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Abstract—This study presents an evolutionary neural fuzzy
network, designed using the functional-link-based neural fuzzy
network (FLNFN) and a new evolutionary learning algorithm.
This new evolutionary learning algorithm is based on a hybrid
of cooperative particle swarm optimization and cultural
algorithm. It is thus called cultural cooperative particle swarm
optimization (CCPSO). The proposed CCPSO method, which
uses cooperative behavior among multiple swarms, can increase
the global search capacity using the belief space. Cooperative
behavior involves a collection of multiple swarms that interact
by exchanging information to solve a problem. The belief space
is the information repository in which the individuals can store
their experiences such that other individuals can learn from
them indirectly. The proposed FLNFN model uses functional
link neural networks as the consequent part of the fuzzy rules.
Finally, the proposed functional-link-based neural fuzzy
network with cultural cooperative particle swarm optimization
(FLNFN-CCPSO) is adopted in several predictive applications.
Experimental results have demonstrated that the proposed
CCPSO method performs well in predicting the time series
problems.

I. INTRODUCTION

EURAL fuzzy networks [1]-[7] have become a popular

research topic. In the typical TSK-type neural fuzzy

network [2]-[7], which is a linear polynomial of input
variables, the model output is approximated locally by the
rule hyperplanes. However, the traditional TSK-type neural
fuzzy network does not take full advantage of the mapping
capabilities that may be offered by the consequent part.
Introducing a nonlinear function, especially a neural
structure, to the consequent part of the fuzzy rules has yielded
the NARA [8] and the CANFIS [9] models. These models
[8]-[9] use multilayer neural networks in the consequent part
of the fuzzy rules. Although the interpretability of the model
is reduced, the representational capability of the model is
significantly improved. However, the multilayer neural
network has such disadvantages as slower convergence and
greater computational complexity. Therefore, we proposed
the functional link neural fuzzy network (FLNFN), which
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uses the functional link neural network (FLNN) [10]-[11] in
the consequent part of the fuzzy rules [12].

Training of the parameters is the main problem in designing
a neural fuzzy system. Therefore, technologies that can be
used to train the system parameters and find the global
solution while optimizing the overall structure, are required.
Hence, the proposed cultural cooperative particle swarm
optimization (CCPSO) learning method, which combines the
cooperative particle swarm optimization (CPSO) [13] and
cultural algorithm (CA) [14], to increase global search
capacity, is proposed herein to avoid trapping in a suboptimal
solution and to ensure that a nearby global optimal solution
can be found.

This study presents an efficient cultural cooperative particle
swarm optimization (CCPSO) for the functional-link-based
neural fuzzy network (FLNFN) in several predictive
applications. The proposed FLNFN model is based on our
previous research [12]. The FLNFN model, which combines
a neural fuzzy network with a functional link neural network,
is designed to improve the accuracy of functional
approximation. The consequent part of the fuzzy rules that
corresponds to an FLNN comprises the functional expansion
of input variables. The proposed CCPSO is a hybrid method
which combines cooperative particle swarm optimization and
cultural algorithms. The CCPSO method with cooperative
behavior among multiple swarms increases the global search
capacity using the belief space. Cooperative behavior among
multiple swarms involves interaction by exchanging
information with each other to solve a problem. The belief
space is the information repository in which the individuals
can store their experiences for other individuals to learn from
them indirectly.

II. STRUCTURE OF FUNCTIONAL-LINK-BASED NEURAL Fuzzy
NETWORKS

This subsection describes the FLNFN model, which uses a
nonlinear combination of input variables (FLNN). Each fuzzy
rule corresponds to a sub-FLNN, comprising a functional
link. Figure 1 presents the structure of the proposed FLNFN
model. The FLNFN model realizes a fuzzy if-then rule in the
following form.

Rule;: IFx, is 4, and x,is 4, ...and x, is 4, ...and x, is 4
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where x; and p, are the input and local output variables,

respectively; 4 is the linguistic term of the precondition part
with Gaussian membership function; N is the number of input
variables; wy; is the link weight of the local output; ¢, is the

basis trigonometric function of input variables; M is the
number of basis function, and Rule; is the jth fuzzy rule.

Layer §
Layer 4

Layer 3

- |Layer2

Layer 1

Fig. 1. Structure of proposed FLNFN model.

The operation functions of the nodes in each layer of the
FLNFN model are now described. In the following
description, u(l) denotes the output of a node in the /th layer.

No computation is performed in layer 1. Each node in this
layer only transmits input values to the next layer directly:

u® =x,. 2)

Each fuzzy set A; is described here by a Gaussian
membership function. Therefore, the calculated membership
value in layer 2 is

u —m_ 1
=exp[[ — J 3)

o,

where m;; and o, are the mean and variance of the Gaussian

membership function, respectively, of the jth term of the ith
input variable x;.

Nodes in layer 3 receive one-dimensional membership
degrees of the associated rule from the nodes of a set in layer
2. Here, the product operator described above is adopted to
perform the precondition part of the fuzzy rules. As a result,
the output function of each inference node is

3) _ (2)
u/ _Huf/ (4)
where the Hu;“ of a rule node represents the firing

strength of its corresponding rule.

2008 IEEE International Conference on Fuzzy Systems (FUZZ 2008)

Nodes in layer 4 are called consequent nodes. The input to a
node in layer 4 is the output from layer 3, and the other inputs
are calculated from a functional link neural network, as
shown in Fig. 1. For such a node,

M
! =u Do, ®
k=1

where wy; is the corresponding link weight of functional link
neural network and ¢, is the functional expansion of input
variables. The functional expansion uses a trigonometric
polynomial basis function, given by
[x] sin(7z x,) cos(7 x,) x, sin(z x,) cos(r x, )] for
two-dimensional input variables. Therefore, M is the number
of basis functions, M =3x N , where N is the number of
input variables. Moreover, the output nodes of functional link
neural network depend on the number of fuzzy rules of the
FLNFN model.

The output node in layer 5 integrates all of the actions
recommended by layers 3 and 4 and acts as a defuzzifier with,
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where R is the number of fuzzy rules, and y is the output of the
FLNFN model.

(©6)

III. LEARNING ALGORITHMS FOR THE FLNFN MODEL

This section describes the proposed cultural cooperative
particle swarm optimization (CCPSO) method. Before the
CCPSO method is designed, cooperative particle swarm
optimization (CPSO) [13] that differs from the traditional
PSO is introduced.

The traditional PSO uses one swarm of particles defined by
the P-dimension vectors to evolve. The CPSO method can
change traditional PSO into P swarms of one-dimension
vectors, such that each swarm represents a dimension of the
original problem. Figures 2 (a)-(b) show the framework of the
traditional PSO and CPSO method. The key point is that,
instead of using one swarm (of / particles) to find the optimal
P-dimension vector, the vector is split into its components so
that P swarms (of / particles each) optimize a one-dimension
vector. Notably, the function that is being optimized still
requires a P-dimension vector to be evaluated. However, if
each swarm represents only a single dimension of the search
space, it cannot directly compute the fitness of the individuals
of a single population considered in isolation. A context
vector is required to provide a suitable context in which the
individuals of a population can be evaluated. To calculate the
fitness for all particles in swarm, the other P-1 components in
the context vector keep constant values, while the pth
component of the context vector is replaced in turn by each
particle from the pth swarm. Additionally, each swarm aims
to optimize a single component of the solution vector
essentially solving a one-dimension optimization problem.
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Unfortunately, the CPSO still employs just the local best
position and the global best position of the traditional PSO to
evolution process. Therefore, the CPSO may fall into a
suboptimal solution. The CCPSO learning method, which
combines the cooperative particle swarm optimization and
the cultural algorithm to increase the global search capacity,
is proposed to avoid trapping in a suboptimal solution and to
ensure the ability to search for a near-global optimal solution.

Swarm
X | Xon | Xag | Xag [ oo v e e as Xp.1y | Xp, | Particle 1
Xip | Xop | Xag | Xagg | ommmemmes Xp12 | Xpp | Particle 2
Xig | Xog | Xag | Xag | =mrmmmme Xp.13 | Xps | Particle 3
Xig | Xow | Xoa | Xga | -0 oo v - Xp14 | Xpa | Particle 4
Xopn | Xoger | Xagn | Xagr | oo o v e e s Xp.rr1 | Xp | Particle I-1
X | Xop | Xou | Xag [ oo Xp1y | Xpy | Particle I
(a)
Swarm Swarm; Swarmp.; Swarmp
X X1 Xp.1,1 Xp, | Particle 1
Xi2 Xa2 Xp-12 Xp2 | Particle 2
X3 X3 Xp1a Xp3 | Particle 3
Xia Xas Xora Xps | Particle 4
X1 Xo 11 Xp111 Xp11 | Particle I-1
X X Xp.11 Xpy | Particle I
(b)

Fig. 2. Framework of the (a) PSO and (b) CPSO.

The CCPSO method is characteristic of the cooperative
particle swarm optimization and cultural algorithm. Figure 3
shows the framework of the proposed CCPSO learning
method, which is based on a CPSO all of whose parameters
are simultaneously tuned using the belief space of the CA.
The CCPSO method can strengthen the global search
capability. If 50-dimension vectors are used in the original
PSO, then the vectors in CCPSO can be changed into 50
swarms of one-dimension vectors. In the original PSO, the
particle can exhibit 50 variations in each generation, whereas
the CCPSO offers 50x50=2500 different combinations in
each generation. Additionally, each position of the CCPSO
can be adjusted not only using the belief space which stores
the paragons of each swarm, but also by searching around the
local best solution and the global best solution. In the
aforementioned scheme, the proposed CCPSO method can
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avoid falling into a suboptimal solution and ensure that the
approximate global optimal solution can be found.

Adjust Adjust Adjust
—
Belief space Belief space Belief space
B, B, By
Acceptance Influence  Acceptance Influence Acceptance Influence
Function Function Function Function Function Function
Swarm; Swarm Swarmp
X Xa Xy, | Particle 1 —
Xi2 X22 Xpy | Particle 2
Xis Xoa Xps | Particle 3
Xia Xos Xps | Particle 4
Performance
Function
Xin Xart Xpy.1 | Particle I-1
X Xai Xp; | Particle I «—

Fig. 3. Framework of proposed CCPSO learning method.

The detailed flowchart of the proposed CCPSO method is
presented in Fig. 4. The foremost step in CCPSO is the coding
of the neural fuzzy network into a particle. Figure 5 shows an
example of the coding of parameters of neural fuzzy network
into a particle where i and j represent the ith input variable
and the jth rule, respectively. In this study, a Gaussian
membership function is adopted with variables that represent
the mean and deviation of the membership function. Figure 5
represents the neural fuzzy network given by Eq. (1), where
m, and o, are the mean and deviation of a Gaussian

membership function, respectively, and w,, represents the

corresponding link weight of the consequent part that is
connected to the jth rule node. In this study, a real number
represents the position of each particle.
The learning process is described step-by-step below.
Step 1 : Create initial swarms
Before the CCPSO method is applied, every position
x,,(¢) must be created randomly in the range [0, 1], where

p=1, 2, ..., P represents the pth swarm, =1, 2, ..., [
represents the ith particle, and ¢ denotes the 7th generation.
Step 2 : Create initial belief space
The belief space is the information repository in which the
particles can store their experiences for other particles to
learn from them indirectly. Create P belief space, B, (p = 1,
2, ..., P). Each initial B, is defined as an empty set.
Step 3 : Update every position
Step 3.1 @ Evaluate the performance function of each
Particle;
The fitness function is used to evaluate the performance
function of each particle. The fitness function is defined

as follows.
13 -
F=| =3 . -») @
D=
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where y, represents the dth model output; ; , represents

the dth desired output , and D represents the number of
input data.
WStep 3.2 : Update local best position L,,; and global best
position G,

The local best position L,; is the best previous position
that yielded the best fitness value of the pth swarm of the
ith particle, and the global best position G, is generated
by the whole local best position. In step 3.2, the first step
updates the local best position. Compare the fitness value
of each current particle with that of its local best position.
If the fitness value of the current particle exceeds those of
its local best position, then the local best position is
replaced with the position of the current particle. The
second step updates the global best position. Compare
the fitness value of all particles in their local best
positions with that of the particle in the global best
position. If fitness value of the particle in the local best
position is better than those of the particles in the global
best position, then the global best position is replaced
with the current local best position.

L (t+1)= x,, (), ifF(x, () <F(Z, ®)
- L, (1), if F(x, () 2F(L,, (). (8)
Gp(t+1):argnginF(Lw(tJrl)), 1<i<]
M Step 3.3 : Adjust each belief space B, using an

acceptance function

The first part of step 3.3 sorts these particles in each
Swarm,, in order of increasing fitness. Then, the paragon
of each Swarm, is put into belief space B, using an
acceptance function. This function yields the number of
particles that are used to adjust each belief space, and is
as follows. The number of accepted particles decreases as
the number of generations increases.

0,
%1+

©

where n% is a parameter that is set by user, and must
specify the top performing 20% [15]; / is the number of
particles, and ¢ represents the #th generation. The second
step adjusts B,. The interval of belief space Bl is defined
BI, =[l,,u,]= {x|lﬂ <x<u,xe SR}, where [, is the

lower bound on belief space B, and u, is the upper bound
on belief space B,. Then, the position of each particle in
B, is compared with the lower bound J,. If the position of
the particle is smaller than the lower bound /,, then the
lower bound /, is replaced with the current position.
Furthermore, the position of each particle in the B, is
compared with the upper bound u,,. If the position of the
particle is greater than the upper bound u,, then the upper
bound u, is replaced with the current position. These
rules are given below.

accepted

l otherwise

{xw if x,, < lﬂ
(10

u otherwise

{xw ifwaup

WStep 3.4 : Generate each new Swarm, using I, u,, L,;,
and G,

In step 3.4, the first step adjusts every position of each
Swarm,, using an influence function Eq. (11). This step
can change the direction of each particle in solution
space, not easily being trapped at a local optimum. Then,
the second step updates velocity and position of each
particle to generate the each new Swarm, using Egs. (12)
and (13).

i ,(z):{x""(t)+ Rand()-(u, 1) ‘g/‘ o<k
» x, ()| Rand()-(u,~1,) ifx,,>u,
vp‘,(t+1) =w-v, (H+c ~Rand()-[Lp‘,(l+1)—xp‘,(l)] (12)

+¢,-Rand()-[G, (1 +1)~ x, (1)]
() +v, (t+1) (13)

where ¢, and ¢, denote acceleration coefficients;

x, (t+)=x,,
Rand() is generated from a uniform distribution in the
range [0, 1], and w controls the magnitude of v, (7).

Start

Create initial
swarms

|

Create initial
belief space

|

Update every position

1. Evaluate the performance function

2. Update local best position L,
and global best position G,

3. Adjust each belief space B,

4. Generate each new Swarm,,

Fig. 4. Flowchart of proposed CCPSO learning method.
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Particle | Rule; | Rule,

o o ] To

Fig. 5. Coding FLNFN model into a particle in the proposed CCPSO.

IV. EXPERIMENTAL RESULTS

This section discusses two examples that were considered
to evaluate the FLNFN model with the CCPSO learning
method. The first example involves predicting a chaotic time
series [16], and the second example involves forecasting the
number of sunspots [17].

A. Example 1: Prediction of chaotic time series

The Mackey-Glass chaotic time series x(¢) was generated
using the following delay differential equation;

dx(t)  0.2x(t-7)
dt 1+x°(t-1)

Crowder [16] extracted 1000 input-output data pairs {x, yd}
using four past values of x(?):

[x(t —18),x(t —12), x(t — 6), x(¢); x(t + 6)] (15)
where =17 and x(0)=1.2. Four inputs to the FLNFN-CCPSO
method, corresponded to these values of x(?), and one output
was x(t+4t), where At is a time interval into the future. The
first 500 pairs (from x(1) to x(500)) were the training data set,
while the remaining 500 pairs (from x(501) to x(1000)) were
the testing data used to validate the proposed method.

The learning stage entered parameter learning through
CCPSO method. The coefficient w was set to 0.4. The
cognitive coefficient ¢; was set to 1.6, and the society
coefficient ¢, was set to 2. The swarm sizes were set to 50.
The learning proceeded for 1000 generations, and was
performed fifty times. In this example, three fuzzy rules are
applied. They are as follows.

Rulel:

IF x, is £2(0.452959,-5.36833) and x, is 1(~0.10799,0.768855)

and x, is ££(—0.850613,-3.60999) and x, is 1(1.09886,0.495632)

THEN J, =2.20613 + 0.580829x, +0.391061cos(7 x,) + 0.332886sin(~ x,)
—4.68232x, —5.05388cos(r x,) +1.73753sin(7 x,)
—0.656754x, +1.71626 cos(r x,) +0.0923789 sin(7 x,)
+4.93925x, —0.416084 cos(7 x,) +1.45935sin(x x,)
+0.990628x, x, x, x,

—0.1x(7).. (14)

Rule2:
IF x, is 12(=0.596747,-0.896165) and x, is £(0.841226,1.1499)
and x, is ££(0.20028,0.310169) and x, is ££(1.01531,0.524704)
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THEN p, =0.683119 +0.649552x, +1.74121cos(r x,) —4.32156sin(7 x,)
+0.200504x, —2.74432 cos(r x,) +1.18918sin(7 x,)
+0.519391x, +0.641173 cos(x x,)+3.17329sin(x x,)
—0.22503x, +0.524293 cos(7 x,) + 0.685239sin(7 x,)
—0.127742x, x, x, x,

Rule3:

IF x, is £(1.03417,0.919468) and x, is (-0.115958,1.69308)

and x, is 2(—0.114371,1.1357) and x, is x(—0.152534,0.74255)

THEN p, =0.58632 —1.28024x, —0.180169 cos(7 x,) — 0.470873sin(7 x,)
—0.530146x, —0.597328 cos(7 x,) + 0.156929sin(7 x, )
+0.176057x, +0.0405789 cos(7 x,) +1.09262sin(7 x,)
+0.353992x, —0.437468 cos(r x,) —1.09654sin(7 x,)
+0.479358x, x, x, x,

u(my,0,)
function with mean m, and deviation o, in the ith input

variable and the jth rule. The final RMS error of the
prediction output is about 0.008424. Figure 6(a) plots the
prediction outputs of the chaotic time series from x(501) to
x(1000), when 500 training data from x(1) to x(500) were
used. Figure 6(b) plots the prediction errors between the
proposed model and the desired output.

In this example, the performance of the FLNFN model
with the CCPSO learning method was compared to that of
other methods. In the PSO [18] and CPSO [13], the swarm
sizes were set to 50. The coefficient w was set to 0.4. The
cognitive coefficient ¢; was set to 1.6, and the society
coefficient ¢, was set to 2. Three rules are set to construct the
fuzzy model. The learning proceeded for 1000 generations,
and was performed fifty times. Figures 6(c) plots the
prediction errors of particle swarm optimization [18]. Figures
6(d) plots the prediction errors of cooperative particle swarm
optimization [13]. Figures 6(e) plots the prediction errors of
differential evolution [19]. Figures 6(f) plots the prediction
errors of genetic algorithm. Figure 7 plots the learning curves
of the best performance of the FLNFN model with CCPSO,
PSO [18], CPSO [13], differential evolution (DE) [19] and
genetic algorithm (GA) [20] learning methods. The proposed
CCPSO method yields better prediction results than the other
methods. Table 1 compares the best performance of the
CCPSO was compared with those of PSO [18], CPSO [13],
differential evolution (DE) [19], and GA [20]. Table 2 lists the
generalization capabilities of other methods [21]-[23]. The
generalization capabilities were measured by using each
model to predict 500 points immediately following the
training data set. The results show that the proposed
FLNFN-CCPSO method offers a smaller RMS error than
other methods.

where represents a Gaussian membership
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Fig. 6. (a) Prediction results of the proposed method. (b) Prediction errors of the proposed method. (¢) Prediction errors of particle swarm optimization [18]. (d)
Prediction errors of cooperative particle swarm optimization [13]. (e) Prediction errors of differential evolution [19]. (f) Prediction errors of genetic algorithm
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Fig. 7. Learning curves of best performance of proposed method, PSO [18],
CPSO [13], DE [19] and GA[20].
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B. Example 2: Forecast of the number of sunspots

The number of sunspots varied nonlinearly from 1700 to
2004, in non-stationary, and non-Gaussian cycles that are
difficult to predict [17]. In this example, the FLNFN model
with the CCPSO learning method was used to forecast the
number of sunspots The inputs x; of the FLNFN-CCPSO
method are defined as x, (£) = y{ (t 1), x,(¢) = y{ (t—2) and
x,(¢) = y/ (t —3) where t represents the year and y; (¢) is the

number of sunspots in the year ¢. In this example, the number
of sunspots of the first 151 years (from 1703 to 1853) was
used to train the FLNFN-CCPSO method while the number
of sunspots of all 302 years (from 1703 to 2004) was used to
test the FLNFN-CCPSO method.
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The learning stage involved parameter learning by the
CCPSO method. The coefficient w was set to 0.4. The
cognitive coefficient ¢; was set to 1.6, and the society
coefficient ¢, was set to 2. The swarm sizes were set to 50.
The learning proceeded for 1000 generations, and was
performed fifty times. In this example, three fuzzy rules are
applied.

The final RMS error of the forecast output is about
10.337347. Figure 8(a) presents the forecast outputs for years
1703 to 2004, using 151 training data from years 1703 to
1853. Figure 8(b) plots the forecast errors between the
proposed model and the desired output.

In this example, as in example 1, the performance of the
FLNFN model with CCPSO learning method was compared
with that of other methods. In PSO [18] and CPSO [13], the
parameters are the same as in example 1. Three rules are used
to construct the fuzzy model. The learning proceeded for
1000 generations, and was performed fifty times. Figures 8(c)
plots the forecast errors of particle swarm optimization [18].
Figures 8(d) plots the forecast errors of cooperative particle
swarm optimization [13]. Figures 8(e) plots the forecast
errors of differential evolution [19]. Figures 8(f) plots the
forecast errors of GA [20]. Figure 9 plots the learning curves
of best performance of the FLNFN model with CCPSO, PSO,
CPSO, DE and GA learning. The proposed CCPSO learning
method yields better forecast results than the other methods.
Table 3 presents the best RMS errors of training and
forecasting for CCPSO, PSO [18], CPSO [13], DE [19], and
GA [20] learning methods. Table 4 lists the generalization
capabilities of other methods [22]-[23]. As presented in Table
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3 and Table 4, the proposed FLNFN-CCPSO method

outperforms the other methods.
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Fig. 8. (a) Forecast results of the proposed method. (b) Forecast errors of the proposed method. (¢) Forecast errors of particle swarm optimization [18]. (d)
Forecast errors of cooperative particle swarm optimization [13]. (¢) Forecast errors of differential evolution [19]. (f) Forecast errors of GA [20].
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Table 1: Comparison of best performance of CCPSO, PSO, CPSO, DE,
and GA in Example 1.

CCPSO PSO CPSO DE GA

RMS error 0.0083 00210 00175 00162  0.0162
(training)
RMS error 0.0084 00211 00176 00163  0.0163
(predicting)

Table 2: Comparison of performance of

various existing models.

METHOD RMSE prediction

FLNFN-CCPSO 0.008274

Back-propagation NN (0.02

Six-order polynomial |0.04

Cascaded-correlation  |0.06
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Auto regressive model [0.19

Linear predictive 0.55
GA-FLC [22] 0.26
SEFC [23] 0.032

Table 3: Comparison of best performance of CCPSO, PSO and CPSO,
DE, and GA in Example 2.

CCPSO ___PSO __ CPSO DE GA
RMS error 10.34 1285 1198 1219  14.14
(training)
RMS error 14.73 1770 1745 1608  19.73
(forecasting)

Table 4: Comparison of performance of various existing models.

METHOD RMS error (training) ~ RMS error (forecasting)
FLNFN-CCPSO (10.3363 14.7275

GA-FLC [22] 12.27 19.81

SEFC [23] 11.05 15.05

V. CONCLUSION

This study proposes an efficient cultural cooperative
particle swarm optimization learning method for the
functional-link-based neural fuzzy network in predictive
applications. The FLNFN model can generate the consequent
part of a nonlinear combination of input variables. The
proposed CCPSO method with cooperative behavior among
multiple swarms increases the global search capacity using
the belief space. The advantages of the proposed
FLNFN-CCPSO method are as follows. 1) The consequent of
the fuzzy rules is a nonlinear combination of input variables.
This study uses the functional link neural network to the
consequent part of the fuzzy rules. The functional expansion

2008 IEEE International Conference on Fuzzy Systems (FUZZ 2008)



in the FLNFN model can yield the consequent part of a
nonlinear combination of input variables; 2) the proposed
CCPSO with cooperative behavior among multiple swarms
can accelerate the search and increase global search capacity
using the belief space. The experimental results demonstrate
that the CCPSO method can obtain a smaller RMS error than
the generally used PSO and CPSO for solving time series
prediction problems.
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