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For the linear regression with AR(1) errors model, the robust generalized and feasible

generalized estimators of Lai et al. (2003) of regression parameters are shown to have

the desired property of a robust Gauss Markov theorem. This is done by showing that

these two estimators are the best among classes of linear trimmed means. Monte Carlo

and data analysis for this technique have been performed.
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1. Introduction

Consider the linear regression model

y¼ Xbþe, ð1:1Þ

where y is a vector of observations for the dependent variable, X is a known n�p design matrix with 1’s in the first column,
and e is a vector of independent and identically distributed disturbance variables with a distribution of finite variance. We
consider the problem of estimating the parameter vector b. From the Gauss–Markov theorem, it is known that the least
squares estimator has the smallest covariance matrix in the class of unbiased linear estimators My where M satisfies MX=Ip.
However, the least squares estimator is sensitive to departures from normality and to the presence of outliers so we need to
consider robust estimators. An interesting question in robust regression is if there is a robust Gauss–Markov theorem, i.e., if
there is a robust estimator that is (asymptotically) more efficient than a class of linear robust estimators? This has been done
by Chen et al. (2001), who considered a class of estimators based on Winsorized observations and showed that the trimmed
mean of Welsh (1987) is asymptotically the best among in this class.

Suppose that the error vector e¼ ðe1, . . . ,enÞ
0 has the covariance matrix structure

CovðeÞ ¼ s2O, ð1:2Þ

where O is a positive definite matrix and s is finite. From the regression theory of the estimation of b, it is known that any
estimator having an (asymptotic) covariance matrix of the form

dðX0O�1XÞ�1
ð1:3Þ
ll rights reserved.
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is more efficient than the estimator having (asymptotic) covariance matrix of the form

dðX0XÞ�1
ðX0OXÞðX0XÞ�1, ð1:4Þ

where d is some positive constant. In the least squares estimation when the matrix O is known, Aitken (1935) introduced the
generalized least squares estimator (GLS) and showed that it has a covariance matrix of the form (1.3) and the LSE has a
covariance matrix of the form (1.4) with d¼ s2. It is also well known that, when O is unknown, the feasible generalized LSE has
the asymptotic covariance matrix of the form (1.3). Thus these two generalized type estimators are asymptotically more efficient
than the LSE.

Although the GLS and feasible GLS are asymptotically more efficient than the LSE in many regression problems, they are
highly sensitive to even very small departures from normality and to the presence of outliers. Therefore developing robust
generalized and feasible generalized estimators in each specific regression problem is important. We consider one of the
most popular models, the linear regression with AR(1) errors model, a structure of (1.2), as follows:

yi ¼ x
0

ibþei, i¼ 1, . . . ,n,

ei ¼ rei�1þei, ð1:5Þ

where e1,y,en are independent and identically distributed (iid) random variables. Suppose that jrjo1 and ei has a
distribution function F.

Denote the transformed vector u¼O�1=20y. One approach to robust estimation is to construct a weighted observation
vector u� and then construct a consistent estimator which is linear in u�. In case r is unknown, all vectors are replaced by
the ones with estimating r by estimator r̂; see for example, Lai et al. (2003). There are two types of weighted observation
vectors in this literature. First, u� can represent a trimmed observation vector Au with A being a trimming matrix
constructed from regression quantiles (see Koenker and Bassett, 1978), or residuals based on an initial estimator (see
Ruppert and Carroll, 1980; Chen, 1997). Second, u� can be a Winsorized observation vector that is defined as in Welsh
(1987). In this paper, we use the trimmed observation vector of Koenker and Bassett (1978) to study classes of linear
functions based on u� for estimation of b, and we develop a robust version of the Gauss–Markov theorem. Based on
regression quantiles, Lai et al. (2003) proposed generalized and feasible generalized trimmed means for estimating
regression parameters b. Then robust generalized and feasible generalized estimation techniques have been developed.

With the Gauss Markov theorem for linear regression with iid errors model, it is then interesting to see if there are any
robust type generalized and feasible generalized estimators for linear regression with the AR(1) errors model that have the
desired property of robust Gauss Markov theorem. Our aim in this paper is to show that the estimators in Lai et al. (2003)
does have this desired property.

In Section 2 we introduce a class of linear trimmed means when r is known and we establish their large sample theory
in Section 3. We also establish the theory for a class of linear trimmed means when r is unknown in Section 4. In both
cases, we show that the generalized and feasible generalized trimmed means are the best, respectively, in these two classes
of linear trimmed means in terms of asymptotic covariance matrix. Monte Carlo studies and Data analysis are performed
and their results are displayed in Section 5. Finally, the proofs of the theorems are presented in Appendix A.

2. Linear trimmed mean when q is known

For the linear regression with AR(1) errors model (1.5), to obtain a linear trimmed mean we need to specify the quantile
for determining the observation trimming and to make a transformation of the linear model to obtain generalized
estimators. For a given i-th dependent variable for model (1.5), assuming that iZ2 , one way to derive a generalized
estimator is to consider the one step Cochrane and Orcutt (C–O) (1949) procedure as yi ¼ ryi�1þðxi�rxi�1Þ

0bþei. For error
variable e, we assume that it has distribution function F with probability density function f. With the transformation for
generalized estimation, a quantile could be defined through variable e or a linear conditional quantile of yi�1 and yi. By the
fact that xi is a vector with the first element 1, the following two events determined by two quantiles are equivalent:

eirF�1ðaÞ ð2:1Þ

and

ð�r,1Þ
yi�1

yi

 !
rð�r,1Þ

x
0

i�1

x
0

i

 !
bðaÞ, ð2:2Þ

with

bðaÞ ¼ bþ
1

1�rF�1ðaÞ

0p�1

0
B@

1
CA:

The event in inequality (2.1) specifies the quantile of the error variable e and through inequality (2.2) it specifies the

conditional quantile of linear function ð�r,1Þ yi�1
yi

� �
. Here bðaÞ is called the population regression quantile by Koenker and

Bassett (1978). With the specification of quantiles and transformation, we may define the linear trimmed means.
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For defining the linear trimmed means, we consider the one step C–O procedure on the matrix form of the linear
regression with AR(1) error model of (1.5) which is

y¼ Xbþe,

where it can be seen that CovðeÞ ¼ s2O with

O¼
1

1�r2

1 r r2 rn�1

r 1 r � � � rn�2

^ ^ ^ ^

rn�1 rn�2 rn�3 � � � 1

0
BBBB@

1
CCCCA: ð2:3Þ

Define the half matrix of O�1 as

O�1=20
¼

ð1�r2Þ
1=2 0 0 � � � 0 0

�r 1 0 � � � 0 0

0 �r 1 � � � 0 0

^ ^ ^ ^ ^

0 0 0 � � � �r 1

0
BBBBBBB@

1
CCCCCCCA
:

With the above half matrix of O, we consider the model for the one step C–O procedure u¼O�1=20y as

u¼ Zbþðð1�r2Þ
1=2e1,e2,e3, . . . ,enÞ

0, ð2:4Þ

where Z ¼O�1=20X. Note that the vector u and the matrix Z are both functions of parameter r. The usual descriptive
statistics, robust or nonrobust, based on model (1.1) can be carried over straightforwardly to the transformed model (2.4)
when r is known. However, when r is unknown, u and Z need to be replaced by the ones that place its r by its consistent
estimator. Knowing that the GLS is simply the LSE of b for model (2.4), we may consider the linear trimmed mean defined
on this transformed model. To validate the terminology calling the linear trimmed means with r being known and
unknown, we will show that they are asymptotically equivalent in the sense of having the same asymptotic covariance
matrix. This is what the GLS and feasible GLS performed.

For 0oao1, the a- th (sample) regression quantile of Koenker and Bassett (1978) for the linear regression with AR(1)
errors model is defined as

b̂ðaÞ ¼ arg
b2Rp

min
Xn

i ¼ 1

ðui�z
0

ibÞða�Iðuirz
0

ibÞÞ,

where ui and z
0

i are the i-th rows of u and Z, respectively, and I(A) is the indicator function of the event A. Define the
trimming matrix as A¼ diagfai ¼ Iðz

0

ib̂ða1Þruirz
0

ib̂ða2ÞÞ : i¼ 1, . . . ,ng with 0oa1oa2o1 where fractions a1 and 1�a2 of
observations, respectively, from low tail and upper tail are trimmed. After the outliers are trimmed by regression quantiles
b̂ðaÞ and b̂ð1�aÞ, we have the following submodel:

Au¼ AZbþA

ð1�r2Þ
1=2e1

e2

^

en

0
BBBB@

1
CCCCA: ð2:5Þ

Since A is random, the error vector in the above transformed model is now not a set of independent variables. Koenker and
Bassett’s type generalized trimmed mean (proposed by Lai et al., 2003) is defined as

b̂tm ¼ ðZ
0AZÞ�1Z0Au: ð2:6Þ

We now move to define the linear trimmed means. Any linear unbiased estimator defined in model of (2.4) has the form
Mu with M being a p�n nonstochastic matrix satisfying MZ= Ip. Since M is a full-rank matrix, there exist matrices H and H0

such that M¼HH
0

0. Thus, an estimator is a linear unbiased estimator if there exists a p� p nonsingular matrix H and an
n�p full-rank matrix H0 such that the estimator can be written as

HH
0

0u:

We generalize linear unbiased estimators defined on the observation vector u to estimators defined on Au by requiring
them to be of the form MAu where M¼HH

0

0.

Definition 2.1. A statistic b̂ ltm is called a ða1,a2Þ linear trimmed mean if there exists a stochastic p�p matrix H and a
nonstochastic n�p matrix H0 such that it has the following representation:

b̂ltm ¼HH
0

0Au, ð2:7Þ
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where H and H0 satisfy the following two conditions:
(a1)
 nH- ~H in probability, where ~H is a full rank p�p matrix.
0

(a2)
 HH0Z ¼ ða2�a1Þ
�1Ipþopðn�1=2Þ where Ip is the p�p identity matrix.
This is similar to the usual requirements for unbiased estimation, except that we have introduced a trimmed observation
vector to allow for robustness and considered an asymptotic property instead of unbiasedness.

Two questions arise for the class of linear trimmed means. First, does this class of means contain estimators that have
already appeared in the literature? The answer is affirmative because the class of linear trimmed means defined in this
paper contains the generalized trimmed mean of Lai et al. (2003) (H¼ ðZ0AZÞ�1 and H0=Z), and the set of Mallows-type
bounded influence trimmed means (H¼ ðZ0WAZÞ�1 and H

0

0 ¼ Z0W with W, a diagonal matrix of weights; see Section 3).
Second, is there a best estimator in this class of linear trimmed means and can we find it if it exists? This question will be
answered in the next section.

With the one step C–O procedure, the half matrix O�1=20 has rows with only a finite number (not depending on n) of
elements that depend on the parameter r. This trick, traditionally used in econometrics literature for regression with AR(1)
errors (see, for example, Fomby et al., 1984, pp. 210–211), makes the study of asymptotic theory for b̂ltmðaÞ similar to what
we have for the classical trimmed mean for linear regression. Large sample representations of the linear trimmed mean
and its role as generalized robust estimator will be introduced in the next section.
3. Asymptotic properties of linear trimmed mean

Let us denote by h
0

i the ith row of H
0

0, yh ¼ limn-1n�1
Pn

i ¼ 1 hi, Qhz ¼ limn-1n�1
Pn

i ¼ 1 hiz
0

i and Qz ¼ limn-1n�1Z0Z. We
assume throughout this section that conditions (a3)–(a6) in Appendix A are satisfied. So, for examples, Qhs is a full rank
matrix and Qz is positive definite matrix. It is not difficult to see that these conditions are satisfied in typical analysis of
variance designs and these hold in probability when the rows of X form a random sample from a very wide class of
distributions in Rp (see this point in detail in Koenker and Portnoy, 1987). The following theorem gives a ‘‘Bahadur’’
representation of the ða1,a2Þ linear trimmed mean.

Theorem 3.1. With assumptions (a1)–(a6), we have

n1=2ðb̂ ltm�ðbþgltmÞÞ ¼ n�1=2 ~H
Xn

i ¼ 1

fhiðeiIðF
�1ða1ÞreirF�1ða2ÞÞ�lÞ

þ½F�1ða1ÞIðeioF�1ða1ÞÞþF�1ða2ÞIðei4F�1ða2ÞÞ�ðð1�a2ÞF
�1ða2Þ

þa1F�1ða1ÞÞ�QhzQ�1
z zigþopð1Þ,

where gltm ¼ l ~Hyh, l¼
R F�1ða2Þ

F�1ða1Þ
e dFðeÞ and yh is defined in assumption (a5).

The limiting distribution of the ða1,a2Þ linear trimmed mean follows from the central limit theorem (see, e.g. Serfling,
1980, p. 30).

Corollary 3.2. By conditions (a1)–(a6), n1=2ðb̂ltm�ðbþgltmÞÞ has an asymptotic normal distribution with zero mean vector and

the following asymptotic covariance matrix:

Z F�1ða2Þ

F�1ða1Þ

e2 dFðeÞ�l2

" #
~HQh

~H0 þða2�a1Þ
�2
½a1ðF

�1ða1ÞÞ
2
þð1�a2ÞðF

�1ða2ÞÞ
2

�ða1F�1ða1Þþð1�a2ÞF
�1ða2ÞÞ

2
�2lða1F�1ða1Þþð1�a2ÞF

�1ða2ÞÞ�Q
�1
z : ð3:1Þ

The ða1,a2Þ generalized trimmed mean proposed by Lai et al. (2003) is defined by

b̂tm ¼ ðZ
0AZÞ�1Z0Au: ð3:2Þ

From the result of this estimator studied by Ruppert and Carroll (1980), we have

n�1Z0AZ-ða2�a1ÞQz:

By letting H¼ ðZ0AZÞ�1 and H0=Z, can see that condition (a2) also holds for b̂tm. So, the ða1,a2Þ generalized trimmed mean is
in the class of ða1,a2Þ linear trimmed mean’s. Moreover, Lai et al. (2003) provided the result that n1=2ðb̂tm�ðbþgtmÞÞ, where
gtm ¼ ða2�a1Þ

�1lQ�1
z yz, has an asymptotic normal distribution with zero means and covariance matrix s2ða1,a2ÞQ

�1
z ,
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where

s2ða1,a2Þ ¼ ða2�a1Þ
�2

Z F�1ða2Þ

F�1ða1Þ

ðe�lÞ2 dFðeÞþa1ðF
�1ða1ÞÞ

2
þð1�a2Þ

"

ðF�1ða2ÞÞ
2
�ða1F�1ða1Þþð1�a2ÞF

�1ða2ÞÞ
2
�2lða1F�1ða1Þþð1�a2ÞF

�1ða2ÞÞ

i
: ð3:3Þ

The following lemma orders the matrices ~HQh
~H0 and Qz.

Lemma 3.3. For any matrices ~H and Qh induced from conditions (a1) and (a4), the difference

~HQh
~H0�ða2�a1Þ

�2Q�1
z ð3:4Þ

is positive semidefinite.

The relation in (3.4) then implies the following main theorem.

Theorem 3.4. Under the conditions (a.3)–(a.6), the ða1,a2Þ generalized trimmed mean b̂tm of (3.2) is the best ða1,a2Þ linear

trimmed mean.

Since the ða1,a2Þ generalized trimmed mean always exists, then the best ða1,a2Þ linear trimmed mean always exists.
A further question is how big is the class of ða1,a2Þ linear trimmed mean’s? However, we do not study the scope of the
linear trimmed means.

In the literature, consideration has been given to the development of estimators of regression parameters b that limit
the effects of the error variable and the independent variables. Among them, approaches which simultaneously bound the
influence of the design points and the residuals for the linear regression model include Krasker and Welsch (1982) and
Krasker (1985). On the other hand, the approach of Mallow’s type bounded-influence trimmed mean is to bound
the influence of the design points and the residuals separately as applied in the AR(1) regression model by De Jongh and De
Wet (1985) and in the linear regression model by De Jongh et al. (1988). In a study by Giltinan et al. (1986), they found
these two approaches are competitive in a way that neither is preferable to the other one. They also note that Mallow’s
type estimators should theoretically give more stable inference than the Krasker–Welsch approach.

Let wi, i=1,y,n, be real numbers. For 0oao1, Mallow’s type bounded-influence regression quantile, denoted by b̂wðaÞ,
is defined as the solution for the minimization problem

min
b2Rp

Xn

i ¼ 1

wiðui�z
0

ibÞða�Iðuirz
0

ibÞÞ:

With W the diagonal matrix of {wi,i=1,y,n}, the bounded influence trimmed mean is defined as

b̂BI ¼ ðZ
0WAwZÞ�1Z0WAwu

where Aw ¼ diagfai : Iðz
0

ib̂wða1Þruirz
0

ib̂wða2ÞÞ, i¼ 1, . . . ,ng.
Let H¼ ðZ0WAwZÞ�1 and H0=WZ. This shows that the bounded influence trimmed means also form a subclass of linear

trimmed means’s (see De Jongh et al., 1988 for their large sample properties).

Theorem 3.5. If assumptions (a1)–(a5) hold, then
(a) n
1=2ðb̂BI�ðbþgwÞÞ ¼ ða2�a1Þ
�1Q�1

w n�1=2
Xn

i ¼ 1

wizi½ðeiIðF
�1ða1ÞreirF�1ða2ÞÞ�lÞ

þF�1ða1ÞIðeioF�1ða1ÞÞþF�1ða2ÞIðei4F�1ða2ÞÞ�ðð1�a2ÞF
�1ða2Þ

þa1F�1ða1ÞÞ�þopð1Þ,

where gw ¼ ða2�a1Þ
�1lQ�1

w yw, Qw ¼ limn-1 n�1
Pn

i ¼ 1 wiziz
0

i, a positive definite matrix, and yw ¼ limn-1 n�1
Pn

i ¼ 1 wizi

and P

(b)
 n1=2ðb̂BI�ðbþgwÞÞ-Nð0,s2ða1,a2ÞQ

�1
w QwwQ�1

w Þ where Qww ¼ limn-1 n�1 n
i ¼ 1 w2

i ziz
0

i, a positive definite matrix.
In particular, b̂tm is the example of b̂BI with W as the identity matrix, and it then belongs to this subclass. We may
also show that Qw

�1QwwQw
�1
�Qz
�1 is positive semidefinite which shows that b̂tm is the best bounded influence

trimmed mean.

Theorem 3.6. The ða1,a2Þ generalized trimmed mean is the best bounded influence trimmed mean.

This result is based solely on considerations of the asymptotic variance and ignores the fact that generalized trimmed
mean does not have bounded influence in the space of independent variables. It confirms the notion that bounded
influence is achieved at the cost of efficiency.
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4. Linear trimmed means when q is unknown

After the development of the theory of the linear trimmed means for the case where r is known, the next interesting
problem is whether, when the parameter r is unknown, the linear trimmed mean of (2.7) with r replaced by a consistent
estimator r̂ will have the same asymptotic behavior as displayed by b̂ltm. If so, the theory of generalized least squares
estimation is then carried over to the theory of robust estimation in this specific linear regression model. Let Ô be the

matrix of O with r replaced by its consistent estimator r̂ which could be the LSE through the C–O estimation procedure.

Define matrices û ¼ Ô
�1=20

y, Ẑ ¼ Ô
�1=20

X and ê ¼ Ô
�1=20

e. Let the regression quantile when the parameter r is unknown be
defined as

b̂
�

ðaÞ ¼ arg
b2Rp

min
Xn

i ¼ 1

ðûi�ẑ
0

ibÞða�Iðûir ẑ
0

ibÞÞ,

where ûi and ẑ
0

i are i-th rows of û and Ẑ , respectively. Define the trimming matrix as Â ¼ diagfai ¼ Iðẑ
0

ib̂
�

ða1Þr
ûir ẑ

0

ib̂
�

ða2ÞÞ : i¼ 1, . . . ,ng.

Definition 4.1. A statistic, b̂
�

ltm, is called a ða1,a2Þ linear trimmed mean if there exists stochastic p�p and n�p matrices,
respectively, H and H0 such that it has the following representation:

b̂
�

ltm ¼HH
0

0Âû,

where H and H0 satisfy conditions (a1) and (a2) for these H and H0.

Koenker and Bassett’s feasible generalized trimmed mean is defined as

b̂
�

tm ¼ ðẐ
0ÂẐÞ�1Ẑ 0Âû:

From Lai et al. (2003), we can see that n�1Ẑ 0ÂẐ-
p
ða2�a1ÞQz. By letting H¼ ðẐ 0ÂẐÞ�1 and H0 ¼ Ẑ , we see that b̂

�

tm is in the
class of ða1,a2Þ linear trimmed means. Lai et al. (2003) also showed that b̂

�

tm and b̂tm have the same Bahadur representation
and then they have the same asymptotic distribution. The following theorem states that the linear trimmed means for the
cases where r is known and unknown have the same large sample properties.

Theorem 4.2.
ffiffiffi
n
p
ðb̂
�

ltm�b̂ ltmÞ ¼ opð1Þ.

We then have the result that the feasible generalized trimmed mean is the best linear trimmed mean when r is uknown.

Theorem 4.3. The feasible generalized trimmed mean is the best linear trimmed mean.

For the rest of this section, we will consider several related questions. First, is the best linear trimmed mean unique for
this linear regression with AR(1) errors model? For this, we develop an analogous optimal theory for the trimmed mean of
Welsh (1987). Let b̂0 be an initial estimator of b for model (2.4). Let Ẑða1Þ and Ẑða2Þ represent, respectively, the a1 and a2th

empirical quantiles of the regression residuals e�i ¼ ui�z
0

ib̂0, i¼ 1, . . . ,n. The Winsorized observation defined by Welsh
(1987) is

u�i ¼ uiIðẐða1Þre�i r Ẑða2ÞÞþ Ẑða1ÞðIðe
�
i o Ẑða1ÞÞ�a1Þ

þ Ẑða2ÞðIðe
�
i 4 Ẑða2ÞÞ�ð1�a2ÞÞ:

Let u� ¼ ðu�1, . . . ,u�nÞ
0 and denote the trimming matrix by B¼ diagðIðẐða1Þre�i r Ẑða2ÞÞ, i¼ 1, . . . ,nÞ.

Definition 4.4. A statistic b̂ lw is called a ða1,a2ÞWelsh’s type linear trimmed mean if there exists a stochastic p�p matrix H

and a nonstochastic n�p matrix H0 such that it has the following representation:

b̂ lw ¼HH
0

0u�,

where H and H0 satisfy conditions (a1) and (a2).

Theorem 4.5. With assumptions (a1)–(a7), b̂lw and b̂ltm have the same Bahadur representation of Theorem 3.1 and then they

have the same asymptotic distribution.

If we let H¼ ðZ0BZÞ�1 and H0=Z, we see that the generalized Welsh’s (1987) trimmed mean of as

b̂w ¼ ðZ
0BZÞ�1Z0u�, ð4:1Þ

is a member of ða1,a2Þ Welsh’s type linear trimmed mean. We then have the following theorem.

Theorem 4.6. The generalized Welsh’s trimmed mean b̂w and generalized trimmed mean b̂tm have the same asymptotic

distribution. Hence, b̂w is the best ða1,a2Þ Welsh’s type linear trimmed mean.

The above theorem shows that it is not unique for existence of best robust generalized estimator. As mentioned by one
referee that further study of the generalized Huber’s M estimator may provide one more example of best robust
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generalized estimator (see Jureckova and Sen, 1984 for a representation of Huber’s M estimator). Hence, further searching
for some other types of best robust generalized estimators is not desirable. One interesting question is that if there is one
best robust generalized estimator that has asymptotic variances identical or close to the Cramer-Rao lower bound when
the error variables follow heavy tail distributions. For the classical linear regression model, the symmetric trimmed mean
of Chen and Chiang (1996) and Chiang et al. (2006) has been shown to have asymptotic variances close to the Cramer–Rao
lower bound. Hence, showing an extension of symmetric trimmed mean on this linear regression with AR(1) errors model
may provide the desirable solution.

We also note here that a best linear trimmed mean is confined in comparison of linear trimmed means of fixed
trimming percentages ða1,a2Þ. Without knowing the distribution F, can we estimate the best percentages ða1,a2Þ in terms of
asymptotic covariance matrix that still is a best linear trimmed mean? To attack this problem, it involves minimizing the
asymptotic covariance matrix (see the approach of Jaeckel, 1971) and the development of optimal theory will be
complicated that needs further investigation.

5. Monte Carlo study and example

In this section, we first consider a simulation study to compare the feasible GLS b̂FG and the feasible generalized
trimmed mean b̂

�

tm. By letting êi ¼ yi�x
0

ib̂ ls, where b̂ls is the LSE of b, we estimate r by r̂ ¼ r̂ by
Pn

i ¼ 2 êiêi�1=
Pn

i ¼ 2 ê
2
i . With

sample size n=30, the simple linear regression model, yi ¼ b0þb1xi1þei where ei follows the AR(1) error is considered. For
this simulation, we let the true parameter values of b0 and b1 be 1’s and r be 0.3. This simulation is conducted with the
same data generation system, except that the error variable ei is generated from the mixed normal distribution
ð1�dÞNð0,1ÞþdNð0,s2Þ with d¼ 0:1,0:2,0:3 and s¼ 3,5,10 and xi are independent normal random variables with mean i/2
and variance 1. A total of 10 000 replications were performed and we compute the mean squares errors (MSE) for the
feasible generalized LSE b̂FG and feasible generalized trimmed mean b̂

�

tm for a1 ¼ 1�a2 ¼ a¼ 0:1,0:2,0:3 where the total
mean squared error is the square of the Euclidean distance between the estimator and true regression parameter b. For
convenience, below in this section we re-denote the feasible generalized trimmed mean by b̂tmðaÞ. The MSEs are listed in
Tables 1 and 2.

We may draw several conclusions from Tables 1 and 2:
(a)
Tabl

MSE

s

ðd
ðd
3

5

10

ðd
3

5

10

ðd
3

5

10
The case d¼ 0 indicates that ei follows a normal distribution. Then the results in these two tables fulfill the statistical
theory that the feasible generalized least squares estimator b̂FG is more efficient than other consistent estimators.
However, the trimmed means are still efficient in this ideal design.
(b)
 The MSE’s of these two estimators both increase when the contaminated percentage d increases or contaminated
variance s2 increases. This verifies the performance of the usual estimators, robust or non-robust.
(c)
 The feasible generalized trimmed mean is relatively more efficient than the feasible generalized LSE in all cases of
contaminated errors. This result shows that the feasible generalized trimmed mean is indeed, among the class of linear
trimmed means, a robust one.
(d)
 The simulation results displaying in these two tables show the MSE in most cases of d and s (not in d¼ 0 and
ðd,sÞ ¼ ð0:1,3Þ an decreasing trend with a increasing). Some further simulation results in our experience show that MSE
goes up for a not too far after 0.3.
Next we consider real data regression analysis. Many firms use past sales to forecast future sales. Suppose a wholesale
distributor of sporting goods is interested in forecasting its sales revenue for each of the next 5 years. Since an inaccurate
forecast may have dire consequences to the distributor, efficiency of the estimation of regression parameters is an
e 1

’s for b̂FG and b̂ tm under contaminated normal distribution (n=30).

b̂FG b̂
�

tmð0:1Þ b̂
�

tmð0:2Þ b̂
�

tmð0:3Þ

¼ 0Þ 0.2654 0.2663 0.2681 0.2690

¼ 0:1Þ

0.3746 0.2874 0.2697 0.2698

0.7326 0.3644 0.3075 0.2964

2.3055 0.5463 0.4184 0.3714

¼ 0:2Þ

0.5543 0.3963 0.3600 0.3300

1.2306 0.5819 0.4530 0.4229

4.4579 1.4236 0.7820 0.6012

¼ 0:3Þ

0.7075 0.5380 0.4448 0.4101

1.7109 0.9723 0.6503 0.5749

6.5214 2.8921 1.5105 1.0893



Table 2

MSE’s for b̂FG and b̂ tm under contaminated normal distribution (n=100).

s b̂FG b̂
�

tmð0:1Þ b̂
�

tmð0:2Þ b̂
�

tmð0:3Þ

ðd¼ 0Þ 0.0921 0.0928 0.0934 0.0937

ðd¼ 0:1Þ

3 0.1308 0.0964 0.0960 0.0904

5 0.2539 0.1067 0.1059 0.0988

10 0.8494 0.1253 0.1154 0.1111

ðd¼ 0:2Þ

3 0.1962 0.1257 0.1182 0.1125

5 0.4249 0.1679 0.1343 0.1270

10 1.5763 0.2736 0.1574 0.1543

ðd¼ 0:3Þ

3 0.2522 0.1670 0.1466 0.1362

5 0.6266 0.2744 0.1844 0.1643

10 2.1937 0.7071 0.2683 0.2147

Table 3
MSE’s for predictors based on some estimators.

Estimator Estimate Observation Prediction MSE

b̂ ls
1:053

4:239

� �
146:10

151:40

150:90

0
B@

1
CA

140:94

145:17

149:41

0
B@

1
CA

67.503

b̂FG
0:142

4:319

� �
142:67

146:99

151:31

0
B@

1
CA

31.336

b̂‘1

0:531

4:268

� �
141:38

145:64

149:91

0
B@

1
CA

56.304

b̂
�

tmð0:1Þ
�0:859

4:386

� �
143:88

148:27

152:65

0
B@

1
CA

17.786

b̂
�

tmð0:2Þ
0:072

4:364

� �
144:10

148:47

152:83

0
B@

1
CA

16.302

b̂
�

tmð0:3Þ
0:051

4:336

� �
143:15

147:49

151:83

0
B@

1
CA

24.775

b̂FG‘1

0:341

4:258

� �
141:06

145:32

149:58

0
B@

1
CA

21.343
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important indicator in accuracy of forecasting. Data collected on a firm’s yearly sales revenue (1000s of dollars) with
sample size n=35 has been analyzed by Mendenhall and Sincich (1993). Since the scatter plot of the data revealed a
linearly increasing trend, so a simple linear regression model

yi ¼ b0þb1xiþei, i¼ 1, . . . ,35

seems to be reasonable to describe the trend, a simple. They first analyzed it with the least squares method that yields
R2=0.98 which indicates that it is appropriate to be formulated as a linear regression model. They further displayed a plot
of the residuals that revealed the existence of AR(1) errors, and then the Durbin and Watson test was performed, rejecting
the null hypothesis r¼ 0. They also computed the prediction 95% confidence intervals for yearly revenues for years, 36–40,
however, the interval estimates are wide, which makes the prediction of future observations less certain (see this point in
Mendenhall and Sincich, 1993, p. 481). We expect to have better analysis, based on the feasible generalized trimmed mean,
in some sense.

We follow their idea in evaluating the prediction for the yearly revenues for years 36–40. Since the observations of
these are available, we may compute the following prediction MSE,

MSE¼
1

3

X35

i ¼ 33

ðyi�ðb̂0þ b̂1xiÞÞ
2,



Y.-H. Lai et al. / Journal of Statistical Planning and Inference 140 (2010) 3457–3467 3465
where b̂0

b̂1

� �
is the estimate of b0

b1

� �
corresponding the estimator. The MSE, in this design, provides a numerical measure for

the performance of future observation prediction. For this example, estimators considered include LSE b̂ls, feasible GLS b̂FG,

‘1- norm estimator b̂‘1
, feasible generalized trimmed mean b̂tmðaÞ and feasible generalized ‘1- norm estimator b̂FG‘1

and

their evaluated MSE’s are listed in Table 3.
There are several comments can be drawn from Table 3:
(a)
 Without implement of the information of AR(1) errors, the least squares estimate b̂ ls is really not appropriate in
prediction since it not only gives confidence intervals too wide for future observations but also leads to large MSE in
our design of prediction.
(b)
 The performance of ‘1- norm estimator b̂‘1
also suffers from that it does not introduce the correlation between error

variables into its estimation.

(c)
 Although the feasible generalized LSE b̂FG considers the correlation between error variables, its performance is still

poorer than feasible generalized robust estimators.

(d)
 Surprisingly the feasible generalized trimmed means for several symmetric trimming proportions have MSE’s that are

all smaller than those of the other three estimators. The feasible generalized trimmed mean not only has asymptotic
optimal properties in the class of linear trimmed means but also shows an interesting fact in the prediction of future
observations. This interesting result imply that the feasible generalized trimmed means are more capable in detection
of the main trend showing in the data.
(e)
 The feasible generalized ‘1- norm estimator is much more efficient than the ‘1- norm estimator b̂‘1
since it

considers the correlation between error variables. This estimator is also competitive with the feasible generalized
trimmed mean.
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Appendix A

Let e have distribution function F with probability density function f. Let zij represent the jth element of vector zi.
The following conditions are similar to the standard ones for linear regression models as given in Ruppert and Carroll
(1980) and Koenker and Portnoy (1987):
(a3)
 n�1
Pn

i ¼ 1 z4
ij ¼Oð1Þ,

0 0
(a4)
 n�1Z0Z ¼ Qzþoð1Þ,n�1H0Z ¼Qhzþoð1Þ and n�1H0H0 ¼Qhþoð1Þ where Qz and Qh are positive definite matrices and Qhz

is a full rank matrix.P

(a5)
 n�1 n

i ¼ 1 hi ¼ yhþoð1Þ, where yh is a finite vector.

(a6)
 The probability density function and its derivative are both bounded and bounded away from 0 in a neighborhood of

F�1ðaÞ for a 2 ð0,1Þ.

(a7)
 n1=2ðb̂0�bÞ ¼Opð1Þ.
Proof of Theorem 3.1. From condition (a2) and (A.10) of Ruppert and Carroll (1980), HH
0

0AnZb¼ bþopðn�1=2Þ. Inserting
(1.1) in Eq. (2.7), we have

n1=2ðb̂ lt�bÞ ¼ n1=2HH
0

0Ae, ðA:1Þ

where we replace ð1�r2Þ
1=2e1 by e1 that have the same asymptotic representation. Now we develop a representation

of n�1=2H
0

0Ae. Let Ujða,TnÞ ¼ n�1=2
Pn

i ¼ 1 hijeiIðeioF�1ðaÞþn�1=2z
0

iTnÞ and Uða,TnÞ ¼ ðU1ða,TnÞ, . . . ,Upða,TnÞÞ. Also, let

T�nðaÞ ¼ n1=2½b̂ðaÞ�bðaÞ�. Then n�1=2H
0

0Ane¼Uða2,T�nða2ÞÞ�Uða1,T�nða1ÞÞ. By conditions (a3) and (a6) and from Jureckova

and Sen’s (1987) extension of Billingsley’s Theorem (see also Koul, 1992), we have

Ujða,TnÞ�Ujða,0Þ�n�1F�1ðaÞf ðF�1ðaÞÞ
Xn

i ¼ 1

hijz
0

iTn

�����
�����¼ opð1Þ ðA:2Þ
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for j=1,y,p and Tn=Op(1). We know that, from Lai et al. (2003),

n1=2ðb̂ðaÞ�bðaÞÞ ¼Q�1
z f�1ðF�1ðaÞÞn�1=2

Xn

i ¼ 1

ziða�IðeirF�1ðaÞÞÞþopð1Þ: ðA:3Þ

By condition (a4) and from (6.2) and (6.3)

n�1=2H
0

0Ane¼ n�1=2
Xn

i ¼ 1

hieiIðF
�1ða1ÞreirF�1ða2ÞÞ

þF�1ða2ÞQhzQ�1
z n�1=2

Xn

i ¼ 1

ziða2�IðeirF�1ða2ÞÞ

þF�1ða1ÞQhzQ�1
z n�1=2

Xn

i ¼ 1

ziða1�IðeirF�1ða1ÞÞ: ðA:4Þ

Then the theorem follows from (A.1) and (A.4).

The proof of Theorem 3.5 is analogous as it for the above and then is skipped. &

Proof of Lemma 3.3. Denote by plim (Bn)=B if Bn converges to B in probability. Let

C ¼HH0�ðZ
0AnZÞ�1Z0:

With this, plim ðCZÞ ¼ plimðHH0ZÞ�plimðZ0AnZÞ�1Z0Z ¼ 0.

Then

~HQh
~H 0 ¼ plimðHH0ðHH0Þ

0Þ

¼ plimððCþðZ0AnZÞ�1Z0ÞðCþðZ0AnZÞ�1Z0Þ0Þ

¼ plimðCC0ÞþplimððZ0AnZÞ�1Z0ZðZ0AnZÞ�1
Þ

¼ plimðCC0Þþða2�a1Þ
�2plimðZ0ZÞ�1

Z ða2�a1Þ
�2Q�1

z : &

Proof of Theorem 4.2. We here only briefly sketch a proof of the theorem. For detailed references, see Chen et al. (2001)
and Lai et al. (2003). With the fact that n1=2ðr̂�rÞ ¼Opð1Þ and conditions (a1), (a3) and (a6), we may see that

n1=2ðb̂
�

ltm�bÞ ¼ n1=2HH
0

0Âeþopð1Þ: ðA:5Þ

By letting Mðt1,t2,aÞ ¼ n�1=2
Pn

i ¼ 1 hieiIðei�n�1=2t1ei�1rF�1ðaÞþn�1=2ðziþn�1=2t1xi�1Þ
0t2þn�1=2t1F�1ðaÞÞ, we see that

n�1=2Ẑ 0Ane¼MðT�1ða2Þ,T
�
2 ,a2Þ�MðT�1ða1Þ,T

�
2 ,a1Þ, ðA:6Þ

with T�1ðaÞ ¼ n1=2ðb̂
�

ðaÞ�bðaÞÞ and T�2 ¼ n1=2ðr̂�rÞ. However, using the same methods in the proof of Lemma 3.5 and by (a3)
and (a6), we can see that

mðT1,T2,aÞ�Mð0,0,aÞ ¼ F�1ðaÞf ðF�1ðaÞÞn�1=2
Xn

i ¼ 1

hiðz
0

iT2�T1F�1ðaÞÞþopð1Þ ðA:7Þ

for any sequences T1=Op(1) and T2=Op(1). Then, from (A.6) and (A.7), we see that n�1=2H
0

0Âne has the same representation
of (A.4). Then (a1) and (A.5) further implies the theorem. &

Proof of Theorem 4.5. The proof can be derived similarly with it for Theorem 3.1 where a representation of ẐðaÞ may be
applied that can be seen in Ruppert and Carroll (1980). Hence, it is skipped. &
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