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Environmental awareness, green directives, liberal return policies, and recycling of materials are globally
accepted by industry and the general public as an integral part of the product life cycle. Reverse logistics
reflects the acceptance of new policies by analyzing the processes associated with the flow of products,
components and materials from end users to re-users consisting of second markets and remanufacturing.
The components may be widely dispersed during reverse logistics. Radio frequency identification (RFID)
complying with the EPCglobal (2004) Network architecture, i.e., a hardware- and software-integrated
cross-platform IT framework, is adopted to better enable data collection and transmission in reverse
logistic management. This research develops a hybrid qualitative and quantitative approach, using fuzzy
cognitive maps and genetic algorithms, to model and evaluate the performance of RFID-enabled reverse
logistic operations (The framework revisited here was published as ‘‘Using fuzzy cognitive map for eval-
uation of RFID-based reverse logistics services”, Proceedings of the 2009 international conference on sys-
tems, man, and cybernetics (Paper No. 741), October 11–14, 2009, San Antonio, Texas, USA). Fuzzy
cognitive maps provide an advantage to linguistically express the causal relationships between reverse
logistic parameters. Inference analysis using genetic algorithms contributes to the performance forecast-
ing and decision support for improving reverse logistic efficiency.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Enterprises are applying reverse logistics as a means for fulfill-
ing different market regions’ recycling requirements. The European
Union has a waste electrical and electronics equipment (WEEE)
directive and the United States uses state and federal laws for
enforcing recycling programs. Reverse logistic processes help
enterprises fulfill their social responsibility and build their reputa-
tion by providing systems and processes for customers to return
products and components either for repair, reuse, or disposal. Tra-
ditionally, supply chains without return and recycling processes
are modeled as linear structures with a one way flow of goods from
suppliers, manufacturers, wholesalers, retailers, and finally to
consumers. Modern distribution channels that include repair,
recycling, and responsible waste disposal must accommodate bi-
directional flows or reverse logistics flows.

Reverse distribution channels include direct returns to manu-
facturers, indirect returns to repair facilities, individualized returns
with small quantities, extended order cycles associated with
product exchanges, and a variety of disposition options (e.g., repair
ll rights reserved.
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versus exchange). The complexity of processes makes the modeling
and implementation of reverse logistics a challenging task. In addi-
tion, it is difficult to measure the impact of product return and
recycling on profitability and customer loyalty. An underlying
cause for the measurement difficulties is that most enterprises
are unable to trace the reverse logistics processes in real-time.

Radio frequency identification (RFID) technology enables enter-
prises to gather and track reverse logistics process data in real-
time. RFID uses tags that can be automatically detected by readers
without manual scanning, a major advantage over bar code read-
ers. RFID uses radio frequency as a means to transmit data from
tags affixed to physical objects such as products, boxes, or shipping
containers. Data related to physical objects can be identified,
stored, traced and monitored during transportation through the
entire product life cycle. RFID also makes it possible to simulta-
neously detect and identify multiple items. For example, a list of
goods packed in a sealed box can be automatically identified using
a RFID reader without opening the box. Tags with memory can also
be dynamically modified, inventory modifications can be batch
processed, and stock keeping unit (SKU) data are readily trans-
ferred across enterprise systems. As a result, RFID technology en-
ables precise tracking and real-time monitoring of each tagged
item with minimal effort.

http://dx.doi.org/10.1016/j.eswa.2010.04.026
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In this research, fuzzy cognitive maps (FCM) are used to con-
struct a reverse logistics network decision model. RFID technology
provides the mechanism for real-time monitoring of the reverse
logistics processes. The FCM decision model, using data collected
by RFID technology, provides two critical functions, i.e., inference
analysis and decision analysis. Inference analysis is applied to fore-
cast future states of the reverse logistic operations. If sudden
changes occur, the information system sends a warning message
to alert the manager. The manager also receives decision support
to improve logistic performance. In this research, a case is used
to demonstrate and evaluate the implementation of fuzzy cogni-
tive maps and genetic algorithms for managing the RFID-enabled
reverse logistics of a cold storage chain.

2. Related research

In this section, fuzzy cognitive map, reverse logistics, and RFID
technology are reviewed. A fuzzy cognitive map is used to
represent causal relationships between the logistic process param-
eters. RFID technology provides the basis for collecting and trans-
mitting the process data for real-time performance analysis and
evaluation.

2.1. Fuzzy cognitive map

Fuzzy cognitive maps (FCMs) are an extension of cognitive
maps (Axelrod, 1976). The elements used for building the graphs
include the concepts and the relationships between concepts. Cog-
nitive maps (CMs) represent concepts as nodes which contain the
key knowledge fact of a specific domain (Dickerson & Kosko, 1993).
As shown in Fig. 1, the use of positive (+) and negative (�) signs on
arcs between nodes represents the positive or negative effect of
one node on another. Thus, a positive sign between nodes repre-
sents a stimulating relationship and a negative sign represents an
inhibiting relationship. CMs can be represented as a symmetric
weight adjacency matrix (consisting of only +1 or �1 elements)
to mathematically describe the relationships between nodes. The
direction of the arrow reveals the cause-effect relationship be-
tween nodes (Kardaras & Karakostas, 1999). For instance, if the
condition of node C1 is satisfied, then C2 and C4 will be positively
stimulated as depicted in Fig. 1. CMs define links as causal relation-
ships without specifying the strength of the relationship between
nodes. FCMs, on the other hand, use fuzzy logic to quantify the
strength of the relationships between nodes (Fig. 1). The values
range from �1 to 1 where the value 0 stands for no effect and 1
represents the strongest relationship between nodes.

Fuzzy cognitive maps model causal relationships between con-
cepts using directed arcs and logical inference networks (Kosko,
1987). An FCM links the events, values, objects, and tendencies
with a feedback dynamic system (Dickerson & Kosko, 1993). The
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Fig. 1. A fuzzy cognitive map with directed and quantified relationships.
map is a graph with nodes, weights, and directed arcs that repre-
sent specific behaviors belonging to a real world system. The
FCM defines the relations between causes and their effects using
a link and a weight. FCMs are often compared to neural networks
or expert systems to emphasize the following benefits (Miao, Liu,
Siew, & Miao, 1999). First, the modeling of causal relationships
with FCM is less difficult than modeling neural networks since
the concepts of a system can be represented as different nodes.
Then, the weight associated with the link represents the strength
and cause-effect relationships and how a concept will react to cau-
sal inputs. Second, in comparison to expert systems, FCM uses ma-
trix operations instead of if–then rules to infer possible outcomes.
As a result, FCM offers greater flexibility in computing inference
outcomes.

FCM facilitates collaboration between model builders. Different
maps from different experts can be integrated into a larger map. An
individual FCM represents the domain knowledge or opinion of an
expert (i.e., different weighted coefficients represent different be-
liefs) and maps of several experts can be combined by merging
their adjacency matrices (Hagiwara, 1992). Compared to Bayesian
networks, FCMs are also relatively easy to use for inferring future
state transitions through simple matrix operations (Kim, Kim,
Hong, & Kwon, 2008). Thus, the FCM approach has been applied
to simulation (Fu, 1991), modeling of organizational strategies
(Paradice, 1992), investment analysis (Lee & Kim, 1997), political
decision making (Tsadiras, Kouskouvelis, & Margaritis, 2003), and
modeling critical success factors (Luis, Rossitza, & Jose, 2007).

2.2. Reverse logistics

The scope of reverse logistics throughout the 1980s was limited
to the movement of materials from customers back to producers
(Rogers & Tibben-Lembke, 2001). Other definitions for reverse
logistics cover activities such as product returns, recycling, materi-
als substitution, reuse of materials, waste disposal, repair, and
remanufacturing (Stock, 1998). The goal of reverse logistics is to
extract tangible and intangible values from the processes of dis-
posal, recycling, and reuse. For example, if an enterprise has a
sound reverse logistics system, then an intangible benefit is a more
positive corporate image (Carter & Ellram, 1998). Moreover, re-
verse logistics includes processes for the return of damaged goods,
the disposal of out of date inventory, and the restocking or salvag-
ing of these goods. Also, a better reverse logistics process improves
hazardous material control, obsolete equipment disposition, and
asset recovery (Rogers & Tibben-Lembke, 2001).

Reverse logistics covers a broad range of activities. When a
product return process is triggered, enterprises use different re-
verse logistics processes depending on the situation and the roles
played by the supply chain intermediaries and owners. Rogers
and Tibben-Lembke (2001) categorized reverse logistics activities
according to products and their packages. The activities for prod-
ucts include reselling, selling through outlets, salvaging, recondi-
tioning, returning to suppliers, refurbishing, remanufacturing,
recycling, and disposal. Packaging includes fewer activities such
as reusing, salvaging, refurbishing, recycling, and disposal.

A number of authors discuss the reasons for product returns.
For example, De Brito, Flapper, and Dekker (2002) categorized
three types of supply chain returns, i.e., manufacturing returns,
wholesaler/retailer returns, and customer returns. Rogers and Tib-
ben-Lembke (2001) extend the list of returns categories to include
customer returns, market returns, asset returns, product recalls,
and environmental returns. Product returns are the result of prod-
uct damage and defects, return policies and warranties, customer
dissatisfaction, and incorrect product placement. Market returns
are the results of business failures, out of season goods, and exces-
sive inventories. Asset returns include packaging reuse and return
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of shipping containers and pallets. Finally, if there is a product
safety issue, products are recalled according to the governing rules
and regulations. Obviously, the improper or inefficient implemen-
tation of reverse logistics processes will dramatically impact oper-
ations costs and lower profits.

2.3. Application of RFID technology

RFID technology is defined as the wireless and automatic iden-
tification and capture of product identification data. Other types of
product identification technologies include barcodes, optical char-
acter recognition, biometrics, card technology, and contact mem-
ory technology (Wamba, Lefebvre, Bendavid, & Lefebvre, 2008).
Several standards have been developed for RFID technology. The
electronic product code (EPC) global network, developed by
Auto-ID Center at MIT (Kin, Mun, & Daniel, 2005), is a standard
used for automatic product identification in retail stores. The EPC
network consists of six components including the RFID tags, RFID
readers, the savant, the EPC information service, the object naming
service, and the EPC discovery service. The EPC network is
considered a standard infrastructure that assures the efficient
information sharing and exchanges of the supply chain across het-
erogeneous systems (Wamba et al., 2008).
3. Methodology

In this section, the methodology for constructing the nodes of
the reverse logistics FCM model is defined. After the FCM model
is created, a genetic algorithm is used to assign weights to the arcs
between model nodes. Finally, RFID technology is applied to the re-
verse logistics processes for real-time data tracking and collection.

3.1. Constructing the fuzzy cognitive map

Fuzzy cognitive map analysis is divided into three steps. The
first step is the definition of each node based on expert observa-
tions. The second step is the acquisition of data to represent each
node from the target network. The third step is the evaluation of
causality and assigning the degree of weight for the arcs between
nodes. Reverse logistics activities involves many intermediaries
working collaboratively. Fig. 2 shows a simplified supply chain
consisting of suppliers, manufacturers, distributors, retailers, and
customers include using a landfill for product disposal, a recycling
center, and a reverse logistics center.

The FCM nodes represent operational factors and performance
factors. The details of the reverse logistics processes depend on
the key activities of the participants, e.g., manufacturers, logistic
Supplier Manufacturer Distr

Recycle center

Landfill

Reverse logistics
center

Fig. 2. The supply chain rev
centers and retailers. For example, the retailer’s reverse logistics
cognitive map can be shown as Fig. 3, which illustrates relation-
ships between levels of customer satisfaction, reverse logistic ser-
vices, and service times and costs.

3.2. Weight training algorithm

After constructing the FCM, the weight (i.e., the relationship
strength) training algorithm is used to derive the strength of causal
relationships between nodes. The weights are empirically derived
based on historical data gathered from the reverse logistics net-
work. In this paper, a genetic algorithm (GA) is used for weight
training since it is widely regarded as an affective approach (Stach,
Kurgan, Pedrycz, & Reformat, 2005). The algorithm uses four ele-
ments including the chromosome structure, the fitness function,
the selection mechanism, and the genetic operation. Each element
is described in this section. A chromosome is a vector which con-
tains elements called genes. In the proposed weight training algo-
rithm, genes are encoded as floating point numbers ranging from
�1 to 1. According to Herrera, Lozano, and Verdegay (1998), float-
ing point numbers provide better efficiency and precision than bin-
ary numbers. In this research, each gene represents the weight
between two nodes. If there are N nodes in an FCM, then there
are N(N � 1) genes in the chromosome.

After defining the chromosome, the next step is to define the fit-
ness function for evaluating whether the chromosome is appropri-
ate or not. In this paper, S(t) is defined as an input vector and
S(t + 1) is the system response. If the iteration number is assumed
to be K, then the error E is derived by calculating the sum of differ-
ence for all input and system response pairs. The error is expressed
in Eq. (2):

SðtÞ ! Sðt þ 1Þ; 8t ¼ 0; . . . ; K � 1; ð1Þ

E ¼
XK

t¼1

XN

i¼1

SiðtÞ � bSiðtÞ
� �

; ð2Þ

where SiðtÞ is the known system response vector for Si(t � 1), bSiðtÞ is
the simulation result of FCM for Si(t � 1), and N is the total number
of vectors. In Eq. (3), a is a constant and the calculated error E from
the previous equation is used as input:

Fitness function ¼ f ðEÞ; f ðxÞ ¼ 1
axþ 1

: ð3Þ

The value of the fitness function is normalized between 0 and 1
with 1 representing an ideal chromosome. A selection mechanism
is used to choose suitable chromosomes. The selected chromo-
somes act as the initial values for evolution into the next genera-
tion. There are different methods for selection such as random
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sampling, directive sampling, and mixed sampling. In this research,
directive sampling was used to improve fitness value performance
(Gen & Cheng, 1997). The genetic operations such as crossover or
mutation are performed based on the selected chromosomes.
Three methods for the crossover operation are considered. These
methods are single point, two point, and uniform crossover. For
reducing computational costs and to ensure a desirable evolution
speed, a two point crossover is used in this research. Finally, ran-
dom mutation is used to minimize violent changes during
mutation.

3.3. Reverse logistics FCM

The initial step of constructing an FCM for reverse logistics is to
define the data transformation function and transfer the input val-
ues to a range between 0 and 1 as shown in Eq. (4) (Kim et al.,
2008). The fuzzification mapping for the crisp transformation val-
ues are shown in Table 1:

g st
i

� �
¼

0 if st
i < ai

st
i � ai

� �
=2 m� aið Þ if ai < st

i < mi

0:5þ st
i � bi

� �
=2 bi �mð Þ if mi < st

i < bi

1 if st
i > bi

8>>><>>>: ð4Þ

where g(x) is the transform function, st
i is the observed value of ith

state at time t

ai ¼minfst
ig; t 2 T

bi ¼maxfst
ig; t 2 T

mi ¼ averagefst
ig; t 2 T

After mapping all input values, the state vectors S(t) for differ-
ent times t can be derived. An input state vector can be represented
as SðtÞ ¼ ½st

1; s
t
2; s

t
3; . . . ; st

n�. The input state vector is multiplied by
the weight matrix to derive the system response vector, si(t + 1).
Afterward, the result vector value is filtered using a threshold func-
tion. Finally, the stable state is derived after several iterations.
There are many threshold functions that can be used for node value
filtering. In this research, the sigmoid function in Eq. (6) is used be-
cause of its reported effectiveness (Salvador & Jose, 2009):
Table 1
State vector fuzzification.

Symbolic variable Value

Very high (0.8, 1]
High (0.6, 0.8]
Normal (0.4, 0.6]
Low (0.2, 0.4]
Very low (0, 0.2]
si t þ 1ð Þ ¼ f
Xn

j¼1

wjisiðtÞ
 !

; ð5Þ

W ¼

w11 w12 w13 � � � w1n

w11 � � � � � � � � � � � �
� � � � � � wij � � � � � �
� � � � � � � � � � � � � � �
wn1 � � � � � � � � � wnn

0BBBBBB@

1CCCCCCA; ð6Þ

and

f ðxÞ ¼ 1
1þ e�x

; ð7Þ

where si(t) is the state of node i at time t, W is the weight matrix of
FCM, and f(x) is the threshold function.

3.4. Decision analysis

After training the weight matrix, it is used to forecast the future
states for decision support. As shown in Fig. 4, SE is the expected
vector at time t + 1. SI is the real cause vector of SE and SD is the pre-
dicted cause vector of SE derived using decision analysis. bSE is the
inference vector derived using the inference analysis from SD

where SD is computed using the genetic algorithm.
Unlike the inference analysis, the population for the genetic

algorithm decision analysis is composed of state vectors. The dif-
ference in the Euclidean space between the inference vector com-
puted from the predicted decision vector and the expected vector
becomes the fitness value of the state vector. The predicted deci-
sion vector with the minimum fitness value is selected using the
genetic algorithm (Eq. (8)):

SD ¼ arg min distance ðbSE; SEÞ
n o

: ð8Þ
4. Cold food container reverse logistics

The proposed methodology is demonstrated using a reverse
logistics case for cold food container recycle management. The case
company manages the cold storage logistics chain and monitors
the temperature using RFID technology. A cold storage logistics
chain provides the services for maintaining cold food temperature
throughout transportation, delivery and storage. Fig. 5 depicts the
information architecture for the RFID system used for collecting
data in this reverse logistic chain.

The container recycling experts in the food logistic companies
identify twenty-eight key parameters (Fig. 6). Twelve parameters
are for manufacturers (S1–S12), twelve for logistics centers (S13–
S24), and 4 for retailers (S25–S28), to form the fuzzy cognitive
map for performance evaluation. Among the 28 parameters, ex-
perts further identify five parameters (S3, S14, S18, S25 and S26
in Table 2) as the key factors influencing the logistic performance.
Ten parameters (S4, S5, S7, S9, S10, S13, S16, S19, S21 and S22 in
Table 3) are the direct performance indicators of the logistic sys-
tem. Thus, there are 15 critical parameters of the FCM used for
forecasting and decision analysis. In our case study, data from
12 months operations are gathered. The parameters for the FCM
t t+1

S I

SD

SE

ŜE

Expected change

Decision analysis

Inference analysis

Fig. 4. Decision analysis derived state vector relationships.
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Fig. 6. FCM for a cold storage reverse logistics chain.

Table 2
Five key factors influencing supply chain performance.

Role Node

Manufacturer (M) S3: M-The safety stock

Logistics center (D) S14: D-Loss rate
S18: D-The safety stock

Retail site (R) S25: R-Dead-time
S26: R-Loss rate

Table 3
Manufacturer and logistics center performance indicators.

Role Node

Manufacturer (M) S4: M-Disposal rate
S5: M-Outbound frequency
S7: M-Lead time
S9: M-Idle time
S10: M-Recycle rate

Logistics center (D) S13: D-Idle time
S16: D-Inventory level
S19: D-Outbound frequency
S21: D-Lead time
S22: D-Return lead time
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are derived using the genetic algorithm given a population size of
100, a maximum training time of 1000, and a mutation rate of 0.1.
After setting the initial parameter values, the iterative processes
train the model. With weight training, the FCM model for container
reverse logistic management was defined with adjusted relation-
ship strengths as shown in Fig. 6. The mean square error (0.44)
shows that the training outcome is consistent. The decision sup-
port process is shown in Fig. 7.
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When a process anomaly occurs, the inference analysis module
forecasts the future states of the system. If action is required, the
information system alerts the manager who uses the decision anal-
ysis module to stabilize the system. The following process simu-
lates the decision support flow.
4.1. Node definition

Table 2 lists the roles and nodes in the container reverse logis-
tics FCM, which are the five key factors influencing the perfor-
mance of the reverse logistic operation. The ten performance
indicators that directly impact the reverse logistic chain’s effi-
Table 4
The initial values of fifteen key performance parameters for the scenario.

M-Safety
stock

D-Loss
rate

D-The safety
stock

R-Lead
time

R-Loss
rate

0.51 (N)* 0.5 (N) 0.29 (L) 0.5 (N) 0.33 (L)

M-Disposal
rate

M-Outbound
frequency

M-Lead
time

M-Idle
time

M-Recycle
rate

0.13 (VL) 0.05 (VL) 0.35 (L) 0.5 (N) 0.5 (N)

D-Idle time D-Inventory
level

D-Outbound
frequency

D-Lead
time

D-Return
lead time

0.5 (N) 0.52 (N) 0.49 (N) 0.05 (VL) 0.48 (N)

* VL, very low; L, low; N, normal; H, high; VH, very high.
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Fig. 8. The performance indice
ciency are listed in Table 3. The vector values representing the sce-
nario in the initial stage are given in Table 4.

4.2. Case analysis

After making inferences using the FCM model, the results are
shown in Fig. 8. The manager receives a list of performance values
and is alerted that there are inefficiencies with the manufacturer’s
outbound frequency, the manufacturer’s lead time, the manufac-
turer’s recycle rate and the logistic center’s return lead time.

Based on these data, the manager defines the expected future
state and inputs the expected vector into the decision analysis
module. Table 5 provides the new vector values and Fig. 9 shows
the results derived from the decision analysis.

Fig. 9 indicates that the manager should maintain the same
safety stock for the manufacturer, the same loss rate for the logistic
center, and the same lead time for the retailer. Further, increasing
the safety stock of the logistic center and controlling the loss rate
of the retailer will improve performance. The average error of
0.021 is computed by finding the difference between the expected
and the inference vectors. Fig. 10 demonstrates the matching of ten
performance indicators against expectation followed by the model
derived decisions.

4.3. Case verification

This section analyzes the accuracy of the proposed decision sup-
port model. Given the historical data for validation, ST is the real
vector, SC is the cause vector of ST, and bSC is the predicted cause
vector of ST derived through decision analysis. The error function
e ¼ jbSC � SC j is the accuracy indicator of the decision model. For
the container reverse logistics case, the average error for nine his-
torical data sets is 0.046 (with errors ranging from 0 to 0.08), an
acceptable value for improving logistic performance.
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Table 5
Expected vector values for the future state.

M-Disposal
rate

M-Outbound
frequency

M-Lead
time

M-Idle
time

M-Recycle
rate

0.2–0.4 (L)* 0.4–0.6 (N) 0.2–0.4 (L) 0.2–0.4 (L) 0.6–0.8 (H)

D-Idle time D-Inventory
level

D-Outbound
frequency

D-Lead time D-Return
lead time

0.2–0.4 (L) 0.4–0.6 (N) 0.5 (N) 0.2–0.4 (L) 0.2–0.4 (L)

* VL, very low; L, low; N, normal; H, high; VH, very high.
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5. Conclusion

This paper proposes a fuzzy cognitive map model for improving
reverse logistic process decision support. Given the dynamic and
complex features of the reverse logistics network, the FCM is used
to construct a reverse logistics network that incorporates RFID
technology to collect real-time data from daily operations. The
model is integrated with the RFID module to provide data for net-
work performance forecasting and decision support. Finally, a cold
storage container management case is presented. The inference
analysis and decision analysis is used to forecast the container
logistics chain response and adjust the operation parameters to
better control the system performance according to managements
established operating processes.

The management of uncertainty is a critical task for forward and
reverse logistic operations. This study provides a method to predict
future logistic operation states and to constructs a decision support
model to manage system performance based on the forecast. The
results show the potential of the proposed methodology for
enhancing competitiveness and efficiency of complex and dynamic
reverse logistic chains.
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