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Design of an embedded audio–visual tracking and speech purification system is described in this paper.
The system is able to perform human face tracking, voice activity detection, sound source direction esti-
mation, and speech enhancement in real-time. Estimating the sound source directions helps to initialize
the human face tracking module when the target changes the direction. The implementation architecture
is based on an embedded dual-core processor, Texas Instruments DM6446 platform (Davinci), which con-
tains an ARM core and a DSP core. For speech signal processing, an eight-channel digital microphone
array is developed and the associated pre-processing and interfacing features are designed using the
Altera Cyclone II FPGA. All the experiments are conducted in a real environment and the experimental
results show that this system can execute all the audition and vision functions in real-time.
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1. Introduction

Integration of auditory and visual perceptions has become a
trend in robots [1] or intelligent human–machine interfaces [2].
For intelligent machines to interact naturally with human, the abil-
ities to understand spoken language and respond to auditory
events are necessary since the auditory system can provide useful
information about the environment, such as sound source location
and the interpretation of the content of the sound sources. How-
ever, in real environment, the speech signal is easily corrupted
by interference signal such as other talkers or room reverberation.
Hence, sound source tracking and speech enhancement are two ba-
sic functions of the auditory system. Secondly, sound source track-
ing is usually followed by visual tracking when the target is within
the view scope of the camera. The integrated interface greatly
enhances the robustness of human or target tracking. However,
the integration also poses a great challenge in technology
development.

This paper describes the auditory–visual system architecture,
algorithms and implementation on an embedded platform that
can be applied to robots or other human–machine interfaces.

The integration of audio and visual perceptions has already
been involved in many applications. For example, the SIG robot
[3] based on binaural auditory system estimates sound source
direction in the horizontal plane using two microphones informa-
tion and separates sound sources for speech recognition. Then the
research team combines visual tracking system into the SIG robot
ll rights reserved.

. Lee).
to achieve more robust estimation [4,5]. The SIG system is imple-
mented by distributed processing of five nodes with 1.8 GHz Pen-
tium-IV. The ARMAR III [6] is designed as an labourer in the
kitchen. The ARMAR III can recognize and classify sounds with
six microphones. Also, it can identify the user face and detect the
user gesture with the auditory–visual perception. Suwannathat
et al. [7] proposed a mobile robot which can detect the speaker
direction by the integration of microphone arrays and an omni-
directional camera. The robot also matches human templates to
determine whether a person is nearby or not. Wang et al. [8] pro-
posed a PC-based microphone array system which can enhance
speech signal and estimate the speaker’s direction. The speech
enhancement and direction estimation algorithms are imple-
mented on a plugged-in DSP board. The work of [9] evaluated
the real-time performance of the proposed algorithms on a desktop
PC’s (3.0 GHz) for 4 cameras and 12 microphones. Connell et al.
tried to demonstrate a small-vocabulary audio–visual ASR on an
1.8 GHz PC [10]. The video processing for capturing and analyzing
a human face alone takes 67% of the computing resources. There
are also plenty of research efforts dedicated to explore the theoret-
ical foundation of the related problems involved [11–15]. Basically,
these works were conducted to support the real-time capability of
the proposed algorithms and PCs were used as a standard platform
for comparison.

Despite the great effort in studying the audio–visual interface,
there hasn’t been a report on embedded implementation of this
technology. As described before, for applications such as robotics
and vehicles, embedded implementation is necessary to meet the
cost and size constraints. However, the implementation of a real-
time audio–visual interface can be quite different depending on
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the features and algorithms. Usually, it involves several sub-sys-
tems and is not easy to design on an embedded platform. For
example, to acquire microphone array data requires multi-channel
synchronized A/D interface and off-the-shelf acquisition hardware,
which are mostly for PC architecture. Further, the real-time con-
straints of simultaneous audio and video processing on a re-
source-limited embedded platform also pose some interesting
issues in design. In this work, we propose and implement the hu-
man face tracking, adaptive speech enhancement, voice activity
detection and sound source direction estimation on an embedded
dual-core processor platform (Texas Instruments DM6446) [16].
The dual-core processor platform includes an Advanced RISC Ma-
chine (ARM) subsystem and a DSP subsystem. All of the audio algo-
rithms are executed on the DSP subsystem, and ARM is used to
execute the human face tracking algorithm and to control input/
output (I/O) devices. The audio interface includes an eight-channel
microphone array. To acquire the microphone signals simulta-
neously, a special hardware is designed using digital microphones
and field programmable gate array (FPGA). The FPGA is responsible
for pre-processing the microphone signals and transmits the data
to the platform via asynchronous external memory interface
(AEMIF).

The paper is organized as the following: Section 2 describes the
related algorithms implemented and their associated computation
procedure. The multi-channel microphone interface is presented in
Section 3. Section 4 shows the implementation architecture and
software development. Experiments in real environments to access
the real-time performance of the system are explained in Section 5.

2. Implementation methodology

In this section, we introduce the algorithms used in the pro-
posed system. They include the voice activity detection (VAD),
the speech enhancement function and the visual (human face)
tracking algorithm.

2.1. Voice activity detection

The voice activity detection (VAD) algorithm [17] detects the
presence of speech by adjusting itself according to current environ-
mental noise based on the estimation of the long-term spectral
envelope (LTSE). The LTSE tracks the spectral envelope using
long-term rectangular speech window information. Assume that
ŝðnÞ is the n-th sample of the VAD system input. Then, the J-order
LTSE can be defined as:

LTSEJðk; lÞ ¼maxfbSðk; lþ jÞgj¼þJ
j¼�J ð1Þ

where bSðk; lÞ denotes the amplitude spectrum of ŝðnÞ at frame l and
frequency band k. In addition, the decision rule is formulated in
terms of the long-term spectral divergence (LTSD). The J-order LTSD
is defined as:

LTSDJðlÞ ¼ 10log10
1
B

XK�1

b¼0

LTSE2
J ðk; lÞbN2ðk; l� 1Þ

 !
ð2Þ

where K means the number of frequency bands. bN2ðk; l� 1Þ is the
estimated noise spectrum for the band k. Then, the J-order LTSD is
used to compare with an adaptive threshold c to determine the
existence of speech signals. The threshold c is adapted depending
on the value of noise energy E:

c ¼
c0 E 6 E0

c0 þ
c1�c0
E1�E0

ðE� E0Þ E0 < E < E1

c1 E P E1

8><>: ð3Þ

with
E ¼
XK�1

b¼0

N̂2ðk; l� 1Þ

where c0 and c1 are thresholds when the system is working in the
quietest and noisiest conditions respectively. E0 and E1 are the cor-
responding noise energies. The result of VAD is set to one (i.e.,
speech signal is detected) when the value of LTSD is larger than
the value of c; otherwise, it is set to zero (i.e., no speech signal is
detected). Afterwards, the noise spectrum is updated as:

bNðk; lÞ ¼ wbNðk; l� 1Þ þ ð1� wÞbNQ ðk; lÞ if VAD ¼ 0bNðk; l� 1Þ if VAD ¼ 1

(
ð4Þ

where w is the adaption weight and bNQ ðk; lÞ is the average of esti-
mated noise spectrum magnitudes at frequency band k over
(2Q + 1) frame:

bNQ ðk; lÞ ¼
1

2Q þ 1

XQ

q¼�Q

bNðk; lþ qÞ ð5Þ
2.2. Speech enhancement

This work uses the adaptive beamformer technique to purify
the contaminated speech. The overall speech enhancement system
architecture can be illustrated as Fig. 1, where xm(n) represents the
m-th microphone received signal and sm(n) is pre-recorded speech
corresponding to the m-th channel. This speech enhancement sys-
tem is composed by two stages: silent stage and speech stage. The
stages are switched by the VAD results. If the result of VAD is equal
to zero, which means that no speech exists, the system will be exe-
cuted in the silent stage. In the silent stage, the input signals
(xm(n)) which considered as environmental noise are added with
pre-recorded reference signals to train the weighting vector. When
the system is switched to speech stage, the trained weighting vec-
tor is passed to the lower beamformer to purify the received sig-
nals. In addition, the purified signal is passed to the VAD process
to extract the speech signal.

The parameter update of the beamformer is executed in the
time domain with normalized least mean square (NLMS) based ap-
proach [18]. Based on the system architecture, the formulation of
microphone array speech purification system can be expressed as
the following linear model:

eðnÞ ¼ x̂ðnÞT w� rðnÞ ð6Þ

where

x̂ðnÞ ¼ ½ x̂1ðnÞ � � � x̂MðnÞ �T

x̂iðnÞ ¼ ½ x̂iðnÞ � � � x̂iðn� P þ 1Þ �T

w ¼ ½w11 � � � w1P � � � wM1 � � � wMP �T

where M denotes the number of microphones, P denotes the filter
order of each microphone signal, and the superscript T denotes
the transpose operation. x̂ðnÞ is the MP � 1 training signal vector
constructed from the linear combination of the pre-recorded speech
signal and the online recorded background noise. r(n) denotes the
reference signal, which is the pre-recorded speech of microphone
1. e(n) is the unknown estimation disturbance and w is the
MP � 1 unknown filter coefficient vector of the beamformer to be
estimated. The solution can be approximated iteratively by the
recursion:

wðnþ 1Þ ¼ wðnÞ þ l
dþ kx̂ðnþ 1Þk2 x̂ðnþ 1Þ � ½rðnþ 1Þ

� x̂ðnþ 1ÞT wðnÞ� ð7Þ
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Fig. 1. Speech enhancement system architecture.
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where d is a small positive value in order to keep the denominator
positive and 0 < l < 2 should be satisfied for convergence. By cali-
bration using pre-recorded speech signals, this method outperforms
other un-calibrated algorithms in real applications [19].
2.3. Sound source tracking

The direction of arrival (DOA) estimation system architecture is
illustrated in Fig. 2. It is also separated into two stages by the VAD
results, namely, the silent stage and speech stage similar to the
adaptive beamformer. In the silent stage, the B significant frequen-
cies kN1, . . . , kNB will be chosen by comparing the received signals’
amplitude spectrum in each frequency to represent the principal
frequencies of the non-speech environment (the most significant
frequencies of background noise).
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Fig. 2. Sound source detection and estimation system.
Assume that xj(n), the received signal of the j-th microphone, is
utilized to detect the speech. Let X(kj, l) be the amplitude spectrum
of xj(n) for the frequency band kj at frame l, for j = 1, . . . , B. The B
significant frequencies can be selected as follows:

bXðkjÞ ¼
1
L

XL

l¼0

Xðkj; lÞ ð8Þ
fkN1; . . . ; kNBg ¼ bXðk1Þ; . . . ; bXðkKÞ
n oD E

b
K > B

where L is the number of frames to be averaged. K denotes the num-
ber of frequency bands. h�ib denotes selecting the biggest B values
from the elements. When the result of VAD is one, the system will
be switched to the speech stage and then the B significant frequen-
cies of the silent stage are transferred to the DOA algorithm for esti-
mating the speakers’ directions. The well-known blind DOA
estimation algorithm MUSIC is adopted to determine the arrival an-
gle. Since speech signals are wideband, a wideband incoherent MU-
SIC algorithm [20] with arithmetic mean was implemented in this
work. In speech stage, only C significant frequencies kS1, . . . , kSC

are selected for wideband MUSIC algorithm to reduce the computa-
tion complexity and the frequencies can be described as

fkS1; . . . ; kSCg ¼ X̂ðk1Þ; . . . ; X̂ðkKÞ
n oD E

c
K > C > B ð9Þ

However, the principal frequencies of speech stage may overlap
those of silent stage and shall be removed. This leads to the follow-
ing new set of frequencies:

fkv1; . . . ; kvRg ¼ fkS1; . . . ; kSCg � fkN1; . . . ; kNBg ð10Þ

The speakers’ directions are determined by finding the peaks of
MUSIC spectrum:

JðhiÞ ¼
1

1
R

PR
r¼1AH

i ðk̂mrÞPNðk̂mrÞAiðk̂mrÞ
ð11Þ

where Ai(kmr) is the array manifold vector and PN(kmr) is the noise
projection matrix. For the detail of the MUSIC implementation,
please refer to [18].
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2.4. Human face tracking

In our proposed system, we use the spatial-color mean-shift ob-
ject tracking algorithm [21] to track human face. The main concept
of mean-shift tracking is to find the candidate which is the most
similar with target image by mean-shift iterations. The principle
of mean-shift is to compare the color distribution of candidate re-
gion with the color distribution of the model, and to compute the
similarity measure, Bhattacharyya coefficient, to observe the vari-
ation of gradient of candidate to find the mean-shift vector. Fur-
ther, mean-shift finds the most similar region or the most
possible area of the candidate.

Let the model image has M pixels, the candidate image has N
pixels, and the associated color space can be classified into B bins.
For example, in RGB color space, if each color is divided into eight
intervals, the total number of bins is 512. This paper denotes the
model image as Ix = {xi, cxi, bxi}i=1,. . .,M, where xi is the location of
pixel i with color feature vector cxi which belongs to the bxi-th
bin. Similarly, the candidate image can be denoted as
Iy = {yj, cyj, byj}j=1,. . .,N. The dimension of the color feature vector is
d, which is the number of color channels of a pixel for example,
in RGB color space, d = 3 and cxi = (Rb, Gb, Bb).

As shown in Fig. 3, if black1 and gray belong to the same bin,
these two blocks have the same spatiogram, but they have differ-
ent color patterns. To keep the robustness of color description of
the spatiogram, we extend the spatiogram and define a new joint
spatial-color model as

hIðbÞ ¼ hnb;lP;b;RP;b;lC;b;RC;bi; b ¼ 1; . . . ;B ð12Þ
where nb, lP,b, and RP,b are the same as the spatiogram proposed by
Birchfield and Rangarajan [22]. Namely, nb is the number of pixels,
lP,b is the mean vector of pixel locations, and RP,b is the covariance
matrix of pixel locations belonging to the b-th bin. Besides, we also
add two additional elements. lC,b is the mean vector of the color
feature vectors and RC,b is the associated covariance matrix.

The probability density function (p.d.f.) of the object in the im-
age model can be estimated using kernel density function,

pxðx;cx;bxÞ

¼ 1
M

XM

i¼1

KPðx�lP;bðiÞ;RP;bðiÞÞKCðcx �lC;bðiÞ;RC;bðiÞÞ � dðbx � bðiÞÞ ð13Þ

where b(i) is the color bin to which pixel i belongs to. KP and KC are
multivariate Gaussian kernel functions and can be regarded as the
spatially weighted and color-feature weighted function respec-
tively. In (13), the spatial weighting among the color bins is selected
to be a delta function. It is also possible to use a smooth kernel such
as Gaussian [21]. Using the concept of the expectation of the esti-
mated kernel density, we can define a new similarity measure func-
tion between the model Ix = {xi, cxi, bxi}i=1,. . .,M and candidate
Iy = {yj, cyj, byj}j=1,. . .,N as
1 For interpretation of color in Figs. 3–5 and 8–17 the reader is referred to the web
version of this article.
JðIx; IyÞ ¼ JðyÞ ¼ 1
N

XN

j¼1

pxðyj;cyj;byj
Þ

¼ 1
NM

XM

i¼1

XN

j¼1

Kpðyj �lP;bðiÞ;RP;bðiÞÞKCðcyj �lC;bðiÞ;RC;bðiÞÞ
h

�dðbyj
� bðiÞÞ

i
ð14Þ

The spatial-color model px(x, cx, bx) might be sensitive to small
spatial changes under the measure function. This problem was
discussed by O’Conaire et al. [23] and Birchfield and Rangarajan
[24]. However, this model also gives advantages of orientation
estimation. As shown in Fig. 4, if there is no deformation between
candidate and target, and the distance of motion is not exces-
sively large between two adjacent frames, we can consider the
motion of object of two frames as a pure translation. Under these
assumptions, the center of target (x) with respect to the mean of
location of the b-th bin (lP,b(i)) in the model is in proportion to
the center of candidate (y) with respect to the mean of location
of the b-th bin (lP,b(j)) in the candidate image. As a result, we
can obtain,

lP;bðiÞ � x ¼ lP;bðjÞ � y

) lP;bðiÞ ¼ lP;bðjÞ � y þ x
ð15Þ

Substituting (15) into (14), we can obtain the new similarity
measure function as the following:

JðyÞ ¼ 1
NM

XM

i¼1

XN

j¼1

KPðyj � lP;bðjÞ þ y � x;RP;bðiÞÞ
h

�KCðcyj � lC;bðiÞ;RC;bðiÞÞdðbyj � bðiÞÞ
i

ð16Þ

The best candidate for matching can be found by computing the
maximum value of the similarity measure. Let the gradient of the
similarity function with respect to the vector y equals to 0, i.e.,
rJ(y) = 0, then we can obtain the new position ynew of the target
to be tracked,

rJðyÞ ¼ 0

) 1
NM

XM

i¼1

XN

j¼1

ðRP;bðiÞÞ�1ðyj � lP;bðjÞ � y þ xÞKPKCdðbyj � bðiÞÞ ¼ 0

ð17Þ

By arranging this equation, the new position ynew = y can be de-
scribed as

ynew ¼
XM

i¼1

XN

j¼1

ðRP;bðiÞÞ�1KPKCdðbyj
� bðiÞÞ

( )�1

�
XM

i¼1

XN

j¼1

ðRP;bðiÞÞ�1ðyj � lP;bðjÞÞKPKCdðbyj � bðiÞÞ
( )

þ x ð18Þ
Fig. 4. Illustration of pure translation.



278 J.-S. Hu et al. / Microprocessors and Microsystems 34 (2010) 274–284
where

KP ¼ KPðyj � lP;bðjÞ þ yold � x;RP;bðiÞÞ

¼
exp � 1

2 ðyj � lP;bðjÞ þ yold � xÞTðRP;bðiÞÞ�1ðyj � lP;bðjÞ þ yold � xÞ
� �

2pjRP;bðiÞj1=2

and

KC ¼ KCðcyj � lC;bðiÞ;RC;bðiÞÞ

¼
exp � 1

2 ðcyj � lC;bðiÞÞ
TðRC;bðiÞÞ�1ðcyj � lC;bðiÞÞ

� �
ð2pÞ3=2jRC;bðiÞj1=2

In the sequel, we define yold as the current position.

3. Multi-channel microphone interface

In order to obtain multi-channel audio data for speech enhance-
ment and sound source tracking algorithms, a multi-channel
microphone interface using FPGA is implemented. Digital micro-
phones were used due to their minimal interference with the dig-
ital circuit. A digital microphone is a device that both an amplifier
and a sigma-delta modulator [25] are embedded in the micro-
phone. It outputs a 1-bit data stream insensitive to noise and also
has the small size advantage. Therefore, digital decimation filters
have to be implemented to obtain the quantized microphone sig-
nals in a desired bandwidth.

To achieve the decimation process and data transmission be-
tween digital microphones and Texas Instruments DM6446 plat-
form, we use an Altera Cyclone II FPGA. In the FPGA design, the
decimation filter process consists of an infinite impulse response
(IIR) filter and downsample process. For each channel, data from
digital microphones is a 1-bit stream sampled at 12 MHz clock.
The 1-bit stream data is transferred into 16-bit parallel data with
a reduction of sampling rate 16 kHz. The IIR filter is implemented
by a moving-average low-pass filter at a cut-frequency of 8 kHz,
and the pole of this filter is shifted to maintain stability. The same
architecture is also used for the high-pass filter at cutoff frequency
about 80 Hz to remove DC components.

The audio data is transmitted from FPGA to Davinci through
external memory interface. On the FPGA side, we implement the
transceiver by a ping-pong structure. Audio data flow is described
below and the functional block diagram of FPGA is showed in
Fig. 5:

(1) 1-bit data stream is sampled from each microphone, and
then the decimation filter transfers it into 16-bit data
stream.

(2) When the 16 kHz clock is rising, we write the eight-channel
data into corresponding ping (or pong) buffer; at the mean-
time, the pong (or ping) buffer can be read by Davinci.
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Fig. 5. FPGA function
(3) As the buffer is full, the ping-pong controller exchanges the R/
W enable for the ping and pong buffer, and raise the full sig-
nal until Davinci starts to receive data.

(4) When Davinci starts to access data, it would first check the
full signal which corresponds to a specified address. If the full
signal is active, then Davinci starts to send read address
(rdaddr) and receive data while pulling down the full signal.

4. Dual-core platform programming

The embedded dual-core platform, DM6446 EVM (Davinci),
consists of the ARM subsystem and DSP subsystem. The ARM
subsystem mainly controls the system operation and I/O access,
and the DSP subsystem computes various algorithms. Communica-
tion between ARM and DSP is performed using DSP/BIOS Link™
(an inter-processor communications scheme offered by Texas
Instruments).

4.1. Receiving audio data from FPGA

In Davinci, the audio data of eight-channel microphones is re-
ceived through the asynchronous external memory interface (AE-
MIF) [26]. The Davinci platform memory map is shown in Fig. 6.
In Fig. 6, we can see that the AEMIF supports four addressable
spaces (from CS2 to CS5). Each space provides up to 32 MB, and
there are two choices for the data bus width, 8-bit and 16-bit. To
match the sound data from FPGA, the data bus width is set to
16-bit. We choose the space CS3 (0 � 04000000–0 � 06000000)
due to its capability for accepting plug-in daughter cards, such as
memory.

In practice, we accelerate the data transmission time by tuning
the time in Setup, Strobe, and Hold states in the signal transmission
procedure. It efficiently reduces the CPU loading.

4.2. DSP subsystem programming

The DSP subsystem mainly computes the audio algorithms,
including VAD, DOA estimation, and speech enhancement. The
complete software flowchart in DSP subsystem is described in
Fig. 7. When the ping (or pong) buffer is full in FPGA, DSP will ob-
tain eight-channel sound data from FPGA by accessing AEMIF. After
the data transmission of a buffer is complete, a 10th-order beam-
former to enhance the speech signal is activated to reduce the
background noise, and the eight-channel data is integrated into
one channel (enhanced signal). The enhanced sound data is passed
into VAD system to check whether there is speech or not. The
sound data and VAD detection results will be sent to the ARM sub-
system by DSP/BIOS Link.

Two different program stages are separated by the VAD result. If
the VAD system determines that there is no speech (only back-
ground noise) in the environment, the beamformer parameters
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Fig. 6. Memory map of Davinci.
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update system will be activated, and the sound data will be used to
train and update the parameters of the beamformer. Therefore, the
beamformer has the ability to adapt to the background noise in dif-
ferent environments. The beamformer is updated by a designated
reference speech signal from the data base and the input back-
ground noise with normalize least-mean-square (NLMS) algo-
rithm, and the reference speech is chosen by the last estimation
of sound source direction, which is provided by the sound source
tracking system.

If the VAD block determines that there is speech, the sound
source tracking system will be activated to estimate the direction
of speaker. The estimated results provide not only for the beam-
former to update its parameters, but also for the camera control
at the ARM side sent by DSP/BIOS Link. After completing the whole
program flow, the DSP subsystem will wait until the next buffer is
filled.

4.3. ARM subsystem programming

The software flowchart for the ARM subsystem is showed in
Fig. 8 which is divided into image and audio parts. For the audio
part, the enhanced speech data received from DSP is output to
Fig. 7. Software flowchar
audio device. Besides, the sound source direction information is
used to control a PTZ camera through RS232 to turn the camera to-
ward the speaker. To execute these two functions concurrently,
two threads are built to handle the procedures.

Due to the computing burden of audio algorithms in the DSP
subsystem, the human face tracking algorithm is implemented
on the ARM subsystem. When the face is entering the frame at
the first time, the human face features are extracted to build the
target model. The target model won’t be updated unless the face
is out of the camera range. The mean-shift algorithm finds the dis-
placement direction of human face, and then sends the control sig-
nal to PTZ camera to keep the face in the center of the tracking
frame. The tracking results are displayed on the LCD monitor. For
concurrency, a thread is created to control the image input and
output, and two threads for human face tracking and camera con-
trol, respectively.

The execution time of the algorithms is showed in Table 1. Note
that human face tracking is executed in the ARM side, and other
audio algorithms are measured in the DSP side. The DSP side,
t of DSP subsystem.



Table 1
Execution time of the algorithms.

Algorithm Execution time (ms)

Voice activity detection 0.041
Sound source tracking 0.247
Speech enhancement (beamformer) 0.275
Speech enhancement (adaptive algorithm) 3.293
Human face tracking 46.768

Fig. 9. System architecture.

Table 2
Audio data transmission format.

Sampling frequency 16 kHz
Data size 16-bits
Type of transform Short-time Fourier transform
STFT frame length 256
Frame period 16 ms
Overlap length 128
Windowing Hamming window
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Fig. 11. VAD testing results.
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C64xx DSP, performs at 600 MHz clock, and it can execute 8
instructions in a cycle time. The ARM side performs at 300 MHz
clock otherwise.

5. Experimental results

The system was verified through experiments over a long period
of time in a conference room with the size of 10 m � 6 m � 3.6 m.
The experiments of VAD tests, speech enhancement performance
Fig. 10. The picture of th
evaluations, and sound source tracking tests were carried out using
various speechsegments of different time periods. The human face
tracking system was also evaluated by different objects.

The overall system architecture is illustrated in Fig. 9 with the
picture of the system in Fig. 10. A circular array with eight digital
microphones and 7 cm radius was constructed to acquire the
sound data at 16 kHz sampling rate. Table 2 shows the correspond-
ing data format for audio transmission. A demo video is available
on the website for your reference [27].
e embedded system.



Fig. 12. A snapshot of VAD results.
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Fig. 14. Speech enhancement results for different SNR.
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5.1. Voice activity detection test

The VAD algorithm was tested in a noisy environment, where
two loudspeakers placed 40 cm apart playing music with a male
singer as background noise. And the testing person uttered at a
40 cm distance from the microphone array with an angle of 90�
to the line connecting the loudspeakers. Each testing data length
was 2 s, and each testing data were tested 50 times at different
SNR. The parameters of VAD algorithm are set as c0 = 160, c1 = 5,
Fig. 15. The waveform of speech
E0 = 100, E1 = 220. They are empirical values for the algorithm
adaption. The enhanced sound data from speech enhancement sys-
tem was sent directly to the VAD system for detecting there is
speech or not.

Fig. 11 shows the VAD results under different input SNR. As it
can be seen, the proposed VAD algorithm still has about 80% accu-
racy under low input SNR. This is because the VAD system is ar-
ranged after the speech enhancement system. With this
enhancement in real-time.
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Fig. 16. Experiment environment for sound source tracking.

Table 3
Results of sound source direction estimations.

Actual direction (�) Average (�) Variance (�)

�135 �136.16 2.85
�90 �88.24 5.46
�45 �43.72 2.44

0 0.32 0.78
45 43.62 2.39
90 91.92 4.15

135 137.7 3.33
180 179.34 0.86
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arrangement, the VAD system becomes more reliable and provides
accurate information for speech enhancement weight update and
sound source tracking system.
Fig. 17. Human face tracki
Fig. 12 shows a snapshot of the first microphone record and the
real-time VAD results. The VAD output ‘‘1”stands for speech pres-
ence, and ‘‘0” stands for speech absence.

5.2. Speech enhancement experiment

To evaluate the performance of speech enhancement system,
we first found the best tap length of the spatial filter, and then
we compared the improvement SNR under different input SNR
cases. Assume that the M1-th to the N1-th input data are only back-
ground noise, and the M2-th to the N2-th input data are mixed with
noise and speech. Then the SNR is computed by

10 log

PN2
i¼M2

x2ðiÞ
N2 �M2 þ 1

 !
� 10 log

PN1
i¼M1

x2ðiÞ
N1 �M1 þ 1

 !
ð19Þ

To find the optimal order of the filter, different tap lengths with
5 dB input SNR were tested. Fig. 13 shows that the filter with 10
tap lengths has the best SNR improvement (about 11.286 dB).

The SNR improvement of the speech signal is shown in Fig. 14. It
is clear that except for the case when input SNR is 22.946 dB,
which approaches the SNR limit of clean speech, the SNR improve-
ment is about 11 dB in average.

A signal waveform of the speech enhancement result is shown
in Fig. 15. The background noise is music with a male singer, and
other experiment conditions are the same as VAD testing. The peri-
ods with symbol ‘on’ means the enhancement function is executed
and vice versa.

5.3. Sound source tracking test

The experiment environment for sound source tracking is de-
scribed in Fig. 16. The pre-record speech is played with different
input angles compared to the reference microphone (MIC 1). The
loud speaker was placed apart from the microphone array at a dis-
tance of 100 cm. The algorithm is tested 50 times at each direction,
and the estimation results are described in Table 3.

The experiment results prove that the error of the averaged an-
gle is less than 3� and the sound source tracking system is suitable
ng results with a doll.
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for integrating with other applications (e.g. face tracking system).
Due to the unmatched characteristics of the microphones, the var-
iance in Table 3 seems to be symmetric. The estimation error may
also be caused by quantization errors in fixed-point computation,
imperfect point sound source characteristic of the speaker, and dif-
ferent sound speeds affected by environment temperatures, etc.
But the estimation error is small enough for identifying the speak-
er’s angle relative to the system.

5.4. Human face tracking test

The PTZ camera was controlled by the sound source direction
estimations stated in Section 2.3 and human face tracking results
stated in Section 2.4. The camera can turn ±170� horizontally and
turn ±120� vertically. In our case, we only control the horizontal
directions.

The images were processed by the spatial-color mean-shift
algorithm [21] to achieve the human face tracking. Since the algo-
rithm’s main idea is to match the similarity of the color distribu-
tions between the target region and the model, we can verify
this function by several objects, not necessarily utilizing human
faces.

Fig 17 shows the video sequence of the tracking result. A frame
around the doll was drawn in real-time to show the tracking
accuracy.
6. Conclusion

In this paper, we implemented a high integrated audio–visual
tracking system based on VAD, speaker direction estimation,
speech enhancement, mean-shift, and Texas Instruments
DM6446 EVM. An FPGA based eight-channel digital microphone
array data acquisition system is also implemented. The estimation
results of the sound source direction tracking system is reliable
with mean error than 3�, and the results prove that it’s helpful
when the image is out of the frame. The proposed voice activity
detection system can detect the voice activity accurately, and is
combined with speech enhancement system and sound source
tracking system tightly, which helps to reduce the total computing
burden. Besides, the speech enhancement improves the signal-to
noise ratio (SNR) about 11 dB in average.

As described before, for applications such as robotics and vehi-
cles, embedded implementation is necessary to meet the cost and
size constraints. However, the implementation of a real-time
audio–visual interface can be quite different depending on the fea-
tures and algorithms. Usually, it involves several sub-systems and
not much work was reported to integrate the whole audio–visual
tracking functions on an embedded system. Compare with prior
works, we successfully integrated functionalities for real-time
audio–visual tracking on an embedded system with limited com-
putation power and achieved a complete human–machine inter-
face on robots or other applications.
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