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In this paper, we construct two classes of t × n, se-disjunct ma-

trix with subspaces in a symplectic space F(2ν)
q and prove that the

ratio efficiency t/n of two constructions are smaller than that of

D’yachkov et al. (2005) [2].
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1. Introduction

The basic problem of group testing is to identify the set of defective items in a large population of

items. Suppose we have n items to be tested and that there are at most d defective items among them.

Each test (or pool) is (or contains) a subset of items. We assume some testing mechanism exists which

if applied to an arbitrary subset of the population gives a negative outcome if the subset contains no

positive and positive outcome otherwise. Objectives of group testing vary fromminimizing the number

of tests, limiting number of pools, limiting pool sizes to tolerating a few errors. It is conceivable that

these objectives are often contradicting, thus testing strategies are application dependent. A group

testing algorithm is non-adaptive if all tests must be specified without knowing the outcomes of other

tests. A non-adaptive testing algorithm is useful in many areas such as DNA library screening [1,7].

A group testing algorithm is error tolerant if it can detect some errors in test outcomes. A mathe-

matical model of error-tolerance designs is an se-disjunctmatrix.

A binary matrix M is said to be se-disjunct if given any s + 1 columns of M with one designated,

there are e rowswith a 1 in the designated column and 0 in each of the other s columns. An s1-disjunct
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matrix is said to be s-disjunct. In [3], D’yachkov et al. proposed the concept of fully se-disjunctmatrices.

An se-disjunct matrix is fully se-disjunct if it is not de
′
-disjunct whenever d > s or e′ > e.

Macula [5] proposed anovelwayof constructing s-disjunctmatrices using the containment relation

in a structure.

Huang and Weng [4] gave a comprehensive treatment of construction of d-disjunct matrices by

using of pooling spaces, which is a significant and important addition to the general theory.

Ngo and Du [6] extended the construction to some geometric structures, such as simplicial com-

plexes, and some graph properties, such as matchings.

D’yachkov et al. [2] claimed that the “containment matrix” method has opened a new door for

constructing s-disjunct matrices from many mathematical structures.

In this paper, we construct two classes se-disjunct matrix with subspaces in a symplectic space

F(2ν)
q and exhibit their disjunct properties. Given some fixed items, our goal is to detect the positive

items. For a pooling design, the less the number of tests is, the better the pooling design is. In order

to discuss easily in the following, we give a new definition. We call the ratio between the number of

tests and the number of detected items test efficiency, that is the ratio between the number of rows

and the number of columns in the se-disjunct matrix, i.e., t/n. We will give some discussions on the

ratio t/n and compare them with others, such as in [2].

2. Symplectic space

Let

K =
(

0 I(ν)

−I(ν) 0

)
.

The symplectic group of degree 2ν over Fq, denoted by Sp(2ν)(Fq), consists of all 2ν × 2ν matrix T over

Fq satisfying TKT
′ = K . The vector spaceF(2ν)

q togetherwith the rightmultiplication action of Sp2ν(Fq)

is called the 2ν-dimensional symplectic space over Fq [8]. Let P be anm-dimensional subspace of F(2ν)
q ,

denote also by P an m × 2ν matrix of rank m whose rows span the subspace P and call the matrix P

a matrix representation of the subspace P. An m-dimensional subspace P is said to be of type (m, r),
if PKP′ is of rank 2r. In particular, subspaces of type (m, 0) are called m-dimensional totally isotropic

subspaces. The subspaces of type (m, r) exist if and only if 2r �m� ν + r. The subspace of type (m, r),
which contains subspaces of type (m1, r), exists if and only if 2r �m1 �m� ν + r. It is known that the

number of subspaces of type (m, r), denoted by N(m, r; 2ν), is given by

N(m, r; 2ν) = q2r(ν+r−m)

∏ν
i=ν+r−m+1(q

2i − 1)∏r
i=1(q

2i − 1)
∏m−2r

i=1 (qi − 1)
. (1)

Let N(m1, r;m, r; 2ν) denote the number of subspaces of type (m1, r) contained in a given subspace

of type (m, r). It is known that

N(m1, r;m, r; 2ν) = q2r(m−m1)

∏m−2r
i=m−m1+1(q

i − 1)∏m1−2r
i=1 (qi − 1)

. (2)

Let N′(m1, r;m, r; 2ν) denote the number of subspaces of type (m, r) containing a given subspace of

type (m1, r). It is known that

N′(m1, r;m, r; 2ν) =
∏ν+r−m1

i=1 (q2i − 1)∏ν+r−m
i=1 (q2i − 1)

∏m−m1

i=1 (qi − 1)
. (3)

Lemma 2.1. Let F(2ν)
q denote the 2ν-dimensional symplectic space over a finite field Fq with 2r �m0 � i �

m� ν + r. Fix an (m0, r)-subspace W0 of F(2ν)
q , and an (m, r)-subspace W of F(2ν)

q such that W0 ⊂ W .

Then the number of (i, r)-subspace A of F(2ν)
q , where W0 ⊂ A ⊂ W, is N(i − m0, 0;m − m0, 0; 2(ν +

r − m0)).
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Proof. Since the symplectic group Sp2ν(Fq) acts transitively on each set of subspaces of the same type,

we may assume that W has the matrix representation of the form

W =
⎛
⎜⎜⎝

r m0−2r ν+r−m0 r m0−2r ν+r−m0

I 0 0 0 0 0

0 0 0 I 0 0

0 I 0 0 0 0

0 0 W1 0 0 W2

⎞
⎟⎟⎠

r

r

m0−2r

m−m0

,

where (W1, W2) is an (m − m0, 0)-subspace of F2(ν+r−m0)
q . By (2), the number of (i, r)-subspace A,

whereW0 ⊂ A ⊂ W , is N(i − m0, 0;m − m0, 0; 2(ν + r − m0)). �

3. Construction I

Definition 3.1. For 2r � d0 < d < k � ν + r, assume that P0 is a fixed (d0, r)-space of F(2ν)
q . Let M

be a binary matrix whose columns (rows) indexed by all (k, r)-spaces containing P0 ((d, r)-spaces

containing P0) in F(2ν)
q such that M(A, B) = 1 if A ⊆ B and 0 otherwise. This matrix is denoted by

M1(ν , d, k).

Theorem 3.1. Suppose2r � d0 < d < k � ν + r and set b = q(qk−d0−1−1)

qk−d−1
. ThenM1(ν , d, k) is s

e-disjunct

for 1� d � b and

e = qk−dN(d − d0 − 1, 0; k − d0 − 1, 0; 2(ν + r − d0))

−(s − 1)qk−d−1N(d − d0 − 1, 0; k − d0 − 2, 0; 2(ν + r − d0)).

Proof. Let C, C1, . . . , Cs be s + 1 distinct columns of M1(ν , d, k). To obtain the maximum number of

subspaces of type (d, r) which contain P0 in

C ∩
s⋃

i=1

Ci =
s⋃

i=1

(C ∩ Ci),

we may assume that each C ∩ Ci (1� i � s) is a subspace of type (k − 1, r).
Then each C ∩ Ci covers N(d − d0, 0; k − d0 − 1, 0; 2(ν + r − d0)) subspaces of type (d, r) con-

taining P0 from Lemma 2.1. However, the coverage of each pair of Ci and Cj overlaps at a subspaces

of type (k − 2, r) containing P0, where 1� i, j � s. Therefore, from Lemma 2.1 only C1 covers the

full N(d − d0, 0; k − d0 − 1, 0; 2(ν + r − d0)) subspaces of type (d, r) containing P0, while each of

C2, . . . , Cs can cover a maximum of N(d − d0, 0; k − d0 − 1, 0; 2(ν + r − d0)) − N(d − d0, 0; k −
d0 − 2, 0; 2(ν + r − d0)) subspaces of type (d, r) not covered by C1. By (2), the subspaces of type

(d, r) of C not covered by C1, C2, . . . , Cs is at least

e= N(d − d0, 0; k − d0, 0; 2(ν + r − d0)) − N(d − d0, 0; k − d0 − 1, 0; 2(ν + r − d0))

− (s − 1)(N(d − d0, 0; k − d0 − 1, 0; 2(ν + r − d0))

−N(d − d0, 0; k − d0 − 2, 0; 2(ν + r − d0)))

= qk−dN(d − d0 − 1, 0; k − d0 − 1, 0; 2(ν + r − d0))

− (s − 1)qk−d−1N(d − d0 − 1, 0; k − d0 − 2, 0; 2(ν + r − d0)).

Since by (2)
N(d−d0−1,0;k−d0−1,0;2(ν+r−d0))
N(d−d0−1,0;k−d0−2,0;2(ν+r−d0))

= qk−d0−1−1

qk−d−1
and e > 0, we obtain

s <
q(qk−d0−1 − 1)

qk−d − 1
+ 1.

Set
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b = q(qk−d0−1 − 1)

qk−d − 1
.

Then 1� s� b. �

Corollary 3.2. Suppose that 2r � d0 < d < k � ν + r and 1� s�min{b, q + 1}. Then M1(ν , d, k) is not
se+1-disjunct, where b and e are as in Theorem 3.1.

Proof. Let C be a (k, r)-space containing P0, and E be a fixed (k − 2, r)-space containing P0 and con-

tained in C. By Lemma 2.1, we obtain the number of (k − 1, r)-spaces containing E and contained in C

is

N(1, 0; 2, 0; 2(ν + r − k + 2)) = q + 1.

For 1� s�min{b, q + 1}, we choose s distinct (k − 1, r)-subspaces containing E and contained in

C, denote these subspaces by Qi (1� i � s). For each Qi, we choose a (k, r)-subspace Ci such that

C ∩ Ci = Qi, where 1� i � s. Hence each pair of Ci and Cj overlaps at the same (k − 2, r)-subspace E,

where 1� i, j � s. By Theorem 3.1, it follows that the corollary hold. �

Corollary 3.3. Suppose that d = d0 + 1 and 1� s� q. Then M1(ν , d, k) is s
e-disjunct, but it is not se+1-

disjunct, where e = qk−d0−2(q − s + 1).

Proof. Setting d = d0 + 1 in the e formula of Theorem 3.1, we obtain

e = qk−d0−2(q − s + 1).

The second statement follows directly from Corollary 3.2. �

The following theorem tells us how to choose k so that the test to item ratio is minimized.

Theorem 3.4. For 2r �m0 < m� ν + r, the sequence N′(m0, r;m, r; 2ν) is unimodal and gets its peak

at m =
⌊
2ν+2r+m0

3

⌋
or m =

⌊
2ν+2r+m0

3

⌋
+ 1.

Proof. For 2r �m0 �m1 < m2 � ν + r, by (3), we have

N′(m0 ,r;m1 ,r;2ν)
N′(m0 ,r;m2 ,r;2ν)

=
∏m2−m0

i=m1−m0+1(q
i − 1)∏ν+r−m1

i=ν+r−m2+1(q
2i − 1)

=
∏m2−m1−1

i=0 (qm1−m0+1+i − 1)∏m2−m1−1
i=0 (q2(ν+r−m2+1+i) − 1)

(4)

=
m2−m1−1∏

i=0

qm1−m0+1+i − 1

q2(ν+r−m2+1+i) − 1
.

If
⌊
2ν+2r+m0

3

⌋
+ 1�m1 < m2 � ν + r, then

2ν+2r+m0

3
< m1. It implies that

2m1 + m2 > 3m1 > 2ν + 2r + m0. (5)

Since i �m2 − m1 − 1, by (5) we have

m1 + 2m2 > 2ν + 2r + m0 + 1 + (m2 − m1 − 1) � 2ν + 2r + m0 + 1 + i.

So

m1 − m0 + 1 + i > 2(ν + r − m2 + 1 + i).

It follows that
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q2(ν+r−m2+1+i) − 1 < qm1−m0+1+i − 1.

Therefore,

qm1−m0+1+i − 1

q2(ν+r−m2+1+i) − 1
> 1.

From (4) we have

N′(m0, r;m2, r; 2ν) < N′(m0, r;m1, r; 2ν).

If 2r �m0 �m1 < m2 �
⌊
2ν+2r+m0

3

⌋
, then m2 � 2ν+2r+m0

3
. Thus

m1 + 2m2 < 3m2 � 2ν + 2r + m0 < 2ν + 2r + m0 + 1 + i.

It follows that

m1 − m0 + 1 + i < 2ν + 2r − 2m2 + 2 + 2i = 2(ν + r − m2 + 1 + i).

So

qm1−m0+1+i − 1 < q2(ν+r−m2+1+i) − 1,

and hence

qm1−m0+1+i − 1

q2(ν+r−m2+1+i) − 1
< 1.

From (4) we have

N′(m0, r;m2, r; 2ν) > N′(m0, r;m1, r; 2ν). �

4. Discussions of test efficiency for construction I

Identifying most positive items with least tests is one of our goals. Therefore, discussing how to

make the ratio t/n smaller is significative. In our matrix,

t/n = N′(d0, r; d, r; 2ν)

N′(d0, r; k, r; 2ν)
=

∏k−d0
i=d−d0+1(q

i − 1)∏ν+r−d
i=ν+r−k+1(q

2i − 1)
.

We first will explain several facts on the ratio:

(1) Parameter d0(ν , r) only appears in the numerator (denominator). It is easy to show that the

larger the d0, ν and r are, the smaller the ratio is.

(2) Noting that the increasing speed of q2i − 1 is larger than qi − 1, so the smaller the d and k are,

the smaller the ratio is.

In [2], D’yachkov et al. constructed with subspaces of GF(q), where q is a prime power, each of

the columns(rows) is labeled by an k(d)-dimensional space,mij = 1 if and only if the label of row i is

contained in the label of column j. In order to compare with t/n, we should take the dimension of the

space of GF(q) to be 2(ν + r − d0). Assume that the test efficiency of [2] is t1/n1. Then

t1/n1 =
[
2(ν+r−d0)

d

]
q[

2(ν+r−d0)
k

]
q

=
∏k

i=d+1(q
i − 1)∏2(ν+r−d0)−d

i=2(ν+r−d0)−k+1(q
i − 1)

.
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Theorem 4.1. If 2d0 > k − 1, then t/n < qd0(d−k)t1/n1, where k−1
2

< d0 < d < k.

Proof

t
n
/ t1
n1

=
∏k−d0

i=d−d0+1(q
i − 1)∏ν+r−d

i=ν+r−k+1(q
2i − 1)

/ ∏k
i=d+1(q

i − 1)∏2(ν+r−d0)−d

i=2(ν+r−d0)−k+1(q
i − 1)

=
∏k−d−1

i=0 (qd−d0+1+i − 1)∏k−d−1
i=0 (q2(ν+r−k+1+i) − 1)

/ ∏k−d−1
i=0 (qd+1+i − 1)∏k−d−1

i=0 (q2(ν+r−d0)−k+1+i − 1)

=
k−d−1∏
i=0

qd−d0+1+i − 1

qd+1+i − 1

k−d−1∏
i=0

q2(ν+r−d0)−k+1+i − 1

q2(ν+r−k+1+i) − 1

<
k−d−1∏
i=0

qd−d0+1+i

qd+1+i

k−d−1∏
i=0

q2(ν+r−d0)−k+1+i − 1

q2(ν+r−k+1+i) − 1

=
k−d−1∏
i=0

q2(ν+r)−k+1+i−2d0 − 1

qd0(q2(ν+r)−k+1+2i−(k−1) − 1)
.

Since 2d0 > k − 1,we have
q2(ν+r)−k+1+i−2d0−1

q2(ν+r)−k+1+2i−(k−1)−1
< 1. Therefore,

t/n < qd0(d−k)t1/n1,

where k−1
2

< d0 < d < k. �

5. Construction II

Definition 5.1. For 2� 2r � d < k � ν + r, letM be a binarymatrix whose columns (rows) indexed by

all subspaces of type (k, r) ((d, r)) in F(2ν)
q such thatM(A, B) = 1 if A ⊆ B and 0 otherwise. This matrix

is denoted byM2(ν , d, k).

Theorem 5.1. Suppose4� 2r + 2� d < k − 1� ν + r − 1. If1� s� q2r , thenM2(ν , d, k) is s
e-disjunct,

where e = q(k−d−1)d+2r .

Proof. Let C, C1, . . . , Cs be s + 1 distinct columns of M2(ν , d, k). To obtain the maximum number of

subspaces of type (d, r) in

C ∩
s⋃

i=1

Ci =
s⋃

i=1

(C ∩ Ci),

we may assume that each C ∩ Ci is a subspace of type (k − 1, r), where 1� i � s. By (2), the number

of the subspaces of type (d, r) of C not covered by C1, C2, . . . , Cs is at least

N(d, r; k, r; 2ν) − sN(d, r; k − 1, r; 2ν)

= q2r(k−d)
∏k−2r

i=k−d+1(q
i−1)∏d−2r

i=1 (qi−1)
− sq2r(k−d−1)

∏k−2r−1
i=k−d (qi−1)∏d−2r
i=1 (qi−1)

= q2r(k−d−1)
∏k−2r−1

i=k−d+1(q
i−1)∏d−2r

i=1 (qi−1)
(qk − q2r − s(qk−d − 1)).
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Since 2r + 2� d < k − 1, we obtain

∏k−2r−1
i=k−d+1(q

i−1)∏d−2r
i=1 (qi−1)

=
∏d−2r−2

i=0 (qi+k−d+1 − 1)∏d−2r−2
i=0 (qi+1 − 1)

1

qd−2r − 1

=
d−2r−2∏

i=0

qi+k−d+1 − 1

qi+1 − 1

1

qd−2r − 1

=
d−2r−2∏

i=0

qk−d
qi+1 − 1

qk−d

qi+1 − 1

1

qd−2r − 1

> q(d−2r−1)(k−d)−(d−2r).

Since 1� s� q2r , and 2r + 2� d, we obtain

qk − q2r − s(qk−d − 1) � qk − q2r − q2r(qk−d − 1) = qk−d+2r(qd−2r − 1) � qk−d+2r .

Hence e = q(k−d−1)d+2r . �

Theorem 5.2. Suppose 2� 2r � d < ν + r. Let p = qd+1−q2r

q−1
− 1. If 1� s� p, then M2(ν , d, d + 1) is

fully se-disjunct, where e = p − s.

Proof. By (2), we have N(d, r; d + 1, r; 2ν) = p + 1. It follows that we can pick s + 1 distinct sub-

spaces C, C1, . . . , Cs of type (d + 1, r) such that C ∩ Ci and C ∩ Cj are two distinct subspaces of type

(d, r), where 1� i, j � s. By the principle of inclusion and exclusion, the number of subspaces of type

(d, r) in C but not in each Ci is p − s + 1, where 1� i � s. It follows that e� p − s.

On the other hand, similar to the proof of Theorem 5.4 we obtain

e�N(d, r; d + 1, r; 2ν) − s − 1 = p − s.

Hence e = p − s. �

The following theorem tells us how to choose k so that the test to item ratio is minimized.

Theorem 5.3. For m goes from 2r to ν + r, the sequence N(m, r; 2ν) is unimodal and gets its peak at

m =
⌊
2ν+2r

3

⌋
or m =

⌊
2ν+2r

3

⌋
+ 1.

Proof. For 2r �m1 < m2 � ν + r, by (1), we have

N(m2 ,r;2ν)
N(m1 ,r;2ν)

=
∏ν+r−m1

i=ν+r−m2+1(q
2i − 1)∏m2−2r

i=m1−2r+1(q
2r+i − q2r)

=
∏m2−m1−1

i=0 (q2(ν+r−m2+1+i) − 1)∏m2−m1−1
i=0 (qm1+1+i − q2r)

=
m2−m1−1∏

i=0

q2(ν+r−m2+1+i) − 1

qm1+1+i − q2r
.

If
⌊
2ν+2r

3

⌋
+ 1�m1 < m2 � ν + r, then 2ν+2r

3
< m1. It implies that

2m1 + m2 > 3m1 > 2ν + 2r. (6)

Since i �m2 − m1 − 1, by (5) we have



Z. Li et al. / Linear Algebra and its Applications 433 (2010) 1138–1147 1145

m1 + 2m2 > 2ν + 2r + 1 + (m2 − m1 − 1) � 2ν + 2r + 1 + i.

Thus

m1 + 1 + i > 2(ν + r − m2 + 1 + i).

It follows that

m1 + i − 2r � 2(ν + r − m2 + 1 + i) − 2r.

So

q2(ν+r−m2+1+i)−2r � qm1+i−2r ,

and hence

q2(ν+r−m2+1+i)−2r − 1

q2r
< qm1+i−2r + [(q − 1)qm1+i−2r − 1] = qm1+1+i−2r − 1.

It follows that

q2(ν+r−m2+1+i)−2r − 1

q2r

qm1+1+i−2r − 1
< 1.

Therefore,

q2(ν+r−m2+1+i) − 1

qm1+1+i − q2r
< 1.

From (4) we have

N(m2, r; 2ν) < N(m1, r; 2ν).

If 2r �m1 < m2 �
⌊
2ν+2r

3

⌋
, then m2 � 2ν+2r

3
. Thus

m1 + 2m2 < 3m2 � 2ν + 2r < 2ν + 2r + 1 + i.

It follows that

m1 + 1 + i < 2ν + 2r − 2m2 + 2 + 2i = 2(ν + r − m2 + 1 + i).

So

qm1+1+i − q2r < q2(ν+r−m2+1+i) − q2r < q2(ν+r−m2+1+i) − 1.

It follows that

q2(ν+r−m2+1+i) − 1

qm1+1+i − q2r
> 1.

From (4) we have

N(m2, r; 2ν) > N(m1, r; 2ν). �

Theorem 5.4. If d = 2r, k = 2r + 1, then the test efficiency of construction II is smaller than that of [2].

Proof. If d = 2r, k = 2r + 1, then the disjunct matrix of construction II is M2(ν , 2r, 2r + 1) and the

disjunct matrix of [2] isM(n, 2r + 1, 2r). Let t
n
be the test efficiency ofM2(ν , 2r, 2r + 1) and let

t1
n1

be

the test efficiency of M(n, 2r + 1, 2r), respectively. Then

t
n
= N(d, r; 2ν)

N(k, r; 2ν)

= N(2r, r; 2ν)

N(2r + 1, r; 2ν)
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= q2r(ν+r−2r)∏ν
i=ν+r−2r+1(q

2i − 1)∏r
i=1(q

2i − 1)
∏2r−2r

i=1 (qi − 1)
·

∏r
i=1(q

2i − 1)
∏2r+1−2r

i=1 (qi − 1)

q2r(ν+r−2r−1)
∏ν

i=ν+r−2r−1+1(q
2i − 1)

= q2r(q − 1)

q2(ν−r) − 1

= q2r+1 − q2r

q2ν−2r − 1
,

and

t1

n1
=

[
2ν
d

]
q[

2ν
k

]
q

=
∏k

i=d+1(q
i − 1)∏2ν−d

i=2ν−k+1(q
i − 1)

= q2r+1 − 1

q2ν−2r − 1
.

Therefore, t
n

< t1
n1
. �

6. Conclusion

Weconstruct two classes se-disjunctmatrixwith subspaces in symplectic spaceF(2ν)
q . For a pooling

design, the less the number of tests is, the better the pooling design is. Assume that the test efficiency

in [2] is t1/n1. We prove that the test efficiency in construction I is less than qd0(d−k)t1/n1, where
k−1
2

< d0 < d < k, and that the test efficiency in construction II is less than t1/n1 − q2r−2

q2ν−2r−1
. From

Theorem4.4 of [2], thematrix of construction is sz-disjunct. To compare the error-correcting capability,

we give two tables in the following. Take s = q, d0 = 2r + 1, d = 2r + 2, k = 4r + 1, ν = 20 and

m = 2ν = 40, we have Table 1 from Theorem 3.1, 4.1 above and Theorem 4.4 in [2]; similarly, take

s = q, d = 2r + 1, k = 2r + 2, ν = 100 andm = 2ν = 200, we have Table 2 from Theorem 5.1, 5.4

aboveandTheorem4.4 in [2]. FromTable1,weknowthat theerror-correctingcapabilityof construction

[2] is better than that of ours on some values (for example, (s, r) = (3, 2) or (5, 4)). But in some

cases (for example, (s, r) = (7, 5) or (17, 6)), the test efficiency of [2] is not good; whereas on these

values (for example, (s, r) = (7, 5) or (17, 6)), the construction I above is feasible. For comparison of

construction II with construction [2], their error-correcting capability is better than that of ours from

Table 2.

Table 1

Comparison of construction I with D’yachkov et al.

q = s 3 5 7 17

r 2 4 5 6
t
n

1.9065 × 10−39 6.3166 × 10−84 5.2357 × 10−92 1.7941 × 10−95

t1
n1

6.3650 × 10−28 2.0972 × 10−15 1.0701 × 1038 9.0322 × 10175

e 9 15625 5764801 2.0160 × 1012

z 675782226 1.1140 × 1049 2.2283 × 1091 3.2890 × 10189

Table 2

Comparison of construction II with D’yachkov et al.

q = s 3 5 7 17

r 1 3 4 5
t
n

6.0991 × 10−94 1.5693×10−131 1.9060 × 10−155 5.2883 × 10−221

t1
n1

8.8098 × 10−94 1.9616 × 10−131 2.2236 × 10−155 5.6188 × 10−221

e 9 15625 5764801 2.0160 × 1012

z 37 97651 47079201 3.6414 × 1013
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