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The energy spectra of a symmetric quantum well and single barrier within an
in-plane magnetic field are exactly derived and the numerical results are calculated
by iteration. A critical distance between the edge of electron spiral radius and
the barrier boundary is introduced to describe the relation of well or barrier width
and the critical magnetic field beyond which the Landau levels will dominate. We
can predict by a simple equation when bulk Landau levels will dominate in the
middle of the well or barrier region. A prediction of the critical magnetic field in
the characteristics of electron state energy versus magnetic field strength for both
quantum well and single barrier shows a good agreement.

In recent years, electro-magneto properties of a quasi
two dimensional electron gas in quantum well semicon-
ductor heterostructures have attracted a wide attention
due to the possibility in high performance electronics
of tunneling devices. The basic configuration of these
quantum devices may be a single batrier'-%, quantum
well*~4, double barrier®~", or multiple quantum well®
structures. In these studies, the direction of the ex-
ternal applied magnetic field to the quantum devices
were considered to be perpendicular, parallet or tilt to
the growth direction. When a constant homogeneous
magnetic field is applied perpendicular to the growth
direction, the Landau levels of the confined electrons
are formed and the energy spectrum becomes discrete.
The fundamental study of the energy spectrum of an
electron in a quantum well or single barrier structure
is of considerable interest and will be helpful to realize
the transport phenomena of the quanium devices. The
electronic energy spectrum in a quantum well or sin-
gle barsier of non- interacting electrons in 3 magnetic
field tilted with respect to the growth direction have
been studied for the case of a parabolic quantum well
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potential®. We concentrate in this paper on the effects
of electronic energy levels in a quantum well and a single
barrier under an in-plane magnetic field. Conceptually,
one can expect that the energy spectrum of an electron
confined in a narrow well depends critically on the well
width. However as the well width is much larger than
the magnetic length {5 = /4 /v, which can be achieved
by applying a sufficient strong magnetic field or with a
physically wide quantum well, the electron orbits are
governed by the Lorentz force semi-classically and will
be constrained to a spiral motion along the magnetic
lines, In this limit case, the elecirons around the center
of the well or barrier region are not aflected by the po-
tential barrier essentially, so the energy spectrum around
this region will exhibit the main feature of the bulk Lan-
dau levels. On contrary, in the limit case of small mag-
netic field or physically narrow well or barrier width,
because the orbital motion of electrons is reflected by
both potential step barriers of quanturm well or single
barrier frequently, the energy levels will be dominated
by the spatial quantization. When the well or barrier
width is comparable to the magnetic length, the energy
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levels will be quantized by the combined effects of the
spatial confirement, the barrier height of quantum well
or single barrier and Landau levels determined by the
magnetic field B. In this situation, the classical skip-
ping orhits are formed due to the spiral motion of the
electrons reflected by only a single barrier or both bar-
riers. Hence, it should be interesting to determine the
critical condition when bulk Landau levels will dominate
in the middle of the well or barrier region.

We consider a symmetric quantum well or single bar-
rier structure with growth direction in Z. The external

magnetic field is applied along Z- direction, l.e. F =
(0,0, Bg), which can be described by the vector poten-

tial A = (0,2 Bo,0). The Hamiltonian of an electron in
such a system can be written as

o Bre) (B +eBor)
24 2p

Vi), (1)

where g 1s the effective mass of the electron and V(z) is
the well or barrier potential energy of the electron. The
corresponding Schrodinger equation is given as H¥ (?)
=FE,¥ (?’) . Since the coordinates § and % are cyclicin
H, thus the wave functions for the in-plane motion can
be assumed as

'] (T") = R(z) e'bvthe) (2)

Substituting ¥ (_F') into the Schrédinger equation, we
get the differential equation for R(z}:

d£R(x) L€ V() — o (z + 30)* /2
dx? B /2u

R(z)=0. (3)

Introducing the dimensionless variable § = /22 /I with
magnetic length {g = +/A/pw, the Schrodinger equation

can be written as

4R e—V

T (- Her o) RO =0 @
In eq. (3) and (4), we define e = E, — p?/2s , w =
eBo/p, o = hk,/eBy and dimensionless orbit center
o = V2zo/ls = V2Ig k,. Nowlet m+1/2=(e— V) /hw
and z = £ ~ £ , then eq. (4) can be expressed as the
well known Weber’s eq.

PDm(z) | ((m+1)_z£)nm(z)=0. (5)

dz? 2
The solution of the Weber's eq. is
2
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where T' () is the Gamma, function and F (a[b| ¢} is the
confluent hypergeometric function!®. From the asymp-
totic properties of the Weber function!!, the general so-
lution of eq. (4) can be expressed as following

R(z)=ADn(z)+ BD,, (—2) , (7)

where the coefficients A and B are the normalization
constants.

To investigate the individual effect of magnetic field
or barrier reflection, we first consider a single step bar-
rier under an in-plane magnetic field. The step barrier
potential ¥ (z) and well-behaved wave function R(z)
can be writien respectively as

_ % ,$SZ1
V(I)_{O ,T>T

_ BID’M (—Z) y 2 S 21
R(z) - { AQD,.,,,‘ (Z) yZ2 2>

Applying the continuity conditions of the wave function
and its first derivative at boundary position z; = §; — &
and my = my — Vo/hw = €/hiw — 1/2 — Vo/hw we get a
nonlinear equation

Dony (=21} D)y, (21) + Doy (21) D (—21) =0, (8)

which depends only on two independent variables ¢/hw
and dimensionless orbit center &. The characteristics of
¢/hw versus £o as shown in Fig. 1 (a),{b)and (¢
) are evaluated by using eq. (8) with iteration method.
In Fig. 1 ( 2 ), one can see that in region A and B
the orbit center is far away from the step barrier and
the characteristics is totally dominated by bulk Landau
levels except a shift of a constant barrier height Vo in
region B. This means in region A and B the cycloid
motion of electrons is not affected by the barrier and
the electrons do not see the potential barrier essentially.
In region C, the cycloid motion of an electron reflected
by the step barrier forms a skipping orbit and the energy
levels are quantized to edge states and strongly depend
on the potential barrier height V5. The circles denote the
critical orbit centers, beyond which the nth bulk Landau
level { (n + 1/2) hw ) dominates totally, To describe the
behavior of the parabolic increase of the critical orbit
center, we introduce a critical distance £, between the
barrier boundary and the edge of electron cycloid motien
as shown in Fig. 1 ( d }, beyond which electrons are not
affected by the potential barrier and dominated by bulk
Landau levels entirely. The relation between electron
energy prhw?/2 and bulk Landau levels (n 4+ 1/2) hw
then can be written as
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1. Fig. 1. Energy spectra in a single step potential

barrier with in- plane magnetic field to be 10 Tesla
and barrier height to be (a ) Vo = 4.813kw, (b}
Vo = 9.625%w and ( ¢ } Vo = 19.25kw. The dimen-
sionless orbit center is defined as £ = ﬂzO/lB
= \2igk,. Energy levels in region A and B are
dominated by bulk Landau levels with constant
potential elevation. Semi-classically, in region C
the cycloid motion of an electron is reflected by
the step barrier and forms a skipping orbit. ( d
) Schematic of the relative positions among crit-
ical distance &, orbit center £ and radius of the
electron cycloid motion £g away from a single step
barrier( dashed line ). The dashed lines in (a ), (
b ) and { ¢ ) represent the gnide lines of predicted
critical points and the circles are actual critical
points.

1 1 1
—z-pmflwzzszi hw=c=(n+§) b (%)

where zgp is the radius of electron spiral motion and
£r = 2zr/lg . Substituting £x = & — £, into eq. (9},
we have a relation between € and £

e= (60— &) hw (10)

to determtine when bulk Landau levels will dominate to-

tally. The critical distance £, is calculated to be 1.1 by
using least squares fitting the curve formed by the cir-
clesin Fig. 1 (a ). (b ) and ( ¢ ) with eq.(10). One can
expect that if the physical distance between the edge
of electron cycloid motion and the step barrier is larger
than 0.78 lg the electron is not affected by the potential
barrier.

Fig. 1 {a), (b)and ( c) show the energy specira
of a step barrier with different potential heights. The
thick dashed lines are the guide lines of the critical orbit
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centers predicied by eq. (10). The circles denote the
actual critical orbit centers, one can see that the pre-
dictions are accurately close to the actual ones. One
also see that the characteristics dominated by bulk Lan-
dau levels in region A are not affected by the magnitude
of the step barrier potential height. In region B, the
bulk Landau levels are shifted with a constant potential
height ¥, and the critical orbit centers in region B also
follow the guide line predicted by eq. (10). In region C,
one can see the number of edge states increases due to
the increasing of the step potential height.

Now let us consider a symmetric quantum well with
an in-plane homogeneons magnetic field in z- direction.
The step barrier potential V (z) and the well-behaved
wave function A (z) can be written respectively as

% sy & S T
Viz)=¢ 0 , 1<z <12y
W,z2xn ,
B,Dn, (-2) ,2< 7
R(z)=4 AiD,, (2)+ ByDpn, (—2) ,nn<z<z
A;;.Dm:l (Z) , 2 >z

The well width z,, is defined by z; — z,. Applying the
continuity conditions of the wave functions and its first
derivative in both boundaries z and zy, we have

Dﬂ:l (~2) _D:nz () _l?mi (—=21) 0
_Dm1 (—Zl) —sz (Z1) sz (—Zl) 0
0 Dm: (22) ‘sz (_22) _Dma (22}
0 Dm2 (22) 7.1)”‘,‘l (—22) —Dms (22)
B,
A |
X B 1= 0, (11)
Aa

where z; = & — & and & = V2z:/lg i = 1, 2. For
nontrivial solutions of coefficients, we have a nonlinear
equation defined by

Dm;l (_zl) '"D:M (‘zl) _I‘?m? (_21} 0
_Drru (-Zl) ‘Dmg (zl) sz (_zl) 0
0 Dplz) Dml-zm) ~Dp(w)
0 D, (z2) =D, (—22) —Dp, (=)
—0.  (12)

Since the quantum numbers m; and m; can be expressed
in terms of ma{= efhw — 1/2), a8 m; = my + Vp/hw, 1
= 1 and 3, therefore, eq. (12) depends only on two in-
dependent variables e/fiw and &. The characteristics of
e/tw and £, can then be evaluated by iteration method
as shown in Fig. 2 (a ) and ( b ). The major difference
between a wide well ( Fig. 2 ( 2 ) ) and a narrow one
( Fig. 2{ b)) is the energy levels in the well region.
In wide well case the energy levels in the middle of the
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well region are dominated by bulk Landau levels and the
lower lying states exist a wider range of £; dominated by
bulk Landau levels due to low energy and small cycloid
radius. As the well width reduces, the edge of the spiral
motion is reflected by both potential barriers and elec-
tron in this region forms a skipping orbit. One can see
that the elevation of the ground state in the well region
due‘to the combined effect of spatial confinement and
edge states in narrow well case as shownin Fig. 2 (b ).
To investigate when the bulk Landau level dominates in
the middle of the well region ( & = 0 ), we treat the well
potential distribution as the superposition of two single
step subsystems. Fig. 2 ( ¢ ) shows the relative position
of the maximum electron cycloid radius £g, critical dis-
tance £, and well width £,,, when the bulk Landau level
dominates in the middle of the well region. The relation
between the electron energy levels and bulk Landau lev-
els can be expressed the same as eq.(9). Substituting
{n = EW/z =&, fo="0and {u = \/ﬁxw/[B into ecl'(g)y
we have a relation between critical magnetic field By,
for a symmetric well and physical well width z,,

Buw = 3} (2\/(n 1 1/2) +Ec)2:c;2 . (13)

where n is the quantum number of bulk Landau levels.
For a given symmetric quantum well width, one can use
eq. (13) to predict the critical magnetic field, beyond
which the nth bulk Landau level will exist in the mid-
dle of the well region. Fig. 2 ( d ) shows the electronic
energy levels versus the magnetic field strength for the
first four levels under the condition of £ = 0(k, = 0)

with well width to be 1200 4 and the same potential
height as Fig. 2 ( a ) and { b ). As the strength of
magnetic field decreases, the state energy also decreases
until approaches to limit values for zero magnetic field
( closed circles in Fig. 2 (d ) ). The closed triangles
shown in Fig. 2 ( d ) represent the state energies under
critical magnetic fields, beyond which the bulk Landau
levels will dominate. If magnetic field exceeds the crit-
ical field B., in each band, the bulk Landau levels will
dominate for a wider range of £, otherwise the energy
levels in the well region are affected by the combined
effect of the spatial and magneto confinements. The
dashed lines in Fig. 2 { d ) represent the corresponding
bulk Landau levels. The circles shown in Fig. 2 (d )
represent the predicted critical points by eq.(13). One
can see that the energy spectrum in the middle of the
well region is dominated by bulk Landau levels, as the
magnetic field is larger than the critical magnetic field
and the prediction ( circles in Fig. 2 (d ) ) shows a
good agreement,

Finally, we consider a single quantum barrier with
growth direction in £ under an in-plane homogeneous
magnetic field in Z- direction with potential distribution
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2. Fig. 2. Energy spectra in a symmetric quantum
well with in- plane magnetic field to be 10 Tesla
and well width £, to be ( a ) 1200 A (b)100 Are
spectively and barrier height V5 = 166.3 meV. (¢ )
Schematic of the relative positions among critical
distance £., well width £, and maximum radius
of the electron cycloid motion £ inside a sym-
metric quantum well( dashed lines ). The dimen-
sionless orbit center is defined as & = +/2z/1n
= 2z k,. ( d) Energy levels with the variation
of in-plane magnetic field with well width 1200 ;1
and the same potential height as ( a ). The closed
triangles represent the critical magnetic field for
the first four bands, beyond which bulk Landau
levels dominate. The closed circles represent the
confined states with zero external magnetic field.

the barrier region. In wide barrier case shown in Fig.
3 { a ), the energy levels in the middle of the barrier
region are dominated by bulk Landau levels with a con-

The barrier width z; is defined by z, — z;. Follow the
saine derivation procedure and suitable boundary condi-
tions, the characteristics of ¢/hw and £ can be evaluated
by iteration method as shown in Fig. 3 (a )and {( b
) with different barrier widths. The major difference
between a wide quantum barrier { Fig. 3 (a ) ) and
a narrow one ( Fig. 3 ( b)) is the energy levels in

stant shift of step potential height 1} and the lower lying
states exist a wider range of £ dominated by bulk Lan-
dau level due to low energy and small cycloid radius. In
the narrow barrier case shown in Fig. 3 ( b ), one can
see that the energy lowering of the ground state in the
middle of barrier due to the combined effect of spatial
confinement and edge states in a narrow barrier width.
To investigate when the bulk Landau level dominates in
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3. Fig. 3. Energy spectra in a single quantum bar-
rier with in-plane magnetic field to be 10 Tesla
and barrier width ¢ to be (a ) 1000 A { b )

500 A respectively and barrier height Vo = 166.3
meV. The dimensionless orbit center is defined as
Lo = V2zo/lg = V2p ky. { ¢ ) Energy levels with
the variation of in-plane magnetic field with the
same potential configuration as { a ). The circles
represent the predicted critical magnetic field, be-
yond which bulk Landau levels dominate. One can
see the energy lowering for ground states at small
magunetic field. The inset shows the magnified char-
acteristica around the crossing points.

the middle of the barrier region ( £, = @ ), we derive the

yr.3 z
, - _ = (2, C) -1
relation between critical magnetic field B for quantum Ba € ( (n+1/2)+ Wofhw +&) = (15)

barrier with physical barrier width z;. Considering the Eq. (15) is a nonlinear equation for magpetic field Ba

potential barrier height ¥; with similar derivation pro-
cedure as the quantum well case, the relation among the
electron energy uzkhw? /2, potential barrier height ¥, and
bulk Landau level (n + 1/2) hw can then be expressed as

1
lpxi}w2=-1-;’}qhw=(n+—)hw+%. (14)

2 4 2
Ther the relation between critical magnetic field 5, for

single quantym barrier and physical barrier width z, can
be expressed as

through the term of Aw in the right hand side and criti-
cal magnetic field By should be calculated by iteration
method. One can also find that eq. (15) depends on
the barrier height V5, which is a significant difference
compared with the quantum well case. Fig. 3. { ¢ )
shows the electronic energy levels versus the magnetic
field strength under the condition of § = 0 (k, = 0) with
the same potential configuration as Fig. 3 (a ). As the
strength of magnetic field decreases, one can see that
the state energy also decreases and the energy lowering
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4. Fig. 4. Characteristics of critical magnetic field
Bewp versus well or barrier width for first four
energy states. Due to the strong dependency of
the barrier height, the calculated critical magnetic
field for barrier case is larger than that of the well
case,

occurs. Using the same critical space £ = 1.1 and bar-
tier width z,,, one can predict the critical magnetic field
B, for each band. The circles in Fig. 3 { ¢ } shows the
critical points predicted by eq. {15), beyond which one
can see that the energy spectrum is dominated by the
bulk Landau levels. Fig. 4 shows the characteristics of
critical magnetic field versus well or barrier width with
the first four states by eq. (13) and (15). One can see
that for a fixed width the critical magnetic field of sin-
gle batrier is larger than that of the quantum well. This
is due to the dependence of the barrier height and the
nonlinear property of the magnetic field in eq.(15).

In summary, we discussed in this paper the critical
magnetic field for both symmetric well and single quan-
tum barrier with different well ( barrier ) width, beyond
which the bulk Landau level dominates in the center of
the quantum well or barrier. The interactions between
the electron and the barrier in a single step barrjer are
classified to explain the classical behavior in the energy
spectrum of a symmetric well and single bartier. It is
shown that a critical distance £, between the edge of
electron spiral radius and the barrier boundary can be
used to describe the relation of the critical magnetic field
and well ( barrier ) width, with which one can use to ac-
curately predict when bulk Landau levels will dominate
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in the middle of the well or barrier region. It is also
found that in a quantum barrier the critical magnetic
field strongly depends on the barrier height Vj, while
in well case the critical magnetic is independent of the
barrier height. The behavior of the bulk Landau level
within a wide well or barrier and the elevation of the
ground state in a narrow well or the energy lowering of
the ground state in a narrow barrier are explained.
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