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TRANSFORMATIONAL PHENOMENON IN THE FIELD
OF TAYLOR-COUETTE FLOW

C ircular Couette flow or Taylor-Couette flow1,2 is
a classical problem of hydrodynamic stability; it
is an important paradigm for determining the
dynamics of sheared flows. Donnelly3 and Simon

and Donnelly4 utilized the torque produced in a cylinder
during viscous flow motions to measure the circular Couette
flow at the critical point between stable and unstable flows.
For inner and outer cylinders with the same rotational
speed and direction, Taylor2 demonstrated experimentally
that when the rotational speed increases gradually to a
speed exceeding critical speed, the flow still retains its
one-dimensional flow state. In other words, the rotating
outer cylinder is inhibited to maintain the stable state.
Coles,5 Schwarz et al.,6 and Nissan et al.7 obtained the
same experimental results as Taylor did. More cases of time-
modulated Taylor-Couette problems where the inner cylinder
moves periodically in the axial direction were introduced
and studied by Marques and Lopez.8,9 Moreover, Walsh
and Donnelly10 demonstrated that when the rotational
speed of the inner cylinder is fixed and the outer cylinder
is under a cyclical motion, the flow is stabilized. Gollub
and Swinney11 and Walden and Donnelly12 used laser
Doppler anemometers (LDAs) to investigate the Taylor-
Couette flow. The LDA is used to measure the radial
temperature of flow measurement points. Through power
spectrum analysis, the time domain is transformed into
a frequency domain. The advantage of power spectrum
analysis is that different characteristics of a spectrum
represent different flow state. When the flow is periodic,
a peak of a certain size forms on the spectrum of relative and
harmonic frequencies. When the flow is transformed into a
quasi-periodic flow, a frequency appears that is not associated
with the original frequency. Power spectrum analysis is an
efficient approach for studying the transformation between
quasi-periodic and chaotic flows. For the modulated function,
this study primarily focuses on the influence of modulated
amplitudes and frequencies on the flow stability between
cylinders. Donnelly13 analyzed experimentally modulated
flow stability. When the outer cylinder stays static and the
inner cylinder rotates periodically, parameters such as the
interval, rotational frequency, and modulated amplitude of
the two cylinders can be changed to determine how the
circular Couette flow is affected by modulated rotation.
Hall14 utilized linear theory to determine low and high
frequencies and used nonlinear theory to analyze the flow
under a high frequency. Carmi and Tustaniwskyj15 examined
modulated stability under a limited gap and the influence
of axis symmetry and asymmetry on modulated flow. In a
former study, the critical Reynolds number has an increased
unstable offset at low frequencies. Youd et al.,16 who
analyzed a zero-equivalent modulated flow around concentric
cylinders with a radius ratio of η = 0.75, identified the axis
symmetry of the Taylor vortex. Walsh et al.17 experimentally
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measured the critical Reynolds number for a concentric
cylinder with different radius ratios. The obtained Reynolds
number was multiplied by a factor, and the resulting value
was roughly the same as that calculated by Carmi and
Tustaniwskyj.15 Ganske et al.18 utilized a scenario with a
static outer cylinder and modulated vortex flow in the inner
cylinder to investigate the influence of different amplitudes
on stability. They demonstrated that the modulated effect
causes the flow to become increasingly unstable and that
amplitude has a significantly more important effect on flow
stability than frequency.

This experiment uses flow observations and optical measure-
ments to determine the flow stability and to determine the
critical Reynolds numbers under different modulated ampli-
tudes ε and modulated frequencies ω′. The inner cylinder
rotates at �(1 + ε cos ω′t), where � is the average angu-
lar velocity, the outer cylinder remains stationary, and
the radius ratio is η = 0.4833; the aspect ratio, defined as
h = H/d where H is the cylinder length and d = R2 − R1,
is h � 24. The Reynolds number Re = R1�d/ν, where R1
is the radius of the inner cylinder represents the ratio of
inertia to viscous force. The definition of stable state in this
experiment is as follows: in each modulated cycle, if the dis-
turbance decays immediately, it is determined to be stable.
If the disturbance appears in any modulated cycle, the flow
is unstable. If the disturbance only appears sometimes, the
flow has transient stability.

EXPERIMENT
Flow observations and optical measurements were utilized
to determine when instability will occur. First, tiny particles
(150–250 μm) of an aluminum slice or powder were added
to the fluid. The aluminum powder density was roughly
0.2 g/L of fluid and used to increase the data rate and
information availability. Figure 1 presents experimental
equipment, including (1) the nonoptics area, which includes
the flow observation area, transmission device, and control
and information retrieval device; and (2) the optical area,
which has a helium–neon laser tube, photoelectric receiver,
LDA device, and oscillograph. A personal computer (PC) and
PC-LabCard (PCL818, PCL816/814B, PCL889) were used to
control and retrieve data. The control interface panel can
output the predicted voltage value (corresponding rotational
speed set in the experiment) and further control motor
rotational speed. Table 1 lists experimental conditions for
nonmodulated and modulated flows.

Flow Observation Method
The moving orbit of particles determines the critical
value of flow stability. This method can also observe the
transformation process of unstable flows. The geometric
structure of the observation area—which is chosen for
convenience when observing the flow—includes an acrylic
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Fig. 1: Experiment setup for the Taylor-Couette apparatus with visualization techniques, (b) graph of the optics
area

Table 1—Experimental conditions for Couette flow

NONMODULATEDEFFECT MODULATED EFFECT

Working fluid Silicon oil (350p), SAE-10, SAE-20, SAE-30 Silicon oil (350p), SAE-20, SAE-30

Radius ratio η = 0.4833 η = 0.4833

Aspect ratio h ∼= 24 h � 24

Upper and Lower B.C. Fixed boundaries Fixed boundaries

Rotational speed setting Steady rotational output of 100–300 RPM Periodic output of 0–600 RPM

Modulated amplitude range None ε � 1

Modulated frequency range None ω′ = 0.0 = 0.006∼18(1/s)

rod 800-mm long with an inner diameter of 120 mm and wall
thickness of 5 mm; this is used as the outer rod. The diameter
of the inner steel rod is 58 mm. The distance between the
inner and outer rod is d = 31 mm. The ratio between the
inner and outer rod is η = 0.4833. The inner rod has two
dish-shaped devices that adjust the length of the flow area.
The longest length is H = 750 mm, which equals the largest
aspect ratio of h ∼= 24.

Optical Measurement Method
As the Re increases, the flow is transformed from a one-
dimensional Couette flow to a two-dimensional Taylor vortex
flow. Therefore, the transformation process causes a change
in particle density distribution. As density changes, the light
scattered by particles in the flow also changes. Voltage
measured by an oscillograph also changes. The measured
voltage of the flow before and after it becomes unstable
obviously changes as well. This characteristic is employed
to determine flow stability. The laser light is split into
two bunches of light via the spectroscope and intersect
in the fluid measurement area. The photoelectric receiver
receives the light scattered by tiny particles in the fluid
and transforms it into photo voltage. Figure 2a shows the
relationship between photo voltage and Reynolds number
under the nonmodulated effect. As the Reynolds number
increases, the photo voltage drops suddenly from V1 to V2.
Figure 2b presents the change in photo voltage under the

modulated effect. In this figure, the relatively low and flat
curve is the photo voltage of a one-dimensional periodic
Couette flow. When Re increases until the flow become
unstable, the photo voltage of a two-dimensional periodic
Taylor vortex flow is the curve with relatively high periodic
behavior.

In the experiment, the outer cylinder is stationary and the
inner cylinder rotates with the nonzero mean modulated
angular speed � = �(1 + ε cos ω′t). The Reynolds number
Re0 (the subscript 0 is defined as the nonmodulated critical
state) for the unstable state before implementation of the
modulation effect must be calculated first. Therefore, the
outer cylinder must be stopped first. The low rotational
speed of the inner cylinder is increased to a high rotational
speed. The LDA is utilized to measure the axial speed
to determine the critical Reynolds number Re0 when the
Couette flow transforms into a Taylor vortex flow. When a
modulated rotation is added and the flow becomes unstable,
the speed along the axis is a function of time. At that
moment, the LDA measures the relationship between speed
along the axis and time at the measurement point. After
the axis speed of the Taylor vortex flow is measured, the
data obtained from the fast Fourier transform (FFT) are
used for spectrum analysis of the power spectrum. This
can further elucidate the frequency of a periodic flow and
the change in frequency during transformation of the flow
attitude.
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Fig. 2: Principle of the optical measurement method used to determine flow stability by photo voltage:
(a) nonmodulated and (b) modulated frequency ω′ = 3.14 (1/s)

Fig. 3: Speed along the flow axis when the flow becomes unstable: (a) nonmodulated and (b) modulated for
Reynolds number = 63.35, ε = 1, ω = 11.778, and �2 = 0

When the fluid is in a one-dimensional stability Couette
flow, only radial speed exists. The axial speed measured by
LDA is zero. When rotational speed increases and the flow is
transformed into a two-dimensional Taylor vortex flow, axial
speed appears. Therefore, when the primary measured axial
speed in the experiment is not zero, that instant is the stable
critical state (Fig. 3).

MATHEMATICAL BACKGROUND
First, the instability of modulated Couette flow is considered
before its transition to modulated Taylor vortex flow.
According to the Floquet theorem, the disturbances are
expanded by double series with time periodic coefficients,

which have the same period as that of modulation. An
algebraic eigenvalue problem is obtained by Galerkin and
collocation methods. The QZ algorithm is employed to solve
the eigenvalues which determine the stability of flow. The
eigenvalue σ is the growth rate of a complex disturbance.
The stability of the basic flow can be determined by the real
number of the growth rate for a complex disturbance. When
σ r < 0, the entire flow is stable. The disturbance declines as
time increases. When σ r > 0, the disturbance increases over
time and the flow becomes unstable. When σ r = 0, the flow
has neutral stability.

Second, the primitive variables of modulated and nonmod-
ulated Taylor vortex flows are solved numerically. The
Adam-Bashforth and Crank-Nicolson methods are employed
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to discretize the nonlinear and linear terms, respectively, of
the Navier-Stokes equations.

For the convenience of problem analysis, we assume that
the working fluid is a Newtonian fluid. Except for density
all other physical properties are fixed. The change in fluid
density satisfies the Boussinesq approximation for gravity
and centrifugal force; other items are ignored. The loss of
fluid viscosity is also ignored. The dimensionless Navier-
Stokes equation and the continuity conditions are then

∂t
→
V + →

V ·∇ →
V = −∇p + 	

→
V , ∇· →

V = 0 (1)

The boundary condition is Vr = Vz = 0, Vθ = Re(1 +
ε cos ωτ ) at r = R1, and

→
V = 0 at r = R2, where

→
V =

(Vr, Vθ , Vz) and the dimensionless factor ω = ω′(d2/ν) and
τ = t(ν/d2); where ν is defined as the kinematic viscosity.

According to Carmi and Tustaniwskyj,15 flows with axial
symmetry become unstable more easily than flows with
axial asymmetry. Therefore, this study only considers
disturbances of flows with symmetrical state. This flow
type can be regarded as a one-dimensional flow with a
perturbation and can be expressed as:

Vr = 0 + V ′
r(r, z, τ ) (2)

Vθ = Vθ (r, τ ) + V ′
θ (r, z, τ ) (3)

Vz = 0 + V ′
z(r, z, τ ) (4)

P = 0 + P′(r, z, τ ) (5)

where Vθ is the basic flow velocity of one-dimensional Couette
flow and the perturbations are expressed as:

V ′
r =

M−1∑

m=0

N+1∑

n=2

Amn(τ )φn(ξ ) cos mαz (6)

V ′
θ =

M−1∑

m=0

N+1∑

n=2

Bmn(τ )φn(ξ ) cos mαz (7)

V ′
z =

M∑

m=1

N+1∑

n=2

Cmn(τ )φn(ξ ) sin mαz (8)

P′ =
M−1∑

m=0

N−1∑

n=0

Dmn(τ )Tn(ξ ) cos mαz (9)

Here, M and N are the numbers of expanded terms in the
Fourier series and Chebyshev polynomials, respectively, Amn,
Bmn, Cmn, and Dmn are amplitude coefficients, and Tn(ξ ) is
the first type of n-order Chebyshev polynomials; Tn(ξ ) is
defined as follows:

Tn(ξ ) = cos(n · cos−1 ξ ), n = 0, 1, 2, . . . . (10)

and ξ ∈ [−1, 1]. φn is the base function that satisfies the
boundary conditions and is expressed as:

φn = Tn − [1 − (−1)n]
T1

2
− [1 + (−1)n]

T0

2
,

n = 2, 3, 4, . . . . (11)

By analyzing the perturbation into normal modes and uti-
lizing the spectral method19 to transform the characteristic
equation into an algebraic characteristic equation, it can be
represented by a matrix.

RESULTS AND DISCUSSION
Table 2 shows the experimental results and theoretical
values. The flow generated an unstable critical value and
average experimental value of Re0 = 68.75. Compared with
the results obtained by other studies, the error rate was ¡
1.18%. If the error deviation is added, then the critical value
is Re0 = 68.75 ± 0.81. The experimental results acquired by
other studies are within the error range. The experimental
results are the experimental foundation for the modulated
Couette flow. For the measurement of the wave number α,
only a total length of 10 cells in the middle of the flow
(equivalent to the total length of five wavelengths) were
examined to avoid the influence of the upper and lower
boundaries in the experiment. The vortex size was averaged
and its wavelength λ was calculated. The precision of this
measurement was within 0.1 mm. The wavelength was then
calculated by λ = 2π/α. Table 2 also shows the average wave
number, which is α = 3.19. The theoretical value calculated
for unlimited length was α = 3.17 at the same radius
ratio η = 0.4833. The deviation between the experimental
result and theoretical value is 0.626%. Additionally, this
experiment also examined different aspect ratios, including
h =24, 20, and 16. The experimental result did not change
noticeably, and the critical Reynolds number was within
Re0 = 68.75 ± 0.81. Therefore, the aspect ratio does not
have a significant effect on the flow stability; this is the
same experimental result obtained by Cole.20

Under a modulated effect, the inner cylinder rotates with
�1 = �1(1 + ε1 cos ωτ ), radius ratio of η = 0.4833, and
ε1 = 1. The stability of the modulated Couette flow
is primarily affected by the modulated amplitude and
frequency. To compare the modulated effect with the
nonmodulated effect, the change rate for the critical
Reynolds number is defined here as 	 = (Rec − Re0)/Re0
(the subscripts are defined as c being the modulated state
and 0 being the nonmodulated state), where 	 > 0 represent
the modulation that has stabilized.

The solid line in Fig. 4 is the theoretical result. At a low
frequency, when 	 < 0, the critical Reynolds number is lower
than that for a nonmodulated effect. This result demonstrates
that the modulated effect has an unstable effect on the flow.
In addition, when the frequency continues to decrease, 	
approached the quasi-steady limit −ε/(1 + ε). At medium
to high frequencies 	 increased as frequency increased.
Generally, in this frequency range, the modulated effect
destabilizes the flow. As frequency decreases, destabilization
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Table 2—Comparison of results from this study and other scholars for nonmodulated Couette
flow

ASPECT
RATIO

RADIUS
RATIO CRITICAL VALUE WAVE NUMBER

AUTHOR STUDY METHOD h η Re0 ERROR RATE % α ERROR RATE %

Results from this study Flow visualization optical method 24 0.4833 68.75 — 3.19 —

Donnelly3 Torsion measurement method 4 0.5 68.28 0.68 — —

Simon and Donnelly4 Torsion measurement method 5 0.5 68.23 0.76 — —

Sparrow et al.21 Numerical method Infinite 0.5 68.19 0.81 3.16 0.94

Results from this study Numerical method Infinite 0.5 68.186 0.82 3.16 0.94

Numerical method Infinite 0.4833 67.94 1.18 3.17 0.626

Fig. 4: Relationship of the relative variable � versus the modulated frequency shown for the modulated
amplitude ε = 1

increases. The error for the results in this experiment and the
theoretical value was relatively large at medium frequencies.
At a high frequency, 	 approaches but remains slightly
lower than 0. At that point, the modulated frequency slightly
destabilizes the flow.

Figure 5 shows the relationship between the relative variable
	 of Reynolds number and the amplitude under different
frequencies. The dotted line in Fig. 5a is the quasi-steady
limit −ε/(1 + ε) when ω → 0. At an extra low frequency,
if the amplitude is high, destabilization is also high. When
frequency is ω = 0.063, the amplitude increases from 0 to
1.0, and the variable 	 of the Reynolds number gradually
decreases to around −0.5. In addition, based on the graph,
the experimental result and quasi-steady limit −ε/(1 + ε)
are extremely close. When the modulated frequencies are
ω = 0.628 and ω = 6.28 (Fig. 5b and c, respectively), the
relative variable 	 of the Reynolds number decreases as
the modulated amplitude increases. When the modulated

amplitude is high, the relative variable 	 of the Reynolds
number decreases and the flow becomes increasingly
unstable. However, the degree of instability is lower than
that at a low frequency. At a high frequency (Fig. 5d),
when the modulated frequency is ω = 62.8, the different
modulated amplitudes do not have a significant effect on the
relative variable 	 of the Reynolds number. The modulated
amplitude does not significantly influence flow stability.

When the flow is harmonic, the obtained frequency is the
same as the frequency during modulated rotation. The
speed obtained from the experiment was analyzed with FFT
(Fig. 6). With the modulated frequency ω in the flow, an
emergency was produced at ω/2. This energy was higher
than the energy in ω. This indicates that the flow is a base
frequency ω/2 periodic flow; that is, the subharmonic flow of
the modulated frequency. This experimental result is close
to the theoretical value, and the trend is the same as that
obtained by Youd et al.16,22
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Fig. 5: Relationship between the relative variable � of the Reynolds number and modulated amplitude ε for
different modulated frequencies; η = 0.4833 and h ∼= 24

Fig. 6: Spectrum analysis of the subharmonic flow
with �1 = �1(1 + ε cos ωτ ), �2 = 0, η = 0.4833, ε = 2,
and ω = 18.75

CONCLUSION
We have shown that modulation destabilizes the flow in most
frequency ranges. At high frequencies, the critical Reynolds
number approaches the nonmodulated critical value Re0
but will remain slightly lower. At medium-high frequencies,
the critical Reynolds number varies with frequency rapidly.
At low frequencies, the critical Reynolds number is only
slightly affected by the frequency. Additionally, when the
modulation amplitude ε = 2 and the frequency are high for
the inner cylinder, a subharmonic flow appears. The aim
for future work is now to build on the firm foundation and
to utilize the information gained in this study and by other
researchers to investigate the onset of wavy vortex flows with
more complicated hydrodynamics and at higher Reynolds
numbers.

References

1. Couette, M., ‘‘Etudes Sur Le Frottement Des Liquids,’’
Annales de chimie et de physique 6:433–510 (1890).

2. Taylor, G.I., ‘‘Stability of a Viscous Liquid Contained between
Two Rotating Cylinders,’’ Philosophical Transactions of the Royal
Society of London A233:289–343 (1923).

November/December 2010 EXPERIMENTAL TECHNIQUES 47



STABILITY OF
TAYLOR-COUETTE FLOW

3. Donnelly, R.J., ‘‘Experiment on the Stability of Viscous Flow
between Rotating Cylinders I. Torque Measurement,’’ Proceedings
of the Royal Society of London A246:312–325 (1958).

4. Simon, N.J., and Donnelly, R.J., ‘‘An Empirical Torque
Relation for Supercritical Flow between Rotating Cylinders,’’
Journal of Fluid Mechanics 7:401–418 (1960).

5. Coles, D., ‘‘On the Instability of Taylor Vortices,’’ Journal of
Fluid Mechanics 31:17–62 (1965).

6. Schwarz, K.W., Springett, B.E., and Donnelly, R.J., ‘‘Modes
of Instability in Spiral Flow between Rotating Cylinders,’’ Journal
of Fluid Mechanics 20:281–289 (1964).

7. Nissan A.H., Nardacci J.L., and Ho C.Y., ‘‘The Onset of
Different Modes of Instability for Flow between Rotating Cylinders,’’
AIChE Journal 9:620–624 (1963).

8. Marques, F., and Lope, J.M., ‘‘Taylor-Couette Flow with Axial
Oscillations of the Inner Cylinder: floquet Analysis of the Basic
Flow,’’ Journal of Fluid Mechanics 384:153–175 (1997).

9. Lope, J.M., and Marques, F., ‘‘Dynamics of Three-tori in a
Periodically Forced Navier-Stokes Flow,’’ Physical Review Letters
85:972–975 (2001).

10. Walsh, T.J., and Donnelly, R.J., ‘‘Couette Fow with Period-
ically Corotated and Counterrotated Cylinders,’’ Physical Review
Letters 60:700–703 (1988).

11. Gollub J.P., and Swinney, H.L. ‘‘Onset of Turbulent
in a Rotating Fluid,’’ Physical Review Letters 35:927–930
(1975).

12. Walden, R.W., and Donnelly, R.J., ‘‘Reemergent Order of
Chaotic Circular Couette Flow,’’ Physical Review Letters 42:301–304
(1979).

13. Donnelly, R.J., ‘‘Experiments on the Stability of Viscous
Flow between Rotating Cylinders III. Enhancement of Stability
by Modulation,’’ Proceedings of the Royal Society of London
A281:130–139 (1964).

14. Hall, P., ‘‘The Stability of Unsteady Cylinder Flows,’’ Journal
of Fluid Mechanics 67:29–63 (1975).

15. Carmi, S., and Tustaniwskyj, J.I., ‘‘Stability of Modulated
Finite-gap Cylindrical Couette Flow: linear Theory,’’ Journal of
Fluid Mechanics 108:19–42 (1981).

16. Youd, A.J., Willis, A.P., and Barenghi, C.F. ‘‘Reversing and
Non-reversing Modulated Taylor-Couette Flow,’’ Journal of Fluid
Mechanics 487:367–376 (2003).

17. Walsh T.J., Wagner W.T., and Donnelly R.J., ‘‘Stability of
Modulated Couette Flow,’’ Physical Review Letters 58:2543–2546
(1987).

18. Ganske, A., Gebhardt, T., and Grossmann, S., ‘‘Taylor-
Couette Flow with Time Modulated Inner Cylinder Velocity,’’ Physics
Letters: Part A 192:74–78 (1994).

19. Canuto, C., Hussaini, M.Y., Quarteroni A., and Zang, T.A.,
Spectral Methods in Fluid Dynamics, Springer-Verlag, New York
(1988).

20. Cole, J.A., ‘‘Taylor-vortex Instability and Annulus-length
Effects,’’ Journal of Fluid Mechanics 75:1–15 (1976).

21. Sparrow, E.M., Munro, W.D., and Jonsson, V.K., ‘‘Instability
of the Flow Between Rotating Cylinders:the Wide Gap Problem,’’
Journal of Fluid Mechanics 20:35–46 (1974).

22. Youd, A.J., Willis, A.P., and Barenghi, C.F., ‘‘Non-Reversing
Modulated Taylor-Couette Flows,’’ Fluid Dynamics Research
36:61–73 (2005). �

48 EXPERIMENTAL TECHNIQUES November/December 2010


