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For measuring the true value of a measurand, vague statistical concept of measurand results
in inefficient uncertainty analysis of measurement. The vagueness is caused by the fact that
true value of the measurand is an unknown parameter such as population mean or median
and the measurement of this true value is a random variable. Generally a parameter may
be estimated remarkably more efficiently than the prediction of the random variable. The
classical uncertainty analysis in the literature has been developed based on the structure that
a measurand is a random variable. This misspecification of statistical concept costs serious
price of sacrificing efficiency in terms of length of the uncertainty interval. The purpose of
present study is to formally formulate a statistical model for the true value of measurand
and provide an uncertainty analysis for the measurement of this true value.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

An experiment for measuring a measurand is a method
through a process that tries to gain or discover knowledge
of the measurand. Measurements always have errors and
therefore uncertainties. General rules for evaluating and
reporting uncertainty in measurement has been published
by the most important and internationally widespread
metrological publication-ISO (the International Standards
Organisation) Guide to the Expression of Uncertainty in Mea-
surement [2]. According to the GUM, the measurement re-
sult should be reported with a specified confidence as an
uncertainty interval defining the range of values that could
reasonably be attributed to the measurand. Unfortunately,
techniques for uncertainty analysis of measurement
guided by the GUM do not, in our opinion, gain appropriate
knowledge of measurand due to conflicting views of statis-
tical concepts on measurand.

In GUM B.2.9, the measurand is defined as a particular
quantity subject to measurement, and Baratto [1] proposed
a precise and comprehensive definition of measurand
guiding that it is a specific quantity that one intends to mea-
. All rights reserved.
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sure. These interpretations of measurand indicate that the
interest of measurement for the measurand is to gain the
knowledge of the true value, denoted by hy, of measurand
while GUM 3.1.1 stated that the objective of a measurement
is to determine the true value of the measurand. However, it
is known that an estimate of this unknown true value is sub-
ject to measurement error and then it needs to perform an
uncertainty analysis. For uncertainty analysis, GUM 3.3.1
guided that uncertainty should reflect the lack of exact
knowledge of the true value. Hence, an uncertainty interval
is supposed defining the range of measurement values that
could reasonably be attributed to the true value of measu-
rand. Unfortunately, the uncertainty analysis in the guide-
line of GUM is generally done by formulating the
measurand as the random variable, denoted by Y, of mea-
surement and constructing the uncertainty interval repre-
senting a coverage interval for this random variable Y with
a fixed coverage probability 0.95. This uncertainty interval
ensures that in a long run of experiments there is a propor-
tion 0.95 of measurement observations of variable Y being
contained in the interval. This is generally done in the liter-
ature and introduced in college courses of measurement
science and introductory laboratory (see, for examples,
Dunn [5] and Taylor [6]), but it does not provide direct infor-
mation for knowledge of the true value hy. In this paper, we

http://dx.doi.org/10.1016/j.measurement.2010.07.001
mailto:hongka.st92g@nctu.edu.tw
http://dx.doi.org/10.1016/j.measurement.2010.07.001
http://www.sciencedirect.com/science/journal/02632241
http://www.elsevier.com/locate/measurement


H.-C. Chen et al. / Measurement 43 (2010) 1250–1254 1251
clarify the differences between uncertainty analyses of esti-
mation of true measurand value hy and the measurement of
variable Y. We also introduce the uncertainty interval for
true value estimation.

2. A simple description of two uncertainty analyses

Our interest is to investigate uncertainty interval that
truly defines the range of values that could reasonably be
attributed to the true value of measurand. An uncertainty
interval (called confidence interval in the literature of Sta-
tistics) of hy matches this need. A random interval (T1,T2),
constructed from observations of Y, is a 95% uncertainty
interval for true value hy if it satisfies

0:95 ¼ PhyfT1 6 hy 6 T2g:

This random interval (T1,T2) ensures that in a long run of
experiments there are observed intervals (t1, t2) with pro-
portion 0.95 that covers the true value hy. The direct infor-
mation provided by such experiment about the true value
of the measurand seems to be more interesting to the
metrologist than the information about the measurement
variable Y itself. Let us consider an example for interpreta-
tion of this uncertainty interval and the classical one in
problem of measurement of a measurand.

Example 1. Suppose that there is a pencil on a table and we
like to measure its length. The knowledge we want to
develop is the true length of the pencil with pencil as, from
the view of GUM, the particular quantity to be measured.
Hence, parameter hy represents this unknown true length.
To measure the true length hy of the pencil, the measure-
ment of true length is a random variable Y that follows some
probability distribution with mean hy and repeated mea-
surements can be done. Suppose that we have random
variables Y1, . . . ,Yn representing n repeated measurements
of hy. We also assume that the instrument for measurement
reveals that these random variables are independent and
identically distributed with normal distribution N(hy,r2).
The best estimate of true value hy is Y ¼ 1

n

P
Yi. With

symmetric distribution, the 0.95 uncertainty interval for
future observation Y is appropriately set as (hy � z0.025r,
hy + z0.025r), where z0.025 is the coverage factor representing
the 0.975 quantile of the standard normal (Gaussian)
distribution N(0,1). Hence, a 95% uncertainty interval for Y
is ðY � z0:025S;Y þ z0:025SÞ, where S is the sample standard
deviation with S2 ¼ 1

n�1

P
ðYi � YÞ2.

Suppose that we have a sequence of five measurements,
in unit mm, as

41:12; 41:08; 41:10; 41:14; 41:06:

These observations are the sample realization of the repeated
measurements Y1, . . . ,Y5. The average of these measurements
is �y ¼ 41:10 mm and sample standard deviation is s =
0.032 mm. The 95% uncertainty interval for the variable Y
is

41:10� 1:96� 0:032 mm ¼ 41:10� 0:063 mm:

From the sense of probability, the next realization of mea-
surement Y will be between 41.037 mm and 41.163 mm
with probability 0.95.
By letting ĥy ¼ Y , a 95% uncertainty interval for hy,

derived from the fact that Y�hy

S=
ffiffi
n
p has a t-distribution t(n � 1),

where n � 1 is the degrees of freedom, is ĥy � t0:025ðn� 1Þ sffiffi
n
p ,

where t0.025(n � 1) is the coverage factor in this uncertainty
interval representing the 0.975 quantile of t-distribution
t(n � 1). In this case, it is

41:10� 2:045� 0:032ffiffiffi
5
p mm ¼ 41:10� 0:029 mm:

The uncertainty intervals of measurement Y and true value
hy are with the same center point ŷ ¼ ĥy ¼ 41:10 mm.
However, the expanded uncertainty for the true value hy

is 0.029 mm which is significantly smaller than
0.063 mm, the expanded uncertainty for the measurement
variable Y. This uncertainty interval indicates that we have
95% confidence with true length of the pencil to be be-
tween 41.071 mm and 41.129 mm. This conclusion gains
more practical information about the true value of measu-
rand, the true length of the pencil.

For large sample size, coverage factor t0.025(n � 1) may
be replaced by z0.025. In this example, this replacement
results expanded uncertainty 0.029 mm, revealing a very
good approximation.
3. Models for measurement variable and true value of
measurand

For general study of uncertainty analysis, the GUM was
considered with the assumption that the true value of
measurand cannot be measured directly, but is determined
from several input (influence) quantities. We assume that
there are fixed values h1, . . . ,hk representing true but un-
known values for input quantities such that the true value
hy of measurand may be formulated through a known func-
tional relation as

hy ¼ hðh1; . . . ; hkÞ: ð1Þ

This relation between true value of measurand and true
values of input quantities is not, except for very special
cases, considered in GUM and literature. This reflects a
conceptual confusion that classical statistical theory treats
problems where parameters themselves are not measur-
able but metrology deals with problems where parameters
themselves are measurable.

Any measurement for quantity hj is subject to errors,
random errors such as short-term fluctuations in tempera-
ture, humidity or variability in the performance of the
measurer and systematic errors such as offset of a measur-
ing instrument, drift in its characteristics, personal bias in
reading. This random effect reflects the variation of re-
peated measurement values. Hence, this measurement
function represents a relationship for measurand not only
a physical law but also a measurement process.

In measuring the true values h1, . . . ,hk, let us denote the
corresponding measurement (input) quantities as X1, . . . ,
Xk. GUM formulates the measurement of measurand Y as
the function h of input quantities X1, . . . ,Xk as

Y ¼ hðX1; . . . ;XkÞ: ð2Þ
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Since X1, . . . ,Xk are random variables, this measurand Y is
also a random variable. This formulation of measurand is
the basis for developing uncertainty analysis as has been
introduced in GUM and literature of uncertainty analysis.
We, in next section, review the uncertainty analysis for
measurement of variable Y and introduce the uncertainty
analysis for true value estimation of measurand.
4. Uncertainty intervals for two models of measurand

For each j, it is assumed that there is a sample
Xji, i = 1, . . . ,nj available drawn from distribution of input
quantity Xj. Let the realizations of this sample be xji,
i = 1, . . . ,nj. The classical uncertainty analysis following
the GUM proposes to use sample mean x̂j ¼ �xj as predicted
value of input quantity Xj. Then, the predicted value (esti-
mate) of measurement variable Y is

ŷ ¼ hðx̂1; . . . ; x̂kÞ:

(In GUM or literature, ŷ is called the estimate of measu-
rand.) For presenting the uncertainty in this prediction,
the GUM defines variance of Xj as r2

j ¼ E½ðXj � x̂jÞ2� and
covariance of Xj and X‘ as rj‘ ¼ E½ðXj � x̂jÞðX‘ � x̂‘Þ�, assum-
ing that x̂j and x̂‘ are, respectively, the means of the distri-
butions of input variables Xj and X‘. With predicted value
ŷ ¼ hðx̂1; . . . ; x̂kÞ, the first-order Taylor series approxima-
tion to the measurement variable Y about the estimates
ðx̂1; . . . ; x̂kÞ gives

Y � ŷþ
Xk

j¼1

bjðXj � x̂jÞ; ð3Þ

where bj ¼ @hðx1 ;...;xkÞ
@xj

jxh¼x̂h ;h¼1;...;k, called the uncertainty coef-
ficient with respect to influence quantity Xj. The combined
standard uncertainty is defined as the estimated standard
deviation of measurement variable Y, where the variance
of Y is r2

y ¼ E½ðY � EðYÞÞ2�. From formulation (3), the vari-
ance r2

y is approximated as

r2
y �

Xk

j¼1

b2
j r

2
j þ

X
j–‘

bjb‘rj‘: ð4Þ

The uncertainty interval introduced in GUM is defined as

Y ¼ ŷ� kU; ð5Þ

with U ¼ r̂y, an estimate of ry, and k being the coverage
factor so that this uncertainty interval may cover the pos-
sible values of measurement variable Y with a fixed prob-
ability such as 0.95. According to GUM, the coverage
factor k may be determined as quantile of the t-distribu-
tion or normal distribution. Interpreted by Willink [10],
this uncertainty interval in a potential series of equally-
reliable independently-determined intervals encloses the
value of the measurement variable Y averagely in 95 out
of every 100 measurements. This violates the objective of
GUM 3.3.1 that an uncertainty interval represents a range
of measurement values that could reasonably be attributed
to the true value of measurand. We then propose uncer-
tainty analysis for true value hy of (1).
Let ĥj ¼ ĥjðxj1; . . . ; xjnj
Þ be appropriate estimate of hj

based on observations {xji, i = 1, . . . ,nj}, for j = 1, . . . ,k. The
estimate of the true value of measurand is defined as

ĥy ¼ hðĥ1; . . . ; ĥkÞ:

By letting ĥj ¼ x̂j, it is appropriate to set the estimate of
true value hy to be identical to the predicted value of vari-
able Y. We may make analogous assumption in GUM that
estimate ĥy satisfies E½ĥy� ¼ hy. Then the variance of ĥy is

r2
hy
¼ E½ðĥy � hyÞ2�;

while an estimate r̂hy represents the standard uncertainty
in concern of estimation of true value hy. The first-order
Taylor’s expansion for function h of ĥy on estimate
ðĥ1; . . . ; ĥkÞ yields

ĥy ¼ hy þ
Xk

j¼1

cjðĥj � hjÞ þ Rĥy
; ð6Þ

where we let cj ¼ @hðĥ1 ;...;ĥkÞ
@ĥj

jĥi¼hi ;i¼1;...;k, the sensitivity coeffi-
cient with respect to influence parameter hj, and Rĥy

is
the remainder expressed by

Rĥy
¼ 1

2

2
4Xk

j¼1

@2hðĥ1; . . . ; ĥkÞ
@ĥ2

j

������
ĥi¼hiþdðĥi�hiÞ

ðĥj � hjÞ2

þ
X
j–‘

@2hðĥ1; . . . ; ĥkÞ
@ĥj@ĥ‘

�����
ĥi¼hiþdðĥi�hiÞ

ðĥj � hjÞðĥ‘ � h‘Þ

3
5;

with 0 < d < 1. When ĥj ! hj, for all j, the remainder term
approaches zero more quickly than the first-order terms
in (6) and all the higher terms are generally neglected.

The variance r2
hy

can be substituted into Eq. (6) to yield

r2
hy
� E

Xk

j¼1

cjðĥj � hjÞ
" #2

8<
:

9=
;

¼ E
Xk

j¼1

c2
j ðĥj � hjÞ2 þ

X
j–‘

cjc‘ðĥj � hjÞðĥ‘ � h‘Þ
( )

¼
Xk

j¼1

c2
j r

2
hj
þ
X
j–‘

cjc‘rhjh‘ ;

where r2
hj
¼ E½ðĥj � hjÞ2�, the variance of ĥj, and rhjh‘ ¼

E½ðĥj � hjÞðĥ‘ � h‘Þ�, the covariance between estimates ĥj

and ĥ‘. The combined standard uncertainty r̂hy is contrib-
uted from the estimates of variances and covariances of
parameter estimators ĥj’s. We remind that when the func-
tion h of (1) is highly nonlinear, then higher-order terms in
the Taylor series expansion of h should be included in (6).

Defining the uncertainty quantities r̂2
hj
; r̂hjh‘ and ĉ2

j as,
respectively, estimates ofr2

hj
;rhjh‘ and c2

j , the combined stan-

dard uncertainty for measurement of true value hy is r̂hy with

r̂2
hy
¼
Xk

j¼1

ĉ2
j r̂

2
hj
þ
X
j–‘

ĉjĉ‘r̂hjh‘ :

The uncertainty interval for the estimation of true value of
measurand is

hy ¼ ĥy � Uhy ; ð7Þ



Table 1
Comparisons of two uncertainty intervals.

Approach Measurand UI* length

Classical Variable 2kU
Proposed Parameter 2k Uffiffi

n
p

* Uncertainty interval.
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where Uhy is the expanded uncertainty defined by

Uhy ¼ khy r̂hy ; ð8Þ

where khy is a coverage factor chosen to produce the uncer-
tainty interval having a level of confidence such as 0.95.
This uncertainty interval does match the objective of
GUM 3.3.1 that it defines a range of measurement values
that could reasonably be attributed to the true value of
measurand.

Proposing uncertainty analysis for estimation of true
value hy is not new. Willink and Hall [9] considered a mul-
tivariate model Y = l + �with � having multivariate normal
distribution with zero mean vector and an unknown
covariance matrix. Also, Wang and Iyer [8] considered
the same but univariate model. These models which define
parameter l as true value of measurand are too simple that
they have very limited applications in science of measure-
ment from the view of the GUM.

5. Efficiency property for uncertainty interval of true
value estimation of measurand

We may expect to gain efficiency in using the expanded
uncertainty Uhy for estimation of true value hy rather than
the expanded uncertainty for prediction of variable Y.
The standard uncertainty for prediction of variable Y is
based on a linear combination of rj’s and rj‘’s, where r2

j ’s
are variances of input quantities Xj’s and rj‘’s are covari-
ances between these quantities. On the other hand, the
standard uncertainty for estimation of true value hy is
based on a linear combination of rhj

’s and rhjh‘ ’s, where
r2

hj
’s are variances of estimates x̂j’s and rhjh‘ ’s are covari-

ances between these estimates. With Xj being measure-
ment of hj, statistical theory indicates that prediction of
Xj is generally with larger uncertainty than the estimation
of hj is, resulting in r2

j being larger than r2
hj

. This leads to
the desired results that combined standard uncertainty
for estimation of true value is significantly smaller than
that for the prediction of measurement of variable.

To provide a theoretical support for this indication, we
consider the model that (X1i,X2i, . . . ,Xmi), i = 1, . . . ,n are a
random sample with mean (h1, . . . ,hk) and covariance
matrix

R ¼

r2
1 r12 . . . r1m

r21 r2
2 . . . r2m

..

. ..
. ..

. ..
.

rm1 rm2 . . . r2
m

0
BBBBB@

1
CCCCCA:

In this model, we let ĥj ¼ x̂j ¼ �xj; j ¼ 1; . . . ;m. This indi-

cates that cj = bj and r2
hj
¼

r2
j

n ¼
VarðXjÞ

n and covariance

rhjh‘ ¼
rj‘

n ¼
CovðXj ;X‘Þ

n . Hence, we have

r2
hy
� 1

n

Xk

j¼1

b2
j r

2
j þ

X
j–‘

bjb‘rj‘

( )
¼ 1

n
r2

y :

This implies that the uncertainty interval for estimation of
true value hy is ĥy � k Uffiffi

n
p . The combined standard uncer-

tainty Uhy for estimation of true value hy is proportion 1ffiffi
n
p

of the combined standard uncertainty U for prediction of
measurement variable Y. This is the main contribution of
using uncertainty interval for estimation of true value hy

instead of using it for prediction of measurement variable
Y. We summarized the differences between the classical
and our proposed uncertainty analyses for the measurand
as shown in Table 1.

Let us consider another example for interpretation.

Example 2. Sim and Lim [7] and Willink [10] considered
random measurand Y as the velocity of a type of wave in
some medium and measurement function as

Y ¼ X1

X2
;

where X1 is the distance from a transmitter to a receiver, X2

is the time of flight and they are independent. Physically
there are true but unknown values of distance and time
of flight. The concerned velocity is appropriately formu-
lated as

hy ¼
h1

h2
;

where h1 is the true distance from a transmitter to a receiver
and h2 is the true time of flight. It is supposed that ĥ1 � h1 is
distributed as�2 � 10�4h1V1, where V1 follows a chi-square
distribution; ĥ2 � h2 is distributed as UV2, where U follows
the uniform distribution U(�4.5 � 10�6, � 5.5 � 10�6) and
V2 follows an exponential distribution with mean 1. Further-
more, there estimates ĥ1 ¼ 4:931 mm, and ĥ2 ¼ 10:9�
10�3 s.

According to the independence, we can see that the
combined standard uncertainty for measurement of true
value hy is

r̂2
hy
¼ 1

ĥ2
2

r̂2
h1

n
þ ĥ1

ĥ2
2

 !2 r̂2
h2

n
:

Hence, a 95% uncertainty interval for the true measurand
hy is

ĥ1

ĥ2

� z0:025r̂hy ;
ĥ1

ĥ2

þ z0:025r̂hy

 !
:

We list this 95% uncertainty interval with several sample
sizes in Table 2.

The 95% uncertainty interval based on GUM for the
random measurand is

ð451:91;452:86Þ: ð9Þ

Sim and Lim has computed some other types 95%
uncertainty intervals that are very close to (9). Comparing
this with the obtained uncertainty intervals for the true



Table 2
Ninety-five percent uncertainty intervals for the true
measurand hy.

Sample size 95% Uncertainty interval

n = 1 (451.91, 452.86)
n = 5 (452.17, 452.60)
n = 10 (452.23, 452.54)
n = 30 (452.30, 452.47)
n = 50 (452.32, 452.45)
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measurand, we may be more efficient in prediction of true
measurand than in prediction of future observation of ran-
dom measurement.

In the last we need to illustrate the determination of
coverage factor khy . The coverage factor k of (5) in the GUM
for the uncertainty interval for prediction of measurement
variable Y is obtained by assuming that the measurements
Xj’s follow, respectively, normal distributions Nðhj; r2

j Þ as
the design mentioned above. This is generally not true in
practice. In fact, Xj’s often follow asymmetric distributions.
A supplement [3] to GUM and some authors, for examples,
Cox and Siebert [4] and Willink [10], have devoted to devel-
op the uncertainty analysis for measurement quantities of
asymmetric distributions. There is another benefit for the
development of uncertainty analysis for estimation of true
value hy. It is that ĥy of (6) is approximately normal, no
matter how the input quantities are distributed, if we let
ĥj ¼ Xj, since, from the central limit theorem, Xj is asymptot-
ically normal. This benefit of asymptotic normality is not
shared by the uncertainty interval for prediction of mea-
surement variable Y since Taylor expansion of (3) of Y de-
pends on distribution of Xj, and asymptotic property
cannot be applied on Xj since variable Xj is not a function
of a sample. Hence, the coverage factor khy of (8) can be gen-
erally determined as quantile of the t-distribution or normal
distribution.
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