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We analyze a four-dimensional induced Einstein-Kalb-Ramond theory with a conformally coupled 
Kalb-Ramond action. We also comment on an Ansatz which is inconsistent with the assumption of max- 
imal form invariance imposed on the Kalb-Ramond field due to the cosmological principle. It is argued 
that the spatial dependences of various fields considered here are inconsistent with the Friedmann- 
Robertson-Walker metric. One hence justifies the Ansatz used in many articles. We also show that the 
contribution from the Kalb-Ramond action is negligible effectively after the inflationary era. Some of 
the solutions to the field equations are presented. 

PACS numberk): 04.50. + h 

I. INTRODUCTION 

The ten-dimensional Einstein-Kalb-Ramond action 
[1,2] given by 

s = I d  'Ox gg [ - R - +F,vaF"va] (1.1) 

has attracted a lot of activity lately. The Kalb-Ramond 
field strength F,,, is the curvature tensor for the torsion 
field A,,. Defining a three-form [3] 

F r F , , d x ~ A d x V A d x a  , (1.2) 

and a two-form 

A  -- A , , d x ~ A d x V  , (1.3) 

the formal relation between F,, and A,, can be read off 
from the equation 

F = d A  . (1.4) 

The F' term has been studied in many articles, especially 
in the pointlike limit of the superstring low-energy 
effective theory, namely, the ten-dimensional (10D) su- 
pergravity theory [2] where the F~ term is known as the 
Kalb-Ramond action. 

Solving the torsion equation, can restrict the torsion 
field such that the whole effect of the torsion field behaves 
similar to a scalar field. This property has been the hope 
of many authors to play the role of inflaton in the 
inflationary era [4]. Unfortunately, one can show that 
this effective scalar field will not contribute much to 
inflation. In fact, one is able to show that the torsion 
field tends to vanish, in many aspects, as soon as the 
inflationary process is completed. The complete 
inflationary action will, however, require an additional 
inflaton scalar field [S] conformally coupled to both the 
metric and torsion fields. The inclusion of the scalar field 
has been studied before in the so-called induced gravity 
model (without a torsion field) with great success. 

On the other hand, scale invariance [6]  is one of the 
key symmetries in obtaining the low-energy effective ac- 
tion for a massless string [7] mode. I t  is also important in 
many effective-field theories such as the nonlinear o mod- 

el, which has been rather successful in describing low- 
energy nucleonic interactions. Some even proposed that 
global scale invariance should be gauged [8]. 

Therefore, in this paper, we are going to study a four- 
dimensional induced gravity model with a torsion field 
conformally coupled to the metric and scalar fields. We 
are going to argue that the torsion field will not contrib- 
ute much to the inflationary process and tends to vanish 
as soon as inflation is completed. This unique property of 
the torsion field explains in part the reason that the tor- 
sion field does not seem to play a role in today's low- 
energy physics. 

This paper is organized as follows. In Sec. I1 we will 
solve the torsion-field equation and analyze its properties. 
In Sec. I11 the Ansatz used in Ref. [ I ]  is justified even if it 
violates the well-known cosmological principle [9-121 
imposed on the A,, field. We are going to show, in great 
detail that the radial dependence of all the fields in this 
model is incom~atible with the Friedmann-Robertson- 
Walker (FRW) metric 19- 121 in the asymptotic region. 
One can further show that the spatial dependence of 
these fields is inconsistent with the FRW metric. In Sec. 
IV we show that the contribution of the torsion field is 
negligible in and after the inflationary process. In Sec. V 
we solve for some solutions to the field equations and an- 
alyze their implications. Finally, in Sec. VI we make a 
few concluding remarks. We show the conventions used 
in this paper in the Appendix. The redundancy of the 
field equations in the FRW metric spaces is also clarified 
in the Appendix. 

11. INDUCED GRAVITY WITH TORSION 

In this paper we will study the four-dimensional in- 
duced gravity model 

with a conformally coupled Kalb-Ramond field strength. 
Here (b denotes a real scalar field. Moreover, E is a di- 
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mensionless coupling constant. Equation (2.1) also pro- 
vides a natural explanation for a universe with dimen- 
sionful constants such as gravitational "constant" and 
cosmological "constant." 

Indeed, (2.1) is invariant under the scale transforma- 
2 tion g,,-s g,, and 4 - s 1 4 ,  provided that 

~ ( 4  ) = (h /8  )44. Here s denotes a constant scale parame- 
ter. 

One notes that other possible terms could be present in 
(2.1) such as higher curvature terms motivated by string 
theories [13]. In fact, R terms are scale invariant by 
themselves without the help of the 4 field. Moreover, the 
compactification of 10D Einstein-Kalb-Ramond theory 
also has a contribution from the compactified six-spaces. 
Our strategy is to take (2.1) as a toy model for simplicity 
in analyzing the theory in greater detail. The equations 
of motion (EOM's) from varying the action (2.1) with 
respect to 4, g ,,, and A,, are 

Here T$", the energy-momentum tensor associated with 
4, is 

~ 1 ~ 0 ,  Gpv= tRgpv-  R pv defines the Einstein tensor. 
In fact, (2.4) is equivalent to a , ( ~ ~ 4 - 2 ~ ~ " a ) = ~ ,  

which can be solved straightforwardly. Indeed, this can 
be done by observing that the Kalb-Ramond field 
strength F,,,, is a totally skew-symmetric-type T(0,3  
tensor. Therefore we can map it to some type T (  1,O) 
contravariant vector T' with the help of the totally 
skew-symmetric-type T (  0 ,4)  Levi-Civita tensor E,,,~. TO 
be more precise, there exists a contravariant vector T S  
such that 

- 
Fp,,o - ~ p v , a ~ ~ '  (2.6) 

for every totally skew-symmetric-type T(O,3 tensor F,,, 
defined on our four-dimensional base manifolds. Note 
that both sides of Eq. (2.6) have exactly the same symme- 
try among their indices such that all degrees of freedom 
have been taken into account. One can hence show that 
(2.4) can be written as 

E , " " % , ( ~ ~ T ~  ) = o  . (2.7) 

By introducing the one-form T G  T,dxp, one can show 
that (2.7) is equivalent to the two-form equation 

after we multiply (2.7) with dx " A d x a  such that (2.7) be- 
comes ~ ~ " ~ ~ a , ( ~ - ~ T ~ ) d x ~ A d x ~ = O .  Here the asterisk is 
the Hodge star operator [3], which maps a differential n- 
form into its dual ( d  -n  )-form in d-dimensional spaces. 

Therefore one has 

d ( 4 p 2 ~ i = ~  

as a result of the involutive Hodge star operator, namely, 
* * 1, the identity map. If we live in a (pseudo-)Rieman- 
nian space M that has a trivial first cohomology group 
[14], namely, H'(M I = O  such that all closed one-forms 
defined on M are exact, there exists a scalar field x that 
satisfies 

For example, all simply connected spaces [i.e., 
I I , (M)=O] and contractible spaces belong to the class 
H ' (M )=o.  Following the idea of the Mach principle, we 
hope that all dimensionful coupling constants can be di- 
mensionless somehow. Therefore it sill be convenient for 
us to write x as X =  1nrl1 for some dimension-1 real scalar 
field 7 ,  where 1 denotes some dimensionless constant. 
The solution to Eq. (2.4) can hence be shown to be 

which has the required correct dimension. Moreover, in 
Sec. I11 we are going to treat 77 as an effective-field vari- 
able and study its implications. Before going any further, 
we will need the identities 

hence, 

Consequently, (2.2) and (2.3) can be simplified greatly by 
substituting all F,,, with the solutions given in (2.12) and 
(2.13). In order to bring (2.2) and (2.3) into a more 
comprehensive form, we will define 4 -- ep'2, e ' I2, 

k , -- 1 / 4 ~ ,  and k ,  - l2/2e for later convenience. In terms 
of these new variables and parameters, (2.2) and (2.3) be- 
come 

after some algebra. Note that we have brought all the 4 
dependence to the right-hand side of the above equations. 
Moreover, the generalized energy-momentum tensor 
T,,( p and Tp,( 8 are defined as 

respectively. Note that, by solving (2.41, we have not ob- 
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tained all informations of the torsion field, but reduced its 
degrees of freedom from 4 ( Ta ) to 1 ( 8 ). The remaining 
degree of freedom will be shown to be constrained by the 
invisible Bianchi identity hidden in (2.2). This point will 
be clarified further in Sec. IV. 

111. RADIAL DEPENDENCE 

The latest observation [9] of microwave background 
radiation gives us evidence for isotropy at  decoupling. 
This indicates that our Universe is isotropic and homo- 
geneous to a very high degree of precision. We will hence 
adopt the well-accepted cosmological principle [ lo- 121 
in this paper. Therefore, by time foilating our four- 
dimensional spaces into spacelike three-dimensional 
(pseudo-)Riemannian spaces, one can prove that the three 
scalar curvatures of all isotropic and homogeneous mani- 
folds equal some constants. Moreover, it has been shown 
that all constant-curvature manifolds fall into three 
different classes denoted by k =0, + I .  Here k = -R /6, 
with R 3  denoting its three-curvature. Accordingly, we 
can parametrize the corresponding (pseudo-)Riemannian 
metric tensor as the well-known FRW metric. Any phys- 
ically acceptable model must, therefore, admit some 
FRW-type solutions in order to be compatible with the 
cosmological observations at the cosmological scale. 
Hence all effective cosmological theories must be con- 
sistent with the FRW metric. 

People used to conclude that q, and 8 have to be func- 
tions of t only if q, and 8 are assumed to have a maximal 
form invariance compatible with the F R W  metric, name- 
ly, p ' (x  ) = q ( x  ) and B'(x ) = B(x ), where 8'(x ) denotes 
the form of the field 8 after a coordinate transformation 
such that @'(x ')=B(x ). Furthermore, it can be shown 
that if the torsion field itself is assumed to be maximal 
form invariant under spatial rotation and translation, 
then 8 and 4 have to be functions of t only. Indeed, after 
an infinitesimal translation x"=x '+ei, one can show that 

Hence one concludes that 9 and, similarly, q, have to be 
functions o f t  only. 

On the other hand, it was also assumed that all fields 
involved should have maximal form invariance, including 
A,, studied in this paper. It is then straightforward to 
show that A,, has to be a function o f t  only, for example, 
in k=O FRW spaces or  spatial IR3. Indeed, under an 
infinitesimal translation x"=x '+ei, one has 

If ei is a constant three-vector (i.e., a translation in spatial 
IR3 ), one has ai A,, = O  such that A,, has to be a function 
o f t  only. 

Consequently, the only nonvanishing components of 
the Kalb-Ramond field tensor are Foii and its permuta- 
tions. Comparing with (2.11), we find that Foij = O  if 
~ = q ( t  ). Hence the form invariance of A,, is incon- 
sistent with the Ansatz 8= 8( t ) unless ~ = 0 .  Therefore it 
seems to indicate that 8, should not play a role on the 
FRW manifolds. This also favors somehow our con- 

clusion, which will be shown shortly, that the torsion 
field should decrease to a negligible value in order to keep 
the FRW spaces stable. 

In fact, (3.2) itself is enough to imply A,,=O by ex- 
hausting all symmetries . . generated by typical rotational 
generators E ' = E > x ~ .  Here eiJ denotes some skew- 
symmetric constant parameters for rotation in IR3. 
Indeed, (3.2) becomes 

since ai A,,=O. Hence the y=O equation of (3.3) gives 
~ , E ' A ~ ~ = O ,  which implies Aio=O. On the other hand, 
y = k gives ak =aj€' which implies 

Aij = E ;  A,k. This in turn implies Aij =O. Note also 
that A,, is a skew-symmetric second-rank tensor such 
that above argument shows that all skew-symmetric 
second-rank tensors vanish in the k = O  FRW spaces if 
they are assumed to be maximal form invariant. 

Note that one does not, however, need to assume that 
all fields are maximal form invariant except the metric 
field [IS]. Indeed, it is known that the metric is deformed 
by the contributions from all fields such that the 
geometry of the system is determined accordingly and 
passively. It follows that the only object that should 
respect the various symmetries involved is the general- 
ized energy-momentum tensor [for example, the Tpv 
given in (AS)] because of its coupling to the metric field 
via the variational equations. 

It is, however, not easy to elaborate all spatial depen- 
dence in the field equations. Fortunately, we are going to 
show that by relaxing one above constraint and allowing 
a radial deviation (i.e., parametrizing q, and 8 as func- 
tions of t and r only), the radial deviation is in general in- 
compatible with the FRW metric. It turns out that any 
small radial deviation will turn on the divergent deviation 
in the asymptotic region ( r +  cc ). The field form in its 
asymptotic region is independent of its angular variations 
because all fields are assumed to vanish in spatial infinity. 
Therefore, if one can Drove that all fields are divergent in 
spatial infinity by assuming the radial deviation men- 
tioned above, it is reasonable to conclude that all fields 
involved in the theory should exclude any spatial depen- 
dence in the FRW spaces. Note that r in k = 1 spaces is, 
in fact, an angular variable; therefore, our argument 
above will not be applied. But it seems reasonable to as- 
sume that we do not need to consider the angular devia- 
tion at all in k = l  FRW spaces. I t  is expected that the 
cosmological principle in k = 1 FRW spaces will simply 
keep all angular variables discriminated equally. There- 
fore it is natural to assume the function of a t-only con- 
clusion. 

Therefore, before accepting the Ansiitze q,=q,(t ) and 
8=O(t ), we are going to  elaborate a bit about the this 
tricky radial dependence of 8 and q. Indeed, the ti and i j  
components of (2.14) read 
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Here i Dl a l p  ), = a i a j p  - rf; ak p denotes that all deriva- 
tives are to be evaluated on the three-dimensional spatial 
slices i ~ , , h , ~ ) .  Also, the right-hand side of Eq. (3.5) 
denotes all hl j  proportional terms. We will be able to 
show that the details of W are not essential to solving 
(3.5). Therefore we will keep dumping all hi] proportion- 
al terms found on the left-hand side of (3.5) without 
renaming W for convenience. 

Note that 

hence, it is straightforward to show that 

Therefore (3.5)  can be rewritten as 

where we have dumped hi j ikr  - 1 / r  ) a r p  in Whi l .  It is 
easy to show that the only nonvanishing component on 
the left-hand side of (3.7) is the rr component. Therefore 
the 66 and p p  components of (3.7) imply 

Hence the tr equation of (3.4) and the rr equation of (3.7) 
become 

Here we have kept only nonvanishing parts of (3.4) and 
(3.7), while an overdot and prime denote differentiating 
with respect to t and r, respectively, throughout the rest 
of this section. We can also write (3.9) and (3.10) slightly 
different as 

a- l+k  1 ) P a , i e a t ( l + k l ) ~  , 
e p )=-k288 '  , (3.11) 

-a+lI+kl)p 
by introducing the integration factors e and 

-gir)+il+k 
e ' ' ,  respectively, in (3.1 1 )  and (3.12). Here 
g ( r  is defined by the differential equation 

up to an arbitrary integration constant. Note that (3.1 1 )  
and (3.12) can be written as 

Here we have introduced a real function f  = f  ( t , r  ) such 
that 

a(tJ+glrl-( l+k ,  ) p l f , r~+  f i t , r i  
p f ( t , r ) = e  (3.16) 

namely, 

fit,r)=(l+kl)pit,r)-air)-g(r)+ l n p l ( t , r )  . (3.17) 

If k 2 # 0 ,  (3.14) and (3.15) imply 

f e l =  f ' e  . (3.18) 

By introducing one-forms d f  -- f d t  + f ' d r  and 
d 6~ 8dt + 6'dr defined on M ~ ,  one can rewrite (3.18) as a 
two-form equation 

d f  A d 8 = 0 .  (3.19) 

There implies that f  is a function of 8 ,  namely, 
f  = f  ( 6 i  t , r  1 )  or vice versa. Consequently, (3.14) and, 
also, (3.15) imply 

Since a f  /a6  is a function of 8 too, it is possible to find a 
function F (  6 )  such that 

Note that a ~ / a e =  - k 2 ( a  f / a e ) r l ;  hence, a F / a e  could 
be trouble at those points where, a f  /a6=0. But we will 
show, shortly, that there will not be any troubles at all by 
showing that a F / a 8  is, in fact, finite everywhere except 
at spatial infinity. Therefore (3.20) becomes 

such that p can be integrated directly so that the result 
reads 

Here 8, an integration constant, denotes some arbitrary 
function o f t  only. Consequently, (3.16) becomes 

alt,+g!r,-ll+kl)FIBl+ f ( B )  
F' = e  (3.24) 

Here B( t  ) --a( t ) - ( 1 + k ,  )pi t ). Furthermore, by 
defining 

which is a function of 6 only, (3.24) can be written as 

,r-(e)e,=eEuj+g[r' (3.26) 

Moreover, by introducing H i  8 )  such that 

(3.26) can be further written as 

Equation (3.28) can thus be integrated directly to give 
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H ( o ) = e a ( f ) J r d s  e g ( s ) = e a ( f ) ~ ( r )  ; (3.29) 

i.e., the factor Q ( r  defined by 

Q ( r ) -  Jrds eg(') (3.30) 

can be computed from the definition of g ( r )  given in 
(3.13). After some algebra, one has 

here g o  is an integration constant, which will be ignored 
later. We are only interested in the (asymptotic) radial 
dependence of 8 [hence p = F ( B ) + P ( t  )]; therefore, we 
will also turn off the t dependence for later convenience. 
Furthermore, Eq. (3.29) states that the radial dependence 
of 8 ( r )  can be obtained from, and should be similar to, 
Q ( r ) .  Indeed, the radial dependence of Q can be solved 
directly by integrating (3.30). After some algebra, one 
has 

up to some integration constants. 
Note that if k 2 = 0 ,  (3.1 1) and (3.12) can actually be in- 

tegrated directly [9] to give 

e -a+(1+k1)vp1= l ( r )  , (3.34) 

Here f ] ( r )  and f 2 ( t )  are integration constants in t and r, 
respectively. One has immediately e -a+g= f /f 2 .  A 
careful analysis shows that 

-a(f)-g(r)+(l+k, )q, 
e p1=k5 , (3.36) 

since f ( r  )e - g ( r ) =  f 2 ( t ) e  - a ( f '  must equal a real constant 
= k,. Therefore (3.36) can be written as 

which can be integrated directly to give 

Here k g  -- ( 1 + k ,  )k5 is a constant. Note that q52=ev. 
Note that both Qkz0  and Q k = - ,  diverge badly as 

r + m. Hence 0 and p also diverge in the asymptotic re- 
gion. Therefore the dynamics of this model in the FRW 
spaces favors exactly isotropic and homogeneous 8 and p 
fields. Therefore we have shown that the spatial depen- 
dence of 6 and p is inconsistent with the FRW metric in 
this theory. 

IV. CONTRIBUTION FROM THE TORSION FIELD 

Note that the Gij equation in (2.14) or, equivalently, 
(2.15) is, in fact, redundant as a result of the Bianchi 
identity D,GPv=O (see the Appendix) [16] and the spher- 
ically symmetric property of the FRW metric. Therefore 

we are left with two equations for three unknowns a, p ,  
and 0. It is apparent that there must be some hidden in- 
formation somewhere; otherwise, there should be an ex- 
tra hidden symmetry to be discovered. Fortunately, it is 
the right-hand side of (2.141, or TPv(p,8) ,  the generalized 
energy-momentum tensor, which should obey the 
current-conservation constant D, Tpv( p, O ) = O .  More- 
over, one has 

from the definition of curvature tensor given in (Al) .  By 
taking the trace with gVa, one obtains 

Indeed, the current conservation D, Tpv( p ,  9 ) = O  can be 
shown to be 

after a little bit of algebra. Furthermore, R , ,=~gPvR 
-GPv can be used to replace the R,, in (4.3) with R and 
G,, given by (2.15) and (2.14), respectively. Therefore 
one obtains 

If k2#0 and a,O#O for some p (or FPva#O), (4.4) gives, 
simply, 

We will, from now on, accept the Anatze p = p ( t )  and 
0 = 8 ( t )  along with the FRW metric. As a result, (4.5) is 
equivalent to 

Here f ,  df /dt, f ,, d f /dt 2, etc., denote 
differentiation with respect to t once, twice, etc. In fact, 
(4.6) can be integrated directly by introducing an integra- 
tion factor e 3a+p such that (4.6) is equivalent to 

Hence the solution to (4.6) is 

Note that (4.4) holds for any form of the potential term 
V(p) .  Therefore the solution (4.8) states that 8, (hence 
the torsion field) is, in fact, negligible if the induced 
Einstein-Kalb-Ramond theory (2.1 ) describes an 
inflationary universe. This is induced by the strong de- 
creasing factor e-3a in (4.8) if e a  [ = a ( t  ) ]  is undergoing 
a strong expansion during the inflationary phase and 
some reasonable initial conditions imposed on 0, which 
fix the proportional constant in (4.8). We can also put it 
another way: It is the low-energy phenomenon that re- 
quires the torsion field to be negligible, which is a reason- 
able consequence of Eq. (4.8) that accommodates the 
physics without any exotic boundary conditions. Some 
explicit solutions will be solved in Sec. V for further de- 
tails. 
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V. SOME SOLUTIONS 

In this section we are going to study the explicit 8 be- 
havior by solving the EOM directly. Note that one can 
simplify the tt equation in (2.14) as 

when the FRW metric is substituted. Furthermore, the 
trace equation of (2.141, g~"R,, ,  gives 

Hence (2.15) and (5.2) show that 

Substituting the F R W  metric into (5.31, one arrives at the 
ordinary differential equation (ODE) 

We will demonstrate the minor contribution from the 
Kalb-Ramond field by solving two special models with 
v($)=( ~ / 8 ) 4 ~  and V=0,  respectively. These two sets of 
solutions turn out, however, to be not very interesting be- 
cause they are difficult to be considered as physically ac- 
ceptable inflationary solutions. 

Note that the right-hand side of (5.4) vanishes if 
V ( $  ) = ( h / 8  )44. This is also the scale-invariant potential 
required by the scale symmetry for the action (2.1). 
Therefore, in the scale invariant limit, (5.4) reads 

which can be integrated by introducing the integration 
factor e3"+p too. The result is 

which has the solution 

This implies, from the similar structure of (4.8) and (5.7), 
that 

with k 3  denoting some constant to be determined by the 
initial condition. Eliminating 8,  in (5.1) by k 3 d t ,  one has 

Here k 4 - k ,  + k 2 k 3 = ( l  +2k312) /4e  denotes another 
constant. The EOM's (5.5) and (5.9) have the unique 
solution. 

Note that (5.11) is a solution to a : + k e - 2 " = ( h / 2 4 ~ ) e 9 0 ,  
a result of (5.9) and (5.10). Here po and a ,  are constants. 
Note that a ,  is just an arbitrary parameter, not the initial 
value of a .  Note further that any small deviation for p,  
will obey (5.7) and, hence, tends to return to its initial 
value p=po if we are dealing with inflationary physics by 
applying the action (2.1). This is obvious from (5.7) and 
is also confirmed from a numerical computation. 

The reason for obeying (5.7) comes from the scale sym- 
metry. Equation (5.7) is, in fact, the scale current equa- 
tion associated with the global scale symmetry. Hence 
the scale symmetry imposes a fairly strong constraint on 
the inflationary models that forces the set of solutions 
(5.10) and (5.1 1 )  to be unique up to two unknown param- 
eters po and a,. 

Unfortunately, the solution (5.11) gives rise to inflation 
with no graceful exit [17]. Therefore 44 theory is com- 
monly considered as a physically unacceptable 
inflationary model. 

If h=O, this set of solutions will no longer be valid 
[18]. It turns out that the vanishing cosmological limit 
( V=O) must be treated separately. It also turns out that 
the theory in this limit can be solved exactly on k=O 
F R W  spaces. For later convenience, we will consider the 
equivalent set of EOM [Eq. (5.911 and ij equation of 
(2.141, namely, 

Note that we have set h=O=k. This set of equations is 
also a good approximation if k  =O or af>>e-2a such 
that the keC2" term in (5.1) is negligible. This approxi- 
mation turns out to be a good one if we are dealing with 
an inflationary solution. Note that (5.12) is a simple alge- 
braic equation for 9, and 8 , .  Therefore it can be solved 
easily to give 

or, equivalently, a +pg,=const. Here p =pf  
=(1+- \ /1+(2 /3 )k4)  with p, denoting the roots of 

- p  = k 4  /6.  The solution can hence be obtained rather 
straightforwardly. The final answer is 

Here a,=a( t=O),  po-p( t=O),  and p lo -p , ( t=O)  

denote initial conditions. Also, q ,  = 3 - 1 / p i ,  the s o h -  
tions to q ,  = 2 + k 4 / 6 p 2 ,  denote some constant parame- 
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ters. Note that 1 + +k,  ? 0 is required for real solutions 
in (5.15) and (5.16). Equivalently, k 3 1 2 2 - - ( 1 + 6 ~ ) / 2  
should be a constraint on k, and I. 

Note that the solution (5716) is, however, impossible to 
generate enough inflation. Therefore we will turn our at- 
tention to a more realistic model which is more relevant 
to the inflationary process. One notes that the torsion- 
free induced gravity model has been studied intensively 
[5,17] before. Various results shown above are well 
known in the absence of the Kalb-Ramond term. We will 
show that the contribution from the Kalb-Ramond field 
is negligible as compared to the torsion-free models if one 
is dealing with inflationary theories. Moreover, we will 
show that the torsion field tends to vanish as soon as the 
inflationary process is completed. 

In fact, the torsion-free broken-symmetric potential 
= ( h/8 )( +2- u )2 has been studied [5,17] intensively be- 
fore. The minor correction in the theory (2.1) with tor- 
sion is indicated by (4.38). Various properties in the 
theory with torsion are similar to the torsion-free theory. 
The complete numerical solutions to Eqs. (5.1) and (5.4) 
can be solved by a Runge-Kutta 091 package in 
MATHEMATICA. We plot a few graphs in Fig. 1 for the 
general behavior of a( t ) and q( t ). In Fig. 1 we have set 
k=O, a ( t = 0 ) = 1 ,  q,=-5, g, = 4 ~  10-17, ~ = 0 . 0 1 ,  and 

t n 

u = 10, which are taken from the paper of Accetta, Zoller, 
and Turner 151. Note that the purpose of this figure is 
aimed at demonstrating in part the general behavior of 
a( t and p( t ), while 6, ( t ) can be realized easily from the 
t dependence of a. Also, note that the solid (dotted) lines 
draw the t dependence of a and $,=ep in the absence 
(presence) of the Kalb-Ramond action, respectively. The 
upper (lower) graphs denote 42 ( a ) ,  respectively. 

Note that we have also set l = k 7 =  1 (where 
8 , ~ k , e - ~ " - ~ )  for the graphs with a Kalb-Ramond 
term. Indeed, there are some differences in a ( t  ) in the 
early expansion era from the contribution of the Kalb- 
Ramond action. Moreover, it can be shown that a ( t )  in 

FIG. 1 .  We set k=O, a ( t=O)= l ,  qo=-5, ~ , ~ = 0 ,  
h=4X lo-'', ~ = 0 . 0 1 ,  and u = 10 in the plot. The solid (dotted) 
lines draw the t dependence of a and 42=eQ in the absence 
(presence) of the Kalb-Ramond action, respectively. Also, 
upper (lower) graphs denote &(a), respectively. In plotting the 
dotted lines, we have also set I = k7 = 1.  Note that the horizon- 
tal axis is the t axis in cosmological units. 

the k 7 =  1000 case is slightly larger than the k,= 1 case. 
This is reasonable; as indicated by (4.8), the major source 
of deviations comes from the early interval. Hence the 
choice of k 7  is not as sensitive as the choice of other pa- 
rameters. 

One notes further that the 4 dependence is roughly the 
same, which also gets oscillated as soon as 4 approaches 
its vacuum 4=v. The physics near the end of the 
inflationary process is hence not much different from pre- 
vious work. 

VI. CONCLUSION 

In summary, we have analyzed an induced effective 
theory with torsion. We found that the torsion field is, in 
fact, negligible in the inflation era. The Ansatz 8 = 8 ( t )  is 
found to be inconsistent with the maximal form invari- 
ance requirement imposed on the torsion field A,,. It is 
argued that the well-known cosmological principle im- 
posed on various fields is a strong restriction. We hence 
argue that, by allowing the radial dependence of various 
fields, the spatial dependence is inconsistent with the field 
equation for the scalars q and 8.  The use of the Ansatz 
B ( t )  is hence justified. We also show that the contribu- 
tion from the Kalb-Ramond action is, in fact, small in the 
inflationary era in which this theory should remain 
effective in an energy range slightly lower than the 
Planck scale. We also give some solutions to the field 
equations in order to demonstrate the explicit behavior of 
the torsion field. 

ACKNOWLEDGMENTS 

The author would like to thank Ue-Li Pen for helpful 
discussions and especially for showing the author the 
Runge-Kutta package for solving ODE'S. The author 
wishes to thank Herming Chiueh and S .  Y. Lin for assis- 
tant in running the computer program. This work was 
supported in part by the Taiwan NSC. 

APPENDIX: NOTATIONS AND REDUNDANCY 

Note that the curvature tensor R used in this 
paper is defined by the equation 

Here r;, is the Christoffel symbol or spin connection of 
the covariant derivative, namely, D ,  A , = a, A ,  - r:, A, .  
T o  be more specific, 

Here we use p,v,a=O,1,2,3 and i , j , k = 1 , 2 , 3  to denote 
time-space and spatial indices, respectively. Also, the 
Ricci tensor R,, is defined as 

And the scalar curvature R is defined as the trace of the 
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Ricci tensor, i.e., R -gpvR, , .  Moreover, the Einstein 
tensor G,, is defined as 

G -1 R - R  
p v  2gpv PV . (A31 

In standard cosmology, we are dealing with a spatially 
homogeneous and isotropic universe which is indicated 
by gravitational observations [9] as well as some philo- 
sophical considerations. It is known that the three 
different classes of FRW spaces are the only spatially iso- 
tropic and homogeneous spaces. In fact, the F R W  metric 
can be read off from the definition 

d ~ ~ ~ ~ , , , d x ~ d x "  

Here d Cl is the solid angle d f l = d  e2+ sin2@ d x 2  and 
k =0, + 1 stand for a flat, closed, or open universe, respec- 
tively. 

Most gravitational equations containing a piece of 
metric-field equations read 

This is known as the generalized Einstein equation. Here 
T,,,, the generalized energy-momentum tensor, can be a 
function of g,, and the rest of fields couple to the metric 
field. In fact, Eq. (A51 takes the form H,,=O. Here 
H -- G,, - PV T,,. 

It can be shown that four (in fact, one, because of the 
symmetry of the Friedmann-Robertson-Walker metric) 
out of the generalized Einstein equations are redundant 
as a result of the Bianchi identity D,GPv=O. One can 
show, [14] however, that every equation is equally redun- 
dant except the tt component of Eq. (A5), the well-known 

generalized Friedmann equation. This can be readily un- 
derstood by observing that the generalized Friedmann 
equation is, in fact, a first-order O D E  in contrast with all 
other equations, which are second-order ones. 

Consequently, the Bianchi identity can be rephrased, 
on shell, as 

This is because D,GMv=O as a result of the Bianchi iden- 
tity, while D,Tpv=O is considered an on-shell constraint. 
Equation (A61 becomes 

as soon as we substituted the FRW metric into (A6). 
Here H - j h ' j ~ , ~  and note that gi, ~ a ~ h , ~ .  Hence it is 
straightforward to show that Hij = Hhij in this theory if p, 
is spatially independent. The exclusive role of the gen- 
eralized Friedmann equation ( H m  ) can be easily checked. 
If a,#O, (A71 states that "H,=O implies H =O." On the 
other hand, H =O implies, instead, 

Indeed, Eq. (A8) can be integrated directly to obtain 

Note that (A9) is not enough by itself to imply the desired 
result H ,  ' 0 .  Therefore the generalized Friedmann 
equation is indeed an exclusive equation of motion. 
Therefore we can ignore any redundant equation but the 
generalized Friedmann equation. 
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