhat over-simplified.

This paper first considers power states into buffered tree
construction for dual supply voltage designs. The goal is to
minimize total power consumption under timing constraints
and to maintain signal integrity. We adopt a hierarchical
approach combined with dynamic programming. First of
all, we construct a local buffered tree within each voltage
island. Secondly, we connect these local trees into a global
one with power state consideration. If no feasible solution
meets timing constraints, we will create new voltage islands
around the existing ones. Power state diagrams are available
in system level [8], [9], and voltage islands are planned at
floorplanning. Therefore, we can combine them into a power
state table that indicates each state with active islands. The
newly created islands are expected to be small and few;
their main purposes are to place buffers for timing issues.
With careful creation, the overhead on power/verification
can be small. Moreover, with the modified power states
and voltage islands, we can negotiate with the system level
or floorplanning for further improvement. In addition, our
method can easily be extended to multiple supply voltage
designs and sophisticated delay models. The experimental
results show that our approach can not only minimize power,
satisfy timing constraints, but also maintain signal integrity
effectively and efficiently. On average, our algorithm can
achieve 33.39% power reduction and speedup 16.31% run-
times.

II. PRELIMINARIES AND PROBLEM FORMULATION

In this Section, we introduce delay and power models, and
then give the problem formulation.

A. Delay and Power Models

Fig. 4 shows the circuit models of a wire, a buffer, and
a level converter. Two types of buffers–low voltage one and
high voltage one, and one type of level converter are used
throughout this paper. TABLE I lists the parameter settings
in our experiments. (In order to show the effectiveness of our
method, we adequately adjust the parameters used in [13] so
that buffers tend to be inserted.) The Elmore delay [15] of a
wire Dw and that of a buffer Db are:

Dw(L) = rwL(
1
2
cwL+Cl), Db = Di+RbCl,

where cw is unit length capacitance, rw is unit length resis-
tance, L is wire length, Cl is the downstream capacitance, Di
is the intrinsic delay of a buffer, Cb is the input capacitance
of a buffer, Rb is the output resistance of a buffer. The delay
model can easily be extended to consider the inductive effect
or to more sophisticated ones. A level converter is similarly
modeled. The wire power consumption Pw is measured by
energy per switch,

Pw(L) =
1
2
cwLVdd2,

where Vdd is the supply voltage.

22

����

bC
bR

LCC
LCR

������ 	�
���
��
�����

Lcw2
1 Lcw2

1Lrw

Fig. 4. The circuit models of a wire, a buffer and a level converter

TABLE I
PARAMETERS USED IN THIS PAPER

Model Value
Wire cw = 0.15 f F/μm, rw = 1.0 Ω/μm

Buffer High Cb = 3.4 f F , Rb = 1.0 kΩ, Di = 36.4 ps
Low Cb = 3.4 f F , Rb = 1.2 kΩ, Di = 40.0 ps

Level converter CLC = 3.4 f F/μm, RLC = 1.2 kΩ,
DLC = 100.0 ps

B. Problem Formulation
• The Power-State-Aware Buffered Tree Problem:
Given a multi-pin net, blockages, voltage island plan-
ning, power states, and buffer and level converter li-
braries, construct a buffered routing tree with minimum
power (and modify voltage island planning and power
states if new voltage islands are created), such that
timing constraints are satisfied.
In addition, low voltage buffers can only be inserted in
low voltage islands; high voltage buffers and level converters
can only be inserted in high voltage islands. Moreover, if no
feasible solutions exist, new voltage islands are introduced
and thus power states and voltage island planning should be
modified accordingly. Please note that we consider on/off
power states, free buffer locations, and dual supply voltages
for a design.

III. THE PSA ALGORITHM
To solve the power-state-aware buffered tree problem, we
propose a hierarchical approach combined with dynamic pro-
gramming. Fig. 5 gives the overview of the PSA algorithm.
First of all, sinks within each voltage island are connected
to a local tree; we handle one island at a time. Secondly,
local trees are connected to a global one with power state
consideration. If no feasible solutions exist, new voltage
islands are created at global tree construction.

A. Local Tree Construction
The procedure of local tree construction is listed in Fig. 6.
First of all, the pseudo sink is found in line 1. The pseudo
sink is an artificial sink representing all sinks within a voltage
island, and also the root of a local tree. Secondly, grid lines
are constructed in line 2. Thirdly, grid nodes are initialized
in line 3. Finally, in lines 5–15, we iteratively propagate
solutions from each sink and prune redundant solutions if
necessary until finding a feasible solution. We use a priority
queue Qs and a working queue Qw in these while loops. Qw
maintains the ordering of sinks according to the distances

�������	

����
�	������

��������	

����
�	������

���������	
���
������

�
����������
��
���

�
�

����
��
�

�����
��

���������

�
����
�������������

Fig. 5. The overview of the PSA algorithm

Algorithm: Local Tree Construction
Input: Voltage island VIi

Timing constraints
Output: A local buffered routing tree
1. Find the pseudo sink Ti of VIi
2. Construct grid lines within VIi
3. Initialize grid nodes
4. Push sinks within VIi into priority queue Qs
5. while Qs is not empty do
6. Select sink t j with max. distance to Ti from Qs
7. Push sink t j into queue Qw
8. while Qw is not empty and

no feasible solution is found do
9. Select node w from Qw
10. Propagate solution from w to each neighbor u
11. if a feasible solution is found then
12. Update solution
13. else
14. Prune redundant solutions on u
15. Push neighbor u into Qw
Fig. 6. The procedure of local tree construction

between sinks and the pseudo sink. Qw records grid nodes
which should propagate solutions to neighbors. We detail the
procedure as follows.
1) Finding the Pseudo Sink: Sinks within each voltage

island are locally connected. Except the island of the source
VIsrc, the pseudo sink is used to guide the direction toward
the source. We expect that the upstream of local trees can
approach the source to reduce delays. Therefore, the nodes
in proximity to the source within the current island could
be the pseudo sink. If the current island is overlapped with
the horizontal or vertical centerlines of VIsrc, grid nodes on
the side close to VIsrc are selected (indicated by straight
lines in Fig. 7(b)). Otherwise, candidates are the L-shaped
lines shown in Fig. 7(a). Considering obstacle penalties, the
pseudo sink is the candidate with the shortest distance to
the source. The obstacle penalty is estimated by the formula
derived by [16].
2) Grid Line Construction: Horizontal and vertical grid

lines are constructed not only at sinks and the pseudo sink
but also around blockages. As shown in Fig. 8, T is the
pseudo sink, t1, t2 and t3 are sinks, and vertical/horizontal
lines are grid lines of a given voltage island. These grid lines
are bounded by the voltage island for local tree construction
to reduce the time complexity.
3) Grid Node Initialization: A seven-tuple

(R,C,rat,POW,HW,BV,PP) is used to represent a solution.

23

����� �����

��� ���

Fig. 7. L-shaped lines in (a) and straight lines in (b) indicate the set of
pseudo sink candidates

��

��

��

�

Fig. 8. The grid graph

Parameters are listed in TABLE II. Each grid node is
initialized according to the type of the node.

• For being a sink, node i is initialized with a loading
capacitance:
Solution(0,Cl,rati,POWCl ,0,BVi,{i}).

• Otherwise, node i is initialized with/without a buffer:
Solution(Rb,Cb,∞,POWb,HWb,BVi,{i}),
Solution(0,0,∞,0,0,BVi,{i}).
Each grid node is allowed to insert a buffer. (If restricted
buffer locations are considered, a grid node on an infeasible
buffer location is initialized only without buffer.) In addition,
if a pseudo sink is located at a high voltage island, it is also
initialized with a level converter, because it would be driven
by low voltage cells.
4) Solution Propagation: For local tree construction, solu-
tions are propagated from sinks to the pseudo sink. Solutions
of a grid node w are propagated to its neighbors until
reaching the pseudo sink or the partially routed tree. For
a neighbor u, the current solutions of u and those of w are
combined to a new one for u. If a solution is propagated
to a routed grid node and the required arrival time is met,
the result should be updated along to the root, i.e., the
pseudo sink. Otherwise, solutions keep being propagated
to other grid nodes to form a feasible solution. We detail
how to generate the rat of a new solution as follows. Other
parameters can be obtained in a similar way.

rat1 = ratu−Ru(cwL+Cv),
rat2 = ratv−Di−Ru(Cx+ cwL+Cv)

−rwL(
1
2
cwL+Cv),

ratnew = min{rat1,rat2},

where Cx is loading from other branches, Cv is loading of v.
If node u is unrouted, ratu = ∞ and Cx = 0; if node u is with
a buffer, Ru �= 0; if node u is without a buffer, Ru = 0.

TABLE II
PARAMETERS USED IN A SOLUTION

Parameter Description Parameter Description
R Driving resistance HW Hardware cost
C Loading capacitance BV Voltage level
rat Required arrival time PP Propagated path
POW Power consumption

5) Redundancy Pruning: During solution propagation, we
only store some prior solutions to save memory space.
Therefore, if solution A has smaller required arrival time,
and larger power and capacitance than solution B, then A is
pruned. In addition, in a high voltage island, a solution with
level converter at the pseudo sink is kept for maintaining
signal integrity in the global buffered tree.
As demonstrated in Fig. 9, we summarize local tree
construction with the instance given in Fig. 8. First of
all, we begin with sink t3 with the maximum distance to
the pseudo sink T . A solution with capacitance loading of
t3 is propagated to its neighbor grid nodes as shown in
Fig. 9(a), then solutions of these neighbors are propagated to
their neighbors as in Fig. 9(b). After two more propagation
steps, we have Fig. 9(c). (The dots indicate the progress of
propagation.) The propagation is repeated until a feasible
solution from t3 to T is found. Solutions are then updated
as in Fig. 9(d). Secondly, sink t2 is selected; as depicted
in Fig. 9(e), solutions are propagated in the similar manner
with sink t3 until the partially routed tree is reached. If the
required arrival time of the pseudo sink is satisfied, solutions
are updated to T . Fig. 9(f) is the resulting tree connecting t2
and t3. Although not presented here, t1 is finally connected.

B. Global Tree Construction
As listed in Fig. 10, global tree construction partitions
voltage islands into power state groups in line 1, connects
the pseudo sinks of local trees according to their power
states in lines 2–7 (lines 4–7 are similar to local tree
construction), and creates new voltage islands if necessary in
lines 8–10. During global tree construction, the power state
table is taken into account for signal integrity. In addition,
new voltage islands and level converters should properly be
added. Isolation cells are not modeled here, but it can be
easily extended.
1) Partitioning Power State Groups: Voltage islands are
partitioned into groups according to their power states.
Because voltage islands may be turned off, two local trees
can be connected by pure wiring or through buffers placed
within voltage islands that are turned on at the same power
states, at compatible power states, or always. As shown in
Fig. 11, the power state table has three states. VI2 and VI4
are active at all power states, viewed as an always-on group
G0. G1 contains VI5 and VI6, active only at P1; G2 contains
VI1, active at P2 and P3; G3 contains VI3, active only at P2.
In addition, G2 is G3’s compatible group, but G3 is not G2’s.
Please note that the number of power state groups is bounded
by the number of voltage islands, not exponential with that

24

��� ���

��� ���

��

�	

�

�

��� ���

��

�	

�

�

��

�	

�

�

��

�	

�

�

��

�	

�

�

��

�	

�

�

Fig. 9. (a)–(c) Solution propagation from sink t3 to the pseudo sink T (d)
A feasible solution connecting t3 to T (e) Solution propagation from sink
t2 to the partially routed tree (f) The resulting buffered tree for t2 and t3

Algorithm: Global Tree Construction
Input: Power states

Timing constraints
Output: A global buffered routing tree
1. Partition power state groups G
2. foreach group G j in G do
3. foreach voltage island VIk in G j do
4. Construct grid lines
5. Initialize grid nodes
6. Propagate solution from the pseudo sink Tk
7. Prune redundant solutions
8. if no feasible solutions then
9. Create new voltage islands
10. Update solutions and power states

Fig. 10. The procedure of global tree construction

of the power states. The extreme case is when each pair of
voltage islands have different active behavior, each voltage
island forms a power state group.
2) Solution Propagation: During global tree construction,
solution propagation is in the same manner with local one.
Group by group, solutions are propagated from the pseudo
sink of each voltage island toward a partially routed global
tree. The node where propagation occurs is located in the
voltage island in the always-on group, in the same power
state group, or in a compatible power state group. For
example, the case in Fig. 12 has the power state table given
in Fig. 11. Dashed triangles represent local trees rooted at
the pseudo sinks, and dots indicate propagations. As shown
in Fig. 12(a), the always-on group, VI2 and VI4, first forms
a partially routed global tree. Solutions of the pseudo sink of
VI5 are then propagated to the partially routed global tree of

Power state table Power state group
P1: VI2 VI4 VI5 VI6 G0: VI2 VI4
P2: VI1 VI2 VI3 VI4 G1: VI5 VI6
P3: VI1 VI2 VI4 G2: VI1

G3: VI3
Fig. 11. The power state table vs. the power state groups

�

��

�� ��

����

��	 �
	
��� ���

��� ���

���

���
�

��� ���

��� ���

���

���

��

�� ��

����

Fig. 12. In global tree construction, solutions are propagated group by
group

the always-on group. In Fig. 12(b), solutions of the pseudo
sink of VI6 can be propagated to the partial tree of the
always-on group, or to VI5 in the same group. Similarly,
solutions of the pseudo sink of VI1 are then propagated.
Finally, solutions of the pseudo sink ofVI3 can be propagated
to the partial tree of the always-on group, or to VI1 in a
compatible group.
To maintain signal integrity, solution propagation from
grid node w to its neighbor u should consider their voltage
levels. In other words, level converters are only inserted at
grid nodes in high voltage islands, receiving signal from low
voltage nodes.
3) New Voltage Island Creation: If no feasible solutions

can be found after line 7, we shall create a new voltage
island and update solutions. In addition, the power state
table and groups are modified accordingly. In order to reduce
the difficulty of power/ground planning and to minimize
the modification of voltage island planning, we prefer to
create new voltage islands at the peripheral of original
ones. Therefore, for an infeasible solution, some buffers are
temporarily allowed to be inserted at the peripheral of islands
in incompatible groups to satisfy the timing constraints. New
voltage islands are then created to cover these buffers.

IV. EXPERIMENTAL RESULTS
We implemented the PSA algorithm in C++ language on
a 2.4GHz AMD OpteronTM platform with 4GB memory.
We randomly created six cases listed in TABLE III. The
unit grid size is 0.5mm*0.5mm. The statistics of each case
is listed in the third column, including the number of sinks,
the number of blockages, the number of voltage islands.
We compare the delay, power, hardware cost (including
high voltage buffers, low voltage buffers, level converters)
when power state management is considered or not. The
required arrival times at sinks are considered as timing
constraints and are set according to presimulation results.
Without considering power state management, we cannot
turn off any islands to ensure the signal integrity. At this
time, the system has only one power state, all voltage
islands are always turned on (AlwaysON). On the contrary,

25

TABLE III
THE COMPARISONS ON DELAY, POWER, HARDWARE COSTS WITHOUT AND WITH POWER STATES CONSIDERATION

AlwaysON PSA
Case Dimenion #sink/#blk/#VI #PS Delay Power HW Time #PS Delay Power HW Time

(ns) (pJ) (#BufH/#BufL/#LC) (s) (ns) (pJ) (#BufH/#BufL/#LC) (s)
Case1 40*40 20 / 6 / 6 1 8.55 12.84 85 (38 / 45 / 2) 1.38 3 8.52 7.15 83 (36 / 44 / 3) 1.12
Case2 50*50 26 / 6 / 6 1 9.90 18.21 124 (55 / 67 / 2) 3.17 3 9.74 9.55 123 (52 / 44 / 3) 2.53
Case3 50*50 37 / 8 / 6 1 9.95 23.23 149 (74 / 72 / 3) 5.58 3 9.72 12.80 153 (73 / 77 / 3) 4.66
Case4 100*100 56 / 6 / 6 1 20.59 57.35 356 (197 / 158 / 1) 41.21 2 20.68 48.83 354 (196 / 158 / 0) 35.58
Case5 200*200 101 / 6 / 5 1 58.46 150.84 907 (513 / 392 / 2) 544.43 2 58.46 106.19 906 (513 / 391 / 2) 468.83
Case6 200*250 200 / 5 / 5 1 52.44 236.88 1505 (840 / 663 / 2) 2523.64 2 52.44 191.61 1488 (833 / 654 / 1) 2150.56
Imp. – – – – – – – – 0.62% 33.39% 0.38% (– / – / –) 16.31%

�
��

��

��

���

��

��

��

��

�	
��

���

���
��

��� ��� ���

��� ���

������
���

���

���

Fig. 13. The buffered tree of a case of 17 sinks

Power state table Power state group
P1: VI1 VI2 VI3 VI5 G0: VI2 VI3
P2: VI2 VI3 VI4 VI6 G1: VI1 VI5

G2: VI4 VI6
Fig. 14. The power states of the case in Fig. 13

with power state management, the PSA algorithm achieves
average 33.39%, 16.31% improvement on power, runtimes,
respectively without sacrificing delay and hardware costs; the
improvement is calculated by (AlwaysON-PSA)/AlwaysON.
Without loss of generality, we measure the power consump-
tion for PSA by averaging the power consumed at each power
state. The accurate power consumption can be computed by
extracting the operating time slots of each power state from
simulations. Moreover, the hierarchical approach not only
helps on constructing buffered trees that can operate correctly
but also improves the runtimes.
Fig. 13 shows the buffered tree of a case of 17 sinks,
whereVI1, VI3 and VI5 are high voltage islands, and VI2, VI4
and VI6 are low ones. The source s is at low voltage island
VI2, and level converters (indicated by small rectangles) are
properly inserted at the boundaris of high voltage islands.
Its power states are detailed in Fig. 14. It can be seen that
signal integrity is maintained well for both power states.

V. CONCLUSION
This paper first considered power states into buffered tree
construction and proposed a hierarchical approach combined
with dynamic programming. The results showed our method
is very promising.

VI. ACKNOWLEDGEMENT
This work was partially supported by National Science
Council of Taiwan under grant no. NSC 97-2220-E-009-033.

REFERENCES
[1] J. Lillis, C.-K. Cheng, and T. T. Y. Lin, “Optimal and efficient buffer
insertion and wire sizing,” in Proc. IEEE Custom Integrated Circuits
Conf. (CICC’95), 1995, pp. 259–262.

[2] M. Lai and D. F. Wong, “Maze routing with buffer insertion and
wiresizing,” IEEE Trans. Computer-Aided Design, vol. 21, no. 10,
pp. 1205–1209, Oct. 2002.

[3] J. Cong and X. Yuan, “Routing tree construction under fixed buffer
locations,” in Proc. ACM/IEEE Design Automation Conf. (DAC’00),
June 2000, pp. 379–384.

[4] L. P. P. P. van Ginneken, “Buffer placement in distributed rc-tree
networks for minimal elmore delay,” in Proc. IEEE Int. Symp. on
Circuits and Systems (ISCAS’90), vol. 2, May 1990, pp. 865–868.

[5] H. Zhou, M. D. Wong, I.-M. Liu, and A. Aziz, “Simultaneous routing
and buffer insertion with restrictions on buffer locations,” IEEE Trans.
Computer-Aided Design, vol. 19, no. 7, pp. 819–824, 2000.

[6] K. Usami and M. Horowitz, “Clustered voltage scaling technique for
low-power design,” in Proc. ACM Int. Symp. on Low Power Design
(ISLPED’95), 1995, pp. 3–8.

[7] H.-Y. Liu, W.-P. Lee, and Y.-W. Chang, “A provably good approxima-
tion algorithm for power optimization using multiple supply voltages,”
in Proc. ACM/IEEE Design Automation Conf. (DAC’07), June 2007,
pp. 887–890.

[8] R. A. Bergamaschi and Y. W. Jiang, “State-based power analysis
for systems-on-chip,” in Proc. ACM/IEEE Design Automation Conf.
(DAC’03), June 2003, pp. 638–641.

[9] A. Naveh, E. Rotem, A. Mendelson, S. Gochman, R. Chabukswar,
K. Krishnan, and A. Kumar, “Power and thermal management in the
intel core duo processor,” Intel Technol. J., vol. 10, no. 2, May 2006.

[10] A. Eliopoulos, P. Chen, and Q. Wang. (2007) How to architect,
design, implement, and verify low-power digital integrated circuits.
EDA DesignLine.

[11] D. E. Lackey, P. S. Zuchowski, T. R. Bednar, D. W. Stout, S. W. Gould,
and J. M. Cohn, “Managing power and performance for system-on-
chip designs using voltage islands,” in Proc. IEEE/ACM Int. Conf. on
Computer-aided Design (ICCAD’02), Nov. 2002, pp. 195–202.

[12] W.-P. Lee, H.-Y. Liu, and Y.-W. Chang, “Voltage island aware floor-
planning for power and timing optimization,” in Proc. IEEE/ACM Int.
Conf. on Computer-aided Design (ICCAD’06), Nov. 2006, pp. 389–
394.

[13] K. H. Tam and L. He, “Power optimal dual-vdd buffered tree con-
sidering buffer stations and blockages,” in Proc. ACM/IEEE Design
Automation Conf. (DAC’05), June 2005, pp. 497–502.

[14] B. Tseng and H.-M. Chen, “Blockage and voltage island-aware dual-
vdd buffered tree construction under fixed buffer locations,” in Proc.
ACM Int. Symp. on Physical Design (ISPD’08), Apr. 2008, pp. 23–30.

[15] W. C. Elmore, “The transient response of damped linear networks with
particular regard to wideband amplifiers,” J. Applied Phys., vol. 19,
pp. 55–63, Jan. 1948.

[16] P.-C. Wu, J.-R. Gao, and T.-C. Wang, “A fast and stable algorithm
for obstacle-avoiding rectilinear steiner minimal tree construction,” in
Proc. ACM/IEEE Asia and South Pacific Design Automation Conf.
(ASP-DAC’07), Jan. 2007, pp. 262–267.

26

