

�

Abstract—The rectilinear Steiner minimal tree (RSMT)
problem is essential in physical design. Moreover, the variant
constraints for fabrication issues, including obstacle avoidance,
multiple routing layers, layer-specific routing directions,
cannot be ignored during RSMT construction for modern SoC
and nano technologies. This paper proposes a
construction-by-correction approach for obstacle-avoiding
preferred direction rectilinear Steiner tree construction.
Experimental results show that our algorithm is promising
and outperforms the state-of-the-art works.

I. INTRODUCTION
Rectilinear Steiner minimal tree (RSMT) construction

has been extensively studied and considered as a
fundamental problem in physical design; it is frequently
performed for interconnect estimation during floorplanning,
placement, routing stages. To make the estimation practical,
we shall consider the fabrication issues for modern SoC and
nano technologies. Advanced nano technology offers an
abundance of routing layers, e.g., 11 in 65 nm [1], and
normally assigns a preferred routing direction to each layer;
large-scale SoC designs often contain a tremendous number
of obstacles.

However, even the simplest case, the RSMT problem
without considering obstacle avoidance (OA), multiple
layers (ML), preferred direction (PD) constraints, has been
proven to be NP-complete [2]. Due to the high complexity
and frequent usage, it is desired to construct an RSMT with
these constraints of good quality in reasonable runtime.

A 2:1 performance bound of MST to RSMT for general
graphs can be applied to these variations. Thus, existing
approaches for RSMT typically contain three steps:

1) Connection graph generation (CGG): Step 1 generates

a connection graph to connect all pins. Obstacle boundaries
may also be included. This graph contains geometrical
proximity information among pins, and even obstacle
boundaries. The initial connection graph can be a complete
graph, a spanning graph, an escape graph [3], or a Delaunay
triangulation (DT) [4].

2) Minimum spanning tree construction (MST): Step 2
constructs a minimum spanning tree (MST) [5] over all pins
based on the connection graph. The MST may be
obstacle-avoiding (all tree edges bypass obstacles),
obstacle-weighted (tree edges may run through obstacles
but consider the impacts of obstacles into edge weights), or
mixed (tree edges are obstacle-weighted first and then
obstacle-avoiding).

3) Rectilinearization and refinement (R&R): Step 3
transforms the MST into a rectilinear Steiner tree and
refines the total cost. The total cost includes wirelength and
vias. Planar U-shaped pattern refinement is usually applied.

As listed in Table 1, we compare the available
configurations provided and the techniques used in each
step for the state-of-the-art works and ours.

Recently, most of research endeavors have focused on
single-layer obstacle-avoiding RSMT (SL-OARSMT) [6],
[7], [8], [9], [10]. Among them, [9] produced the best
results; the breakthrough done in [9] was to include
“essential edges” into their spanning graph. (The essential
edges can lead to more desirable solutions.) [11] then
extended [9] to construct a 3D spanning graph and solved
the multi-layer variation; so far, it has been the first one and
only one work handling multi-layer obstacle-avoiding
RSMT (ML-OARSMT). Even so, it is still somewhat
impractical because it cannot directly be extended to

Configurable Rectilinear Steiner Tree Construction
for SoC and Nano Technologies

Iris Hui-Ru Jiang and Yen-Ting Yu
Department of Electronics Engineering & Institute of Electronics

National Chiao Tung University, Hsinchu 30010, Taiwan
Email: hrjiang@faculty.nctu.edu.tw, keekeewawa.ee96g@nctu.edu.tw

Table 1. The comparison between recent works on RSMT.

Configuration Procedure
ML1 OA2 PD3 Step 1: CGG (obstacles included) Step 2: MST Step 3: R&R

A
pproach

[6] SL Y N Delaunay triangulation (Y) Obstacle-avoiding -
[7] SL Y N Spanning graph (Y) Obstacle-avoiding No refinement
[8] SL Y N Complete graph (N) Mixed obstacle-weighted & obstacle-avoiding -
[9] SL Y N Improved spanning graph (Y) Obstacle-avoiding -

[10] SL Y N Sparse spanning graph (Y) Obstacle-avoiding -
[11] ML Y N 3D improved spanning graph (Y) Obstacle-avoiding -
[12] ML N Y 3D Hanan grid (N) - -
[13] ML Y Y 3D improved escape graph (Y) Rectilinear & obstacle-avoiding N/A
Ours ML Y Y Delaunay triangulation (N) Obstacle-weighted 3D refinement

1ML: Multi-layer; SL: Single-layer.
2OA: Obstacle-avoidance.
3PD: Preferred direction.

978-1-4244-2658-4/08/$25.00 ©2008 IEEE 34

consider preferred directions. [12] first included preferred
directions into RSMT but ignored obstacles. [13] first
attempted to combine all of these issues into RSMT
construction and formulated the obstacle-avoiding
preferred direction Steiner tree problem (OAPDST). [13]
directly constructed a rectilinear MST over a 3D improved
escape graph. However, the MST was not furthered refined,
so the solution quality may be limited.

As shown in Fig. 1, in this paper, we extend a previously
presented heuristic [14] to consider preferred directions.
Steps 1 and 2 construct an obstacle-weighted MST on the
DT of pins only. Step 3 rectilinearizes each tree edge on a
3D extended escape graph and then refines it. Our features
include:

1) We can easily handle variant configurations.
2) The conventional construction-by-correction

approach cannot extract the global geometrical
information among pins and obstacles in the connection
graph. We overcome the drawback by introducing extra
edges that may be essential during DT construction and
adequately associating the impacts of obstacles into edge
weights.

3) We construct the obstacle-weighted MST in an
efficient way since the total edge weight of the tree is not
required to be exact, just expected to be correlated to the
final tree. It can effectively guide step 3 how to connect
pairs of pins.

4) We present novel 3D U-shaped pattern refinement.
Experimental results show that our algorithm achieves

smaller total costs in 9 out of 10 cases and on average
outperforms the state-of-the-art work. Moreover, our results
reveal the following findings: The guidance of the
obstacle-weighted MST leads to smaller total costs and
shorter runtimes, and novel 3D U-shaped refinement works
well not only on our algorithm but also for previous work.

II. PROBLEM FORMULATION
We adopt the definitions and restrictions of an obstacle, a

pin-vertex, a via in [11]. An obstacle is a rectangle on a
layer, indicated by its four corner-vertices. A pin-vertex pi
is a vertex (xi, yi, zi) on layer zi, while a via (xj, yj, zj) on layer
zj is an edge between (xj, yj, zj) and (xj, yj, zj+1). No two
obstacles can overlap with each other, but two obstacles can
be point-touched or line-touched. Since an arbitrary
rectilinear obstacle can be partitioned into a set of
rectangles, without loss of generality, assume all obstacles
are rectangular. All vertices of pins and vias must not locate
inside any obstacle, but they can be at the corner or on
obstacle boundaries.

We adopt the formulation of the obstacle-avoiding
preferred direction Steiner tree problem in [13]. Here, a
routing layer i has a specific routing cost UCi, the unit cost
of wires in layer i. Without loss of generality, assume the
PD constraints as follows: the odd (even) layers only allow
vertical (horizontal) edges [12], [13].

Problem: Obstacle-Avoiding Preferred Direction Steiner
Tree (OAPDST): Given the equivalent wirelength cost Cv
of a via, the number Nl of layers, a set P={p1, p2, …, pm} of
pins, a set O={o1, o2, …, ok} of obstacles, the layer-specific
routing cost UCi, 1�i�Nl, the PD constraints, construct a
Steiner tree to connect all pins in P, such that no tree edge or
via intersects any obstacle in O and the total cost of the tree
is minimized.

Pins

Preferred
directions

OAPDST

Step 1: CGG
Delaunay triangulation of pins

Step 2: MST
Obstacle-weighted MST on DT

Step 3: R&R
3D U-shaped pattern refinement

Routing
costs

Obstacles # of layers
/ Via cost

Fig. 1. The overview of our algorithm; it can be configured to handle
different constraints.

Layer 4

Layer 3

Layer 2

Layer 1

Pseudo

Pseudo

intermediate-vertex
Steiner-vertex
forbidden-edge
forbidden-vertex

pin-vertex
obstacle
via

DT

MST

Layer 4

Layer 3

Layer 2

Layer 1

Layer 4

Layer 3

Layer 2

Layer 1

Layer 4

Layer 3

Layer 2

Layer 1

(a) (b) (c) (d) cost = 10�20+11�3 = 233 (e) cost = 10�20+9�3 = 227

Fig. 2. (a) An instance given in [13], where Cv = 3, grid size is 20x20 (unit)2, UCi =1 for all layers. (b) The corresponding DT and obstacle-weighted MST.
(c) The corresponding 3D extended escape graph. (d) The resulting OAPDST without refinement. (e) The resulting OAPDST with refinement.

35

III. ALGORITHM
Our algorithm is based on construction-by-correction.

Here, we use the example given in [13], depicted in Fig.
2(a), to demonstrate our algorithm. Assume Cv = 3, UCi =1
for all layers, and the grid size is 20�20 (unit wirelength)2.

1) Step 1: All pins (actually only pins) are projected onto
a pseudo plane, and their DT is then constructed. During the
process, some extra edges that may be essential are added.
(see Fig. 2(b))

2) Step 2: An obstacle-weighted minimum spanning tree
is grown up over the DT. We bias the edge weights in DT to
consider obstacle penalties. (see Fig. 2(b))

3) Step 3: Each tree edge is rectilinearized on a 3D
extended escape graph (see Fig. 2(c)), and then novel 3D
U-shaped pattern refinement is applied. (see Fig. 2(e))

Our OAPDST for this instance (see Fig. 2(e)) is of cost
227 (=10�20+9�3), while the OAPDST generated by [13]
(see Fig. 6(b)) is of cost 281 (=13�20+7�3). It can be
improved by our refinement method; as shown in Fig. 6(c),
the refined tree is of cost 261 (=12�20+7�3).

As shown in Fig. 1, our algorithm can easily handle
variant configurations. Without the PD constraints, this
problem becomes ML-OARSMT; moreover, if Nl = 1 and
without the PD constraints, it becomes SL-OARSMT. We
detail each step and analyze the time complexity of our
algorithm as follows.

A. Delaunay Triangulation of Pins
Initially, all pins are projected onto a pseudo plane, i.e.,

each pin-vertex is indicated by its x- and y-coordinates. If
two pin-vertices are projected to the same location, they are
connected by an edge. Conceptually, using this pseudo
plane, we can extract the geometrical proximity among
pins.

For a given set P of vertices in a plane, a Delaunay
triangulation DT(P) is a triangulation such that the
circumcircle of each triangle does not contain any other
vertex of P. A DT(P) maximizes the minimum angle of all
the angles of the triangles in it, thus avoiding sliver triangles,
i.e., a DT(P) tends to connect neighboring vertices.

During DT construction, if two triangles violate the
definition of DT, the common edge of them, an illegal edge,
as depicted in Fig. 3(a), is then flipped to a legal edge, as
depicted in Fig. 3(b). The typical process discards these
illegal edges; instead, we preserve them since they contain
more global information than legal ones and may lead to

better solutions. Fig. 2(b) gives the corresponding DT of the
instance in Fig. 2(a), where illegal/legal edges are both
shown.

B. Obstacle-Weighted MST on DT
As shown in Fig. 2(b), after the DT is constructed for the

projected pins on a pseudo plane, the obstacle-weighted
minimum spanning tree is constructed based on Kruskal’s
algorithm [5].

The conventional construction-by-correction approach
does not include the geometrical information of obstacles in
the connection graph. To overcome this drawback, we
encode the obstacle penalties to edge weights of DT(P).
Because DT(P) contains potentially essential edges and its
edge weights include the obstacle information, DT(P)
possesses the global geometrical information among pins
and obstacles.

On the other hand, the MST is used to guide step 3 how to
connect pins. The edge weight is not required to be exact,
just expected to be correlated to the cost of the final RSMT.
Hence, we use a simple and fast, yet effective, formula to
estimate the impact of obstacles. The obstacle penalty op(pi,
pj) between two pins pi, and pj is simplified from [8], where
only the obstacles completely passing through the bounding
box between pi, pj horizontally or vertically are counted. In
addition, we introduce a parameter � to further reflect the
congestion of obstacles and the average routing costs
among layers i to j. The edge weight w(pi, pj) is computed as
follows.

w(pi, pj)=��(|xj-xi|+|yj-yi|)+Cv�|zj-zi|+op(pi, pj).
Although we estimate the obstacle penalties in a simple

way, our results reveal that steps 1 and 2 are necessary, and
they can give a good guidance for step 3.

C. Rectilinearization and 3D U-Shaped Pattern
Refinement

Based on the guidance of the obstacle-weighted MST,
pins are connected by rectilinear segments and then the total
cost is further reduced by 3D U-shaped pattern refinement.
These two operations are compounded into one and
iteratively applied to the MST edge. By doing so, the
refinement done for early edges can benefit consequent
edges, thus our refinement does not always hurt runtimes.

Rectilinearization is performed on a 3D extended escape
graph based on Dijkstra’s shortest path algorithm [5]. We
extend the planer escape graph [3] to a 3D one as follows.

A 3D extended escape graph is constructed by stretching
lines from all pin-vertices and the corner-vertices of all
obstacles along x-, y-, and z-axes. To make the
implementation flexible, we adequately associate forbidden
flags to the vertices that are connected with unavailable
edges. These unavailable edges include the line segments
intersecting or passing through obstacles. Subject to the PD
constraints, the horizontal (vertical) edges on odd (even)
layers are removed. This removal is equivalent to associate
forbidden flags to unavailable edges on each layer. The

illegal edge

legal edge

(a) (b)

Fig. 3. During DT construction, an illegal edge in (a) is flipped into a
legal one in (b).

36

edge cost on layer i is magnified by UCi, 1�i�Nl. Fig. 2(c)
shows the 3D extended graph for the instance in Fig. 2(a).

By extending the proof done in [3], we can prove that at
least one optimal OAPDST is embedded in the 3D extended
escape graph; on the other hand, the proof of the 2:1
performance bound of MST to SMT (Steiner minimal tree)
for general graphs can be applied here.

When a tree edge is rectilinearized and connected to the
partially constructed rectilinear Steiner tree, a 3D U-shaped
pattern may be formed. We generalize the definition of a
U-shaped pattern and then propose novel 3D U-shaped
pattern refinement to fix it. It can be proved that all 3D
U-shaped patterns fall into two types:

1) Degenerated U-shape: The middle vertex is located in
one turning corner of U. (see Fig. 4(a)) This type can be
identified by one I-shaped segment plus one or more
L-shaped segments. The refinement can be applied only
when three vertices are located on the same plane, i.e., they
have the same x-, y-, or z-coordinate. The L-shaped
segments of the U can then be rerouted for cost reduction.

2) Standard U-shape: The middle vertex is located
within the middle segment of the U. (see Fig. 4(b)) This
type can be identified by several L-shaped segments plus
several L-shaped segments. For a given U-shaped pattern
formed by three vertices, the median of their coordinates is
the optimal Steiner-vertex if the PD constraints are not
considered. Under the PD constraints, a Steiner-vertex can
only connect vias either with vertical edges or with
horizontal edges. Thus, the median may not be valid for a
Steiner-vertex. However, the median point still can be a
reference point to reroute the L-shaped segments on the

pattern.
More complicated cases can be decomposed into smaller

ones. Fig. 5 lists several examples for 3D U-shaped pattern
refinement. Please note that our classification is complete.

Corresponding to the instance in Fig. 2(a), Fig, 2(d)(e)
depicts the resulting OAPDST without refinement (cost =
233 (=10�20+11�3)), with refinement (cost = 227
(=10�20+9�3)), respectively. Fig. 6(b) shows the
ML-OARSMT generated by our algorithm without
considering the PD constraints, cost = 218 (=10�20+6�3).
The cost of ML-OARSMT can be viewed as the lower
bound of that of OAPDST. On the other hand, Fig. 6(c)
shows the OAPDST generated by [13], cost = 281
(=13�20+7�3), where a standard pattern is highlighted by
bold lines. (see Fig. 6(d)) After refining this pattern, we can
obtain a better tree in Fig. 6(e), cost = 261 (=12�20+7�3).

D. Time Complexity Analysis
As defined in Section II, m is the number of pins and k is

the number of obstacles. Let n=m+4k. Step 1 takes O(mlgm)

(a) degenerated: I + L (b) standard: L + 3L

s

s

(c) standard: L + L (d) standard: L + 3L

s

(e) standard: 2L+ 2L (f) standard: L + 4L

Fig. 5. Several cases for 3D U-shaped pattern refinement in OAPDST.
(s: Steiner-vertex)

degenerated standard

Fig. 4. All 3D U-shaped patterns are classified into (a) degenerated
and (b) standard ones.

Layer 4

Layer 3

Layer 2

Layer 1

Layer 4

Layer 3

Layer 2

Layer 1

Layer 4

Layer 3

Layer 2

Layer 1

Layer 4

Layer 3

Layer 2

Layer 1

Layer 4

Layer 3

Layer 2

Layer 1

(a) instance (b) cost = 10�20+6�3 = 218 (c) cost = 13�20+7�3 = 281 (d) standard U (e) cost = 12�20+7�3 = 261

Fig. 6. (a) The same instance with Fig. 2(a), given by [13]. (b) Our ML-OARSMT. (c) The OAPDST in [13]. (d) A standard U-shaped pattern is found in
(c). (e) The refined tree of (c).

37

time for DT construction [3]; step 2 takes O(m(lgm)2) time
for Kruskal’s algorithm; step 3 takes O(n3) time for the 3D
extended escape graph construction, Dijkstra’s algorithm,
3D U-shaped pattern refinement. As mentioned in Section
III.B, steps 1 and 2 are necessary for guiding step 3, and
they have low time complexities. Although 3D U-shaped
pattern refinement in step 3 has a high time complexity, it
can be expected to produce good solutions. Our results
prove our strategy is promising.

IV. EXPERIMENTAL RESULTS
We implemented our algorithm in C++ language and

executed the program on a PC with an Intel Pentium4 3.0
GHz CPU and 1 GB memory under Windows XP OS.

Totally 10 test cases are used. To demonstrate the
differences between OAPDST and ML-OARSMT (which
is a lower bound of OAPDST), we use almost the same set
of test cases in [11]. ind3 is invalid under the PD constraints;
thus it is unused in our experiments. ind4 (ind5) simulates
the environment for single-layer routing, where all pins and
obstacles are located in a layer, and the upper and lower
adjacent layers are entirely occupied by another two large
obstacles. We insert one empty layer right above the
working layer to ind4 (ind5) and obtain pd-ind4 (pd-ind5a).
We then further duplicate the obstacles in the working layer
onto the inserted layer of pd-ind5a and obtain pd-ind5b. In
addition, the routing cost UCi was set to 1 for all i. The
parameter � was set to [0.7, 1.0]. Fig. 7 displays the
OAPDST of ind2 as Cv = 3 and UCi = 1.

We compared our algorithm with [13]; because we
cannot obtain the test cases and the program of [13], we
implemented their algorithm and executed it on the same
machine described above. As listed in Table 2, as Cv = 3 and
UCi = 1, the average degradation of the total costs from
ML-OARSMT to OAPDST is 6.47%, but the average
speedup of CPU times is 60.18%. The average
improvement of the total costs over [13] is 3.20%, while the
CPU times are almost the same. Our algorithm has smaller
total costs in 9 out of 10 cases.

Table 3 compares the impacts of the obstacle-weighted
MST and 3D U-shaped pattern refinement of our algorithm.
It can be seen that without the guidance from the MST, on
average, we have an 8.76% degradation on the total costs,
and the CPU times surprisingly become much worse
(38.8% slower). Hence, steps 1 and 2 are necessary;
actually, they are efficient and effective. On the other hand,
although 3D U-shaped pattern refinement does not
influence much on our results, it does improve the total
costs of [13] by 2.66% on average. The refined costs of [13]
are still slightly worse (0.26% larger) than ours when
refinement is turned off. Although not presented here, we
have similar results for Cv = 5, and UCi � 1.

V. CONCLUSION
This paper solved OAPDST based on

construction-by-correction. Our algorithm can easily
handle variant constraints, including multiple routing layers,
obstacle-avoidance, preferred routing directions.
Experimental results showed that our algorithm on average
outperformed the state-of-the-art work. Future work
includes performance-driven RSMT construction with
variant constraints.

ACKNOWLEDGMENT
The authors would like to thank Prof. Yao-Wen Chang of

National Taiwan University for sharing the test cases and
gratefully acknowledge reviewers’ valuable and insightful
comments.

REFERENCES
[1] The International Technology Roadmap for Semiconductors (ITRS),

2007. Available: http://www.itrs.net/
[2] M. R. Garey and D. S. Johnson, “The rectilinear Steiner tree problem

is NP-complete,” SIAM J. Appl. Math., vol. 32, no. 4, pp. 826–834,
1977.

[3] J. L. Ganley and J. P. Cohoon, “Routing a multi-terminal critical net:
Steiner tree construction in the presence of obstacles,” in Proc. IEEE
Int. Symp. On Circuits and Systems (ISCAS’94), vol. 1, May 1994, pp.
113–116.

[4] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars,
Computational Geometry : Algorithms and Applications, 3rd ed.,
Springer-Verlag, 2008.

[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms, 2nd ed., MIT Press, 2001.

[6] Z. Feng, Y. Hu, T. Jing, X. Hong, X. Hu, and G. Yan, “An O(nlogn)
algorithm for obstacle-avoiding routing tree construction in the
lambda geometry plane,” in Proc. ACM Int. Symp. on Physical
Design (ISPD’06), Apr. 2006, pp. 48–55.

[7] Z. Shen, C. C. N. Chu, and Y.-M. Li, “Efficient rectilinear Steiner
tree construction with rectilinear blockages,”in Proc. IEEE Int. Conf.
on Computer Design (ICCD’05), Oct. 2005, pp. 38–44.

[8] P.-C. Wu, J.-R. Gao, and T.-C. Wang, “A fast and stable algorithm
for obstacle-avoiding rectilinear Steiner minimal tree construction,”
in Proc. ACM/IEEE Asia and South Pacific Design Automation Conf.
(ASP-DAC’07), Jan. 2007, pp. 262–267.

[9] C.-W. Lin, S.-Y. Chen, C.-F. Li, Y.-W. Chang, and C.-L. Yang,
“Obstacle-avoiding rectilinear Steiner tree construction based on
spanning graphs,” IEEE Trans. Computer-Aided Design, vol. 27, no.
4, pp. 643–653, Apr. 2008. Also see ISPD’07, pp.127–134.

[10] J. Long, H. Zhou, and S. O. Memik, “An O(nlogn) edge-based
algorithm for obstacle-avoiding rectilinear Steiner tree
construction,”in Proc. ACM Int. Symp. on Physical Design (ISPD’08),
Apr. 2008, pp. 126–133.

[11] C.-W. Lin, S.-L. Huang, K.-C. Hsu, M.-X. Li, and Y.-W. Chang,
“Efficient multi-layer obstacle-avoiding rectilinear Steiner tree
construction,” in Proc. IEEE/ACM Int. Conf. on Computer-aided
Design (ICCAD’07), Nov. 2007, pp. 380–385.

[12] M.C. Yildiz and P.H. Madden, “Preferred direction Steiner trees,”
IEEE Trans. Computer-Aided Design, vol. 21, no. 11, pp. 1368–1372,
Nov. 2002.

[13] C.-H. Liu, Y.-H. Chou, S.-Y. Yuan, and S.-Y. Kuo, “Efficient
multilayer routing based on obstacle-avoiding preferred direction
Steiner tree,”in Proc. ACM Int. Symp. on Physical Design (ISPD’08),
Apr. 2008, pp. 118–125.

[14] I. H.-R. Jiang, S.-W. Lin, and Y.-T. Yu, “Unification of
obstacle-avoiding rectilinear Steiner tree construction,” in Proc.
IEEE Int. SOC Conf. (SOCC’08), Sep. 2008.

38

Table 2. OAPDST: The comparisons on the number of vias, the total cost, and CPU times between [13] and ours under Cv = 3, UCi = 1, 1�i�Nl.

Test
cases m / k / Nl

Total cost (#via) Time (s)
Ours_ML1

(A)
Ours_PD2

(B)
[13]
(C)

Ours_ML
(A)

Ours_PD
(B)

[13]
(C)

ind1 50 / 6 / 5 53,915 (45) 64,401 (77) 66,033 (81) 0.05 0.03 0.02
ind2 200 / 85 / 6 12,179 (210) 13,260 (364) 13,575 (363) 0.97 0.49 0.39

pd-ind4 500 / 100 / 6 60,298 (137) 62,459 (661) 61,624 (651) 5.63 1.58 1.28
pd-ind5a 1000 / 20 / 6 14,381,940 (16) 14,717,269 (1,623) 15,503,281 (1,592) 111.37 15.97 18.46
pd-ind5b 1000 / 40 / 6 14,496,361 (0) 14,768,268 (1,624) 15,873,298 (1,592) 82.88 16.11 18.91

rt1 25 / 10 / 10 4,042 (67) 4,117 (82) 4,289 (83) 0.09 0.08 0.09
rt2 100 / 20 / 10 9,234 (188) 9,528 (268) 9,803 (257) 1.78 0.94 0.97
rt3 250 / 50 / 10 14,996 (456) 15,776 (619) 16,295 (619) 12.35 5.09 5.36
rt4 500 / 50 / 10 21,151 (915) 22,366 (1,217) 23,222 (1,144) 50.25 13.87 12.11
rt5 1000 / 100 / 5 27,028 (817) 30,431 (1,462) 31,328 (1,457) 75.33 11.58 12.16

Imp. (%)3 - -6.47 - 3.20 60.18 - -0.50
1Ours_ML: Our algorithm is applied without the PD constraints; it can be viewed as the lower bound of the total cost for OAPDST.
2Ours_PD: All steps of our algorithm for OAPDST are applied.
3Imp. (%): Average improvement is computed by averaging (X-B)/X for all cases, where X = A, C.

Table 3. OAPDST: The comparisons on the impacts of our algorithm on the total cost and CPU times under Cv = 3, UCi = 1, 1�i�Nl.

Test
cases m / k / Nl

Total cost Time (s)
Nmst1

(D)
Nref2
(E)

[13]_ref3
(F)

Nmst
(D)

Nref
(E)

[13]_ref
(F)

ind1 50 / 6 / 5 69,913 64,401 66,166 0.05 0.03 0.05
ind2 200 / 85 / 6 14,448 13,275 13,227 0.75 0.41 1.17

pd-ind4 500 / 100 / 6 67,348 63,120 58,820 1.94 1.48 12.41
pd-ind5a 1000 / 20 / 6 16,663,711 14,721,978 14,976,592 32.00 21.36 128.56
pd-ind5b 1000 / 40 / 6 16,667,652 14,773,077 15,274,934 31.28 17.63 101.88

rt1 25 / 10 / 10 4,466 4,146 4,146 0.13 0.09 0.11
rt2 100 / 20 / 10 10,502 9,594 9,599 1.72 0.97 1.02
rt3 250 / 50 / 10 17,030 15,825 16,011 9.42 4.72 6.39
rt4 500 / 50 / 10 24,149 22,458 22,495 24.47 11.16 21.89
rt5 1000 / 100 / 5 33,546 30,467 30,622 16.69 11.70 95.61

Imp. (%)4 - 8.76 0.34 0.54 38.88 -0.41 53.22
1Nmst: Only step 3 of our algorithm is applied, i.e., the tree is directly constructed from the 3D extended escape graph.
2Nref: All steps of our algorithm are applied, but 3D U-shaped pattern refinement is turned off.
3[13]_ref: 3D U-shaped pattern refinement is applied to [13].
4Imp. (%): Average improvement is computed by averaging (X-B)/X for all cases, where B is Ours_PD in Table 2, X = D, E, F.

(a) DT (b) MST (c) layer 2 (H) (d) layer 3 (V)

(e) layer 4 (H) (f) layer 5 (V) (g) layer 6 (H) (h) pseudo plane

Fig. 7. The OAPDST of ind2 under Cv = 3. (a)(b) show the DT and MST. (c)–(g) show the results of layers 2–6, respectively. The odd layers allow
vertical edges, while the even ones horizontal. Some line segments are at obstacle boundaries; they are feasible according to the problem formulation. (h)
All pin-vertices are projected onto a pseudo plane, without showing the obstacles.

39

