IEEE TRANSACTIONS ON COMPUTERS, VOL.59, NO. 10, OCTOBER 2010

1337

A Hybrid Approach to
NAND-Flash-Based Solid-State Disks

Li-Pin Chang

Abstract—Replacing power-hungry disks with NAND-flash-based solid-state disks (SSDs) is a recently emerging trend in flash-
memory applications. One important SSD design issue is achieving a good balance between cost, performance, and lifetime. This
study introduces a hybrid approach to large SSDs that combines MLC NAND flash and SLC NAND flash. Each of these flash
architectures has its own drawbacks and benefits, and this study proposes that the two can complement each other. However, there
are technical challenges pertaining to data placement, data migration, and wear leveling in heterogeneous NAND flash. The
experimental results of our study show that combining 256 MB SLC flash with 20 GB MLC flash produces a hybrid SSD. This hybrid
SSD is 1.8 times faster than a purely MLC-flash-based SSD in terms of average response time and improves energy consumption by
46 percent. The proposed hybrid SSD costs only four percent more than a purely MLC-flash-based SSD. The extra cost of a hybrid

SSD is very limited and rewarding.

Index Terms—Flash memory, storage systems, file systems, solid-state disks.

1 INTRODUCTION

NE of the design challenges of mobile computers is that

disk-based mass storage systems are power hungry
and fragile to shock. Because flash memory is nonvolatile,
power economic, shock resistant, and free from positioning
overheads, venders of mobile computers have recently
started replacing hard drives with NAND-flash-based solid-
state disks (SSDs). An SSD interacts with the host computer
(e.g., a laptop) via a standard interface, such as PATA or
SATA, and behaves much like a standard hard drive. An
SSD comprises a controller and a flash-memory array
(usually including 4-16 chips) [3], [19], and the SSD
controller firmware performs disk emulation.

Even though SSDs are much better suited to embedded
computers, the cost of flash memory still greatly decreases
the popularity of SSDs. Ordinarily, each flash-memory cell
represents a binary value. This design is referred to as single-
level-cell flash (i.e., SLC flash). If multiple voltage thresholds
are defined and a memory cell can be reliably charged, then
more than one bit can be represented. The design is referred
to as multilevel-cell flash (i.e., MLC flash). MLC flash is
cheaper and larger sized than SLC flash. However, SLC flash
still has an edge over MLC flash in terms of speed, durability,
and power consumption. Table 1 compares typical SLC flash
and MLC flash specifications [17], [18]: SLC flash is much
faster than MLC flash in terms of read and write. As their
operating currents are the same, SLC flash requires less
energy to carry out reads and writes. The geometry of SLC
flash is also finer than that of MLC flash, which means that
garbage collection in SLC flash is much easier than in

o The author is with the Department of Computer Science, National Chiao-
Tung University, 1001 University Road, Hsinchu, Taiwan 300, R.O.C.
E-mail: lpchang@cs.nctu.edu.tw.

Manuscript received 29 Apr. 2008; revised 22 June 2009; accepted 9 Nov.
2009; published online 4 Jan. 2010.

Recommended for acceptance by J. Antonio.

For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2008-04-0185.
Digital Object Identifier no. 10.1109/TC.2010.14.

0018-9340/10/$26.00 © 2010 IEEE

MLC flash. Further, an SLC-flash block is one order of
magnitude more durable than an MLC-flash block.
Although SLC flash seems better than MLC flash in many
aspects, MLC flash is about one third the cost of SLC flash.

This paper proposes a hybrid design for large SSDs.
Unlike conventional SSDs, a hybrid SSD comprises a single
small SLC-flash chip and a number of large MLC-flash
chips. These two types of NAND flash have their own
advantages and disadvantages, and combining them allows
both types of flash to complement each other. The goal of
this hybrid-SSD design is to have a response time as fast as
a purely SLC-based SSD, with a hardware cost as low as a
purely MLC-based SSD. However, the management of data
over heterogeneous NAND flash introduces several new
challenges. First, data placement in SLC flash and MLC
flash must consider not only the differences between these
two types of NAND flash, but also the characteristics of
disk access patterns. SLC flash better handles small, hot
data, while MLC flash is suitable for storing large, cold data.
Second, as SLC flash is relatively expensive, the SLC flash in
a hybrid SSD must be small. A strategy is also needed to
phase out data from the SLC flash in a timely manner to
maximize its accommodation of hot data. Lastly, wear
leveling is conducted in flash memory of different endur-
ance limits, so a new strategy is needed to balance the
lifespan of heterogeneous flash memory.

The rest of this paper is organized as follows: Section 2
reviews previous study on storage systems that employ
heterogeneous memory architectures. Section 3 proposes
the idea of hybrid SSDs. Section 4 analyzes hybrid SSDs in
terms of performance and overheads. Section 5 presents
experimental results, and Section 6 concludes this paper.

2 REeLATED WORK

In consideration of cost, power consumption, and form factor,
embedded computers are usually equipped with heteroge-
neous memory such as SRAM, DRAM, or nonvolatile RAM.
As a result, the management of heterogeneous memory has

Published by the IEEE Computer Society

1338
TABLE 1
Comparison between the Specifications of

Typical SLC Flash and MLC Flash [17], [18]
Type SLC MLC
Product No Samsung K9F2GO8UOA Samsung K9GAGO8BOM
Capacity 256M*8 bits 2G*8 bits
Page Size / 2K+64 / 4K+128 /
Block Size 128K+4K bytes 512K+16K bytes
Page Read 25 us 60 us
Page Write 200 us 800 us
Block Erase 1.5ms 1.5ms
Block Endurance 100K cycles 5K cycles
Operating Characteristics
opread, \gNrite, and Erase 3.3/ 15mA 3.3V/15mA
Standby Power Dissipation 3.3V / 10uA 3.3V / 10uA
Cost per GB (early 2008)* $11.05 $3.22

* From DRAMeXchange ®

become an increasingly important issue, and helps address
challenges related to data placement and data migration.

Avissar et al. [16] used a compile-time technique to
partition data among scratch-pad SRAM, local DRAM,
shared DRAM, and ROM. They showed that this technique
can significantly improve program runtime. Lee and Chang
[9] investigated energy-aware memory allocation and
migration over different types of nonvolatile RAM, includ-
ing battery-backed SDRAM, NOR flash, and NAND flash.
Unlike static data placement, upon the arrival of a write, a
hybrid SSD must direct the data to either the SLC flash or the
MLC flash. Exclusive data allocation is another difference
between the SLC flash and a standard cache of the MLC
flash. As reported by Wong and Wilkes [29], this exclusivity
improves hierarchal storage in terms of space utilization.

The rationale behind this study is closely related to (but
fundamentally different from) the disk-caching disks
(DCDs) proposed by Hu and Yang [25] and the hybrid
log (HyLog) proposed by Wang et al. [22]. Both of these
methods attempt to optimize random writes by logging.
The idea of a DCD is to separate logging activities from
normal data accesses using an extra disk. The HyLog, logs
hot data updates out of place, and overwrites cold data in
place. However, neither DCD nor HyLog method have to
deal with flash-memory management issues, including
garbage collection and wear leveling.

Heterogeneous memory management for storage systems
has become a popular research topic. In industry, Samsung
and Segate exhibited a hybrid-disk prototype combining a
hard drive and NAND flash in 2006. Hybrid disks provide
the host OS with new commands to help “pin” data in
NAND flash. The design accelerates the system boot process
because NAND flash reads much faster than hard drives.
Related technologies include Microsoft’s ReadyBoost and
Intel’s Turbo Memory. In academia, Kim et al. [24] proposed
a file-placement method using NAND flash and a hard drive
to reduce energy consumption. Bisson and Brandt [20] and
Chen et al. [7] proposed using a USB flash drive as a block-
level buffer cache to save energy.

Marsh et al. [2] proposed using NOR flash as a disk-
system read cache. However, modern computers have a
large DRAM disk cache, a large device-side read cache is of
little benefit. Kgil et al. [27] proposed replacing DRAM in
the host-side disk buffer cache with NAND flash. This

IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 10, OCTOBER 2010

approach utilizes multimode operations, as a memory cell
of advanced NAND flash can switch between SLC mode
and MLC mode. This study introduces a density-control
strategy that services hot data in the SLC mode and cold
data in the MLC mode. Comparing to density control, a
hybrid SSD can separate hot data from cold and manage
them in the SLC and MLC flash, respectively, effectively
reducing the management costs of NAND flash.

Researchers generally agree that disk-storage perfor-
mance is subject to the handling of small files and file-
system metadata. Wang et al. [28] proposed a hybrid file
system. This type of file system puts small files and metadata
in battery-backed RAM, while large files are left to disks.
Unlike traditional disk storage, flash memory has no seek
penalty, but is subject to garbage collection and limited
endurance. Also, beyond the storage-device boundary, an
SSD has no explicit intelligence to distinguish metadata and
user data. Other studies consider the use of SDRAM in the
SSD write buffer. Kim and Ahn [33] and Jo et al. [34] showed
that the write buffer prefers committing large, cold write
bursts to NAND flash. However, a standard 64-MB SDRAM
is nearly five times more expensive than a 1 GB SLC flash as
of mid 2009.

Recently, Yoon et al. [10] proposed Chameleon, which is a
solid-state disk that combines ferroelectric RAM (FeRAM)
with NAND flash. Park et al. [26] introduced PFFS, which is a
native flash-memory file system based on a hybrid archi-
tecture of phase-change RAM (PcRAM) and NAND flash.
Both FeRAM and PcRAM are nonvolatile, byte addressable,
and capable of in-place updates. Chameleon maintains
mapping tables for disk emulation in FeRAM. PFFS writes
file-system metadata and mapping tables to PcRAM. The
approach not only reduces the frequency of NAND-flash
small writes, but also eliminates the need to rebuild the
mapping information at start-up. However, FeRAM and
PcRAM are very expensive. A standard 128 K-word FeRAM
(128 K x 16 bits) is about 21 USD as of mid 2009. FeRAM and
PcRAM do not suffer from the endurance problem, which is
a major concern of using NAND flash. Of course, these
different hybrid architectures need not be exclusive. Various
memory technologies can be combined if performance is the
first priority.

3 HyYBRID SoLID-STATE DiskKs
3.1 Overview

An SSD consists of a microcontroller, a NAND-flash array,
and an optional external SDRAM. In typical SSDs, the
NAND-flash chips are all of the same type (i.e., either
SLC flash or MLC flash). In the rest of this paper, unless
explicitly specified, a purely MLC-flash-based SSD is called a
conventional SSD. The SSD firmware implements a NAND-
Flash Translation Layer (i.e., NFTL) to emulate disk geome-
try. AnSSD accepts reads and writes of disk sectors, translates
disk geometry into flash-memory addresses, handles garbage
collection and wear leveling, and responds to the host upon
completing the data transfer. Note that an SSD never buffers
data in volatile memory. This guarantees data integrity with
the write-through semantic.

Fig. 1 shows the architecture of a hybrid SSD. The design
is very similar to that of a conventional SSD, but includes an

CHANG: A HYBRID APPROACH TO NAND-FLASH-BASED SOLID-STATE DISKS

o

| sLC ‘ | MLC | | MLC |
s
b3
- | MLC] | MLC | | MLC |
=
<

| MLC] | MLC | | MLC |
L

Fig. 1. The architecture of a hybrid SSD, which combines an SLC-flash
chip with an MLC-flash array.

extra SLC-flash chip. It is quite easy to create a hybrid SSD
from a conventional SSD, as many typical SLC-flash chips
and MLC-flash chips share the same pin definition and
package dimension (e.g., both [17] and [18] are available in
48-pin TSOP I).

Let a piece of data be referred to as hot if it is frequently
updated. Otherwise, it is cold /nonhot. Fig. 2 shows the data
flow and control transfer in a hybrid SSD. Upon the arrival
of a write request, the write is accepted by the hot-data filter
if it goes to hot data. Unaccepted writes are dispatched to
the MLC flash. A write that successfully passes through the
hot-data filter arrives at the utilization throttle. As Table 1
shows, since SLC flash and MLC flash have different levels
of endurance, the utilization throttle balances the lifespan of
SLC flash and MLC flash. Specifically, if the SLC flash is
being worn much faster than the MLC flash, then the
utilization throttle will reduce the write traffic to the SLC
flash. Because the SLC flash is small, cold data should be
phased out of the SLC flash to maximize its accommodation
of hot data. Hot-data filter and utilization throttle are parts
of the firmware of a hybrid SSD.

3.2 The Hot-Data Filter

The hot-data filter determines whether or not the SLC flash
should accept a newly arriving write. This decision is made
based on not only the characteristics of realistic disk
workloads, but also on the differences between the
characteristics of SLC flash and MLC flash.

SLC flash has some advantages over MLC flash: 1) SLC
flash is much faster than MLC flash in terms of writes,
2) SLC-flash blocks are more durable than MLC-flash
blocks, and 3) SLC flash has a finer geometry than MLC
flash. The disadvantage of SLC flash is that it is more
expensive than MLC flash. A through inspection of real-life
disk workloads in this study shows that small writes arrive
at very high frequencies, and they repeatedly go to a small
amount of hot data. Nonhot data are touched by bulk
writes, but at very low frequencies. An even larger amount
of data is immutable. The above observations suggest that
SLC flash can better handle hot-data writes. Servicing the
frequently arriving writes of hot data with fast SLC flash
can greatly improve overall performance. In addition, the
SLC flash does not need to be large, because hot data have
very short life cycles.

This then raises the question of how writes of hot data can
beidentified. Previous studies on hot-data identification have
proposed various solutions, including least recently used
(LRU), LRU-k [8], and hash-table-based approaches [11].
However, these methods are complicated and may require

1339

Hash table
(for sector-level
mapping)

Garbage-collected data J

Utilization
throttle

l

Direct mapping
table
(for block-level
mapping)

Writes

Hot-data
filter Writes
..

Fig. 2. Data/control flows of the handling of reads and writes inside a
hybrid SSD.

large RAM space. Our inspection of real-life workloads
shows that the distribution of write-request counts with
respect to different request sizes is bimodal. In other words,
most of the writes are either very large or very small, and are
rarely medium sized. Therefore, this clear-cut distribution
suggests a simple method of hot-data identification.

This study proposes a threshold algorithm in Algo-
rithm 1. The algorithm finds the two peak frequencies in the
distribution of the write-request counts with respect to
different request sizes. The algorithm is based on a k-means
clustering algorithm [6]. In Algorithm 1, ¢[] is an array of
counters and c[¢] is the accumulated number of writes of
2¢ sectors. The largest acceptable write is 1,024 sectors, so
the algorithm maintains only 11 counters (i.e., 2°-2'%). For
any write whose size is not a power of two, its size is
rounded to the nearest power of two to meet algorithm
requirements. The algorithm iteratively finds a partition of
the counters (i.e., p in Step 4) and then the centroid of each
counter group (i.e., ¢ and j in Step 3), subject to minimizing
the value function f.

Algorithm 1. The threshold (2-means clustering)
algorithm
Require: c[0...n]: n counters that accumulate the total
numbers of writes of sizes 2°-2".
Define f(i,5,p) = Yo clil - [i — p| + X4y cli] - [i —
1::=0,7=0,p=0;
2: repeat
3: Fix p. Find ¢ and j to minimize ¢ = f(i, j, p);
4: Fix i and j. Find p to minimize ¢ = f(i, j, p);
5: until (¢ ==¢)
6: return 7; /* i is the threshold of small writes */

The output i is the threshold of small writes. The
proposed SSD design periodically invokes the algorithm
(e.g., every 1,000 writes) to redefine the threshold. The
SLC flash accepts any arriving write that is not larger than
the threshold. In our experiments, the threshold remains at
4 KB (i.e., eight sectors) most of the time.

3.3 SLC-Flash Management

Not surprisingly, the management of SLC flash involves
address translation, garbage collection, and wear leveling.
Address translation maps disk sectors to SLC-flash pages.
Garbage collection reclaims SLC-flash pages storing invalid
data by erasing blocks. Wear leveling tries to evenly erase

1. K-means clustering is inherently intractable. However, in our case, the
search space is very limited. Interested readers are referred to [32] for the
complexity analysis of Algorithm 1.

1340

. o Newly arriving
Growing direction of the head

) R data
pointer and the tail pointer

Head bl;c/

<«+—————————— K blocks (fixed)—————>

Tail block

Data that have not been updated for
writes to K blocks. The data are
moved to the MLC flash.

@ 'nvalid data [valid data

Fig. 3. Newly arriving data are written to the head block, and nonhot data
in the tail block are phased out from the SLC flash.

each SLC-flash block. In addition, because the SLC flash is
small, any nonhot data should be removed from the SLC
flash to maximize its accommodation of hot data.

This study proposes that SLC flash can be treated as a
circular log space, as shown in Fig. 3. In the design, blocks
in the log space are ordered by their physical-block
addresses (PBAs), and the first physical block succeeds
the last physical block. A head pointer refers to the head
block where newly arriving data are written, and a tail
pointer indicates the tail block from which free space is
reclaimed. The number of blocks between the two pointers
is no greater than a predefined parameter k. Initially, the
two pointers refer to the same block. Blocks that are not
between the two pointers must be free space. The two
pointers move toward large physical-block addresses. If a
pointer moves beyond the last physical block, it goes back
to the first physical block.

Upon the arrival of a write, the data are written to free
space in the head block. The head pointer advances to the
next block if there is no free space left. A piece of newly
arriving data invalidates its old copies on the SLC flash. In
this way, the most recent data always appear close to the
head pointer. Whenever the head pointer is ahead of the tail
pointer by more than k blocks, the tail block is erased for
garbage collection, and then the tail pointer advances. The
closer a piece of valid data is to the tail block, the lower is its
update frequency. Therefore, before the tail block can be
erased, any valid data found in the tail block are not hot and
can be phased out from the SLC flash (i.e., copied to the
MLC flash). This method has two major benefits: First,
because most of the SLC-flash data are hot, valid data are
rarely found in the tail block. As a result, garbage collection
involves relatively few copy operations. Second, wear
leveling across SLC-flash blocks is perfect because blocks
are erased sequentially.

In real-life disk workloads, hot data occupy only a small
amount of disk sectors. If a direct mapping table is used to
translate disk sectors to SLC-flash pages, RAM-space
utilization would be very low because the mapping is
sparse. Instead, this study proposes a small hash table for
address translation. Let the hash table have H,, entries (i.e.,
buckets). Whenever a write of sector number s arrives, the
bucket number is computed by H(s) = s mod Hy, in which
H, is a prime number immediately smaller than H,,. Probes
are used to resolve hash collision. As soon as a free bucket
is located, a pair of disk-sector number and the correspond-
ing SLC-flash block/page number is written to the bucket.
Section 5 evaluates different probing schemes and hash-
table sizes.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 10, OCTOBER 2010

3.4 The Utilization Throttle

In the proposed design, wear leveling in SLC-flash blocks
and MLC-flash blocks is separately enforced. In a hybrid
SSD, however, not only does the volume of traffic to SLC
flash and to MLC flash dynamically changes, but the SLC-
flash blocks and MLC-flash blocks have different endur-
ance levels as well (see also Table 1). As a result, it is very
possible that the SLC flash may wear out before the MLC
flash. This raises the question of how to balance the lifespan
of heterogeneous flash memory.

To address this problem, this study proposes a mechan-
ism called the utilization throttle. Whenever the SLC flash
wears much faster than the MLC flash, the utilization
throttle reduces write traffic to the SLC flash. The idea here
is to reject “not-so-hot” data, while still accepting very hot
data. Let the total numbers of SLC-flash blocks and MLC-
flash blocks be n, and n,,, respectively. Let d; and d,, be
the endurance of an SLC-flash block and an MLC-flash
block, respectlvely The erasure-cycle count of an SLC-flash
block b? is €”, and €' is accordingly defined for an MLC-
flash block b’" The relative wearing rw, of the SLC flash
and rw,, of the MLC flash are defined as

n, b Ny b7
_ i€t [ds d _ZJ 0€’
= —, all TWyy = ——].7
ns d”L nm

respectively.

Whenever rws > rw,, is true, the utilization throttle is
activated. Two strategies are adopted. First, it starts rejecting
writes of data that are not already in the SLC flash. If a piece
of data is very hot, then it repeatedly appears close to the
head block and will not be phased out. Thus, the SLC flash
still accepts writes to very hot data. If rws; > rw,, remains
true for a period of time, the utilization throttle starts
decreasing parameter k. As k decreases, the tail pointer
quickly catches up with a piece of data. In this case, garbage
collection phase out all data that is not updated at high
frequencies, and thus the rejection of writes becomes
aggressive. Still, writes of very hot data are not affected
because they are rarely phased out. Once the wearing of the
SLC flash is properly controlled (i.e., rw; <rwy,), the
utilization throttle becomes inactive and parameter k is
gradually enlarged.

When the SLC flash starts throttling, it only accepts
updates to existing data. However, the host working set
may change from time to time. Therefore, the throttling
algorithm must be improved so that it accepts new hot data:
After rejecting a nonupdate write request, the written
sectors are inserted in the hash table of the SLC flash as
virtual sectors. The rejected request is actually serviced by
the MLC flash, but it leaves dummy mapping information
in the hash table. Fig. 4 illustrates the use of virtual sectors.
Dummy mapping information associates a virtual sector
with the physical location of the regular sector that is
written immediately before the virtual sector. Virtual-sector
information is removed from the hash table when the block
it is associated with is erased during garbage collection. If a
virtual sector is written again before it retires from the hash
table, it is officially accepted as a regular sector.

Algorithm 2 shows the procedure of the proposed
throttling algorithm. In Step 2, if the written sectors are

TWs

CHANG: A HYBRID APPROACH TO NAND-FLASH-BASED SOLID-STATE DISKS

New sectors not already
in SLC flash are inserted
as virtual sectors

(- i

K-
k

Layout of data on SLC flash,
including virtual sectors

Layout of data on SLC flash
Virtual/non-virtual
sectors are subject to

garbage collection Virtual sectors

0 Invalid sectors []Valid sectors

Fig. 4. Using virtual sectors in the throttling mode. A virtual sector
appears only in the hash table of the SLC flash.

found in the hash table, then the incoming write request is
accepted. If the sectors are absent from the hash table, they are
inserted to the hash table as virtual sectors in Step 5, and are
then rejected in Step 11. Steps 7-10 decrease parameter k at a
frequency of every 1,000 requests (Step 7) and a step of 100
(Step 8). Whenever the utilization throttle becomes inactive,
parameter k is enlarged at the same frequency and step.

Algorithm 2. The algorithm for utilization throttling
Require: W, D: write request W goes to data D;
c: a static counter, initially 0.
k: the number of blocks between the head
block and the tail block.
Ensure: rw, > rwy, {Throttling is now activated}
1: c—c+1;
2: if (D is found in the SLC-flash hash table) then
3: return ACCEPT;
4: else
5: Insert virtual sectors of D to the hash table;
6: end if
7. if (¢ > 1,000) then
8 k«— k—100;c+«0;
9: {Decrease k for aggressive rejection of writes}
10: end if
11: return REJECT;

3.5 MLC-Flash Management

In a hybrid SSD, we propose managing the MLC flash as if
the SLC flash were not there. As in a conventional SSD, the
MLC flash in a hybrid SSD is responsible for disk emulation.
All the disk sectors, except those accepted by SLC flash,
are mapped to MLC-flash pages. However, SSD firmware
cannot afford the RAM-space overhead for sector-level
mapping in MLC flash. Instead, disk emulation for the MLC
flash adopts a two-level mapping scheme. Let a physical block
refer to a flash-memory block, which includes a number of
pages. Partition all the disk sectors into logical blocks, each of
which is as large as a physical block. Label these logical
blocks and physical blocks as logical-block addresses (LBAs)
and PBAs, respectively. For ease of presentation, let a disk
sector be as large as an MLC-flash page.

During first-level mapping, logical blocks are mapped to
physical blocks in a one-to-one fashion, as Fig. 5a indicates.
A physical block is referred to as a data block if it is mapped to
a logical block. The sectors of a logical block are sequentially
mapped to pages of the corresponding data block. A spare
block, which is a physical block entirely of free space, is
allocated on the first sector write to a logical block because

1341
I BAOTN /7 N
PBA O -
LBAO 0 0
PBA 1 e &
LBA 1 2 2
PBA2 3 N _
LBA2 4 1 R
_— = ®©,
S
LBA3 PBA3 5 ®
6
11| PBA4 7
216
3 7
PBA=4, PBA=3,
PBAS a data block. alog block.

D Invalid data D Valid data D Free space

Logical blocks Physical blocks

@ (b)

Fig. 5. (a) The mapping of LBAs to PBAs. PBAs 0, 1, 2, and 4 are data
blocks. (b) LBA 0 is mapped to PBA 4, and sector updates are carried
out in a log block at PBA 3. The numbers in the boxes are disk-sector
addresses.

in-place updating is prohibited. The new data are written to
the first page of the spare block before the old copy of the
sector data is invalidated. Subsequent sector-write data are
appended to the free space of the spare block. This block is
called a log block of the logical block because it logs updates.
Fig. 5b shows that LBA 0 is mapped to PBA 4, and updates to
LBA 0 take place in a log block at PBA 3. If the log block runs
out of free space, another log block is created. A block chain of
a logical block refers to an ordered list of one data block and
a number of log blocks.

Second-level mapping maps the disk sectors of a logical
block to MLC-flash pages in the corresponding block chain. A
small cache of second-level mapping information can be used
to take advantage of localities in access patterns. Whenever a
logical block is accessed, the pages of its data block and log
blocks are scanned to establish the mapping of the logical
block’s sectors to pages in the logical block’s block chain. This
mapping information is then cached so that the pages do not
need to be scanned again on subsequent accesses to the same
logical block. The mapping cache is a performance optimiza-
tion option, and is not mandatory.

This management scheme uses two RAM-resident tables.
Fig. 6a shows a scenario in which there are four logical
blocks and nine physical blocks. The L2P table (i.e., logical-
to-physical table), indexed by LBAs, maps logical blocks to
data blocks. The LB table (i.e., log-block table), indexed by
PBAs, maintains block chains. For example, the L2P table in
Fig. 6b shows that a logical block at LBA 1 is mapped to a
data block at PBA 4, which is followed by two log blocks at

LBA LBA PBA

o
®
>
o
@
>

o
H
w N R o
IEN LS

NULL
NULL
8

NULL

0NV AWNRE O
w

:

Data Log
blocks blocks

Spare
blocks

L2P table LB table

(a) (b)

Fig. 6. The L2P table and the LB table: (a) Block chains of logical blocks,
and (b) the corresponding L2P table and LB table.

1342

PBA 3 and PBA 6. The block chain ends with NULL in the
LB table. Note that the mapping information in the SLC
flash’s hash table precedes that in the L2P table and
LB table. This means that if a piece of data previously
stored in the SLC flash is written to the MLC flash, all the
mapping information related to the data must first be
removed from the hash table.

As writes continue to arrive, the number of spare blocks
decreases. This necessitates garbage collection, which is
carried out by means of block-chain folding. To fold the block
chain of a logical block, a spare block must first be allocated.
All the valid sector data are then collected from pages in the
block chain and copied to the spare block. The spare block
serves as a data block after the copying. Again, sectors in the
data block must be sequential in terms of sector addresses.
Some techniques can be used to reduce garbage-collection
overhead and optimize performance. Specifically, if a log
block is full and all the sector data appear in sequential
order, the log block can be switched to a data block without
any data copying. Reclaiming log blocks with low space
utilization for a long period of time is also a priority.

This management scheme for MLC flash is standard and
inherits many key ideas from existing NFTLs [4], [12], [21],
[30], [31]. The goal of a hybrid SSD is to provide a low-cost
incremental improvement over conventional SSDs. We
believe that this layered approach is preferable from the
software-engineering point of view.

3.6 Write-Back Strategies

As shown in prior sections, data on the SLC flash and the
MLC flash are separately managed. This section discusses
how joint strategies can be taken to further improve
system performance.

Before erasing the tail block of the SLC flash for garbage
collection, all valid data in the tail block must be moved to
the MLC flash. This study proposes a new write-back policy
for the SLC flash: Before moving a valid sector from the SLC
flash to the MLC flash, the MLC flash checks whether or not
the logical block related to the sector has been allocated to
any log blocks. If so (e.g., LBA 1 in Fig. 6), then the sector is
written to the MLC flash. Otherwise (e.g., LBA 0 in Fig. 6),
the sector is copied back to the head block of the SLC flash.

This new policy reduces garbage-collection overhead on
the MLC-flash side. Because MLC flash adopts block-level
mapping, garbage collection can become very inefficient for
random write patterns. This new policy delays writing a
piece of data to the MLC flash if the write increases the
randomness of the write pattern. However, this new policy
accumulates valid data in the SLC flash, reducing the SLC
flash’s accommodation of hot data.

This study also proposes a complementary policy for the
MLC-flash side: Whenever an MLC-flash block chain is being
folded for garbage collection, valid data are collected from not
only the log blocks of the chain but also from the SLC flash.
This policy opportunistically removes valid data from the
SLC flash. Sectors related to the removed data on the SLC
flash are then marked as virtual, as they are forcibly removed.

A possible problem with this approach is that some data
cannot retire from the SLC flash because the logical block of
the MLC flash related to the data has not been allocated to
any log blocks. To deal with this problem, the write-back

IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 10, OCTOBER 2010

policy on the SLC-flash side monitors the fraction of write
traffic contributed by update. Whenever the ratio notably
decreases, either the SLC flash has accumulated too many
valid data, or the temporal localities in workloads have
changed. In these situations, the write-back policy of the
SLC flash is deactivated until the update traffic returns to a
stable level.

4 SYSTEM ANALYSIS

4.1 Performance Analysis

Before presenting experimental results, this study analyti-
cally reviews how a hybrid SSD improves upon a conven-
tional SSD in terms of response.

For ease of explanation, assume that a disk sector, SLC-
flash page, and MLC-flash pages are the same size. Let the
MLC flash take ¢} , t¥, and t{, units of time to read a page,
write a page, and erase a block, respectively. Let the SLC
flash take t, t¥, and t units of time to read a page, write a
page, and erase a block, respectively. Let there be g, pages
and g, pages in an SLC-flash block and an MLC-flash
block, respectively. The following analysis is concerned
with write costs only. That is because writes are slow and
may involve expensive garbage collection.

Consider a write which is one page large. If the write is
directed to the SLC flash, then the basic expense is ¢ units of
time. Now consider garbage collection for the SLC flash. Let
n; be the average number of pages found valid in the tail
block. Out of n; valid pages, an average of n, pages are copied
to the head block, and (n; — ny) pages are written to the MLC
flash. In other words, one SLC-flash block is erased for every
other (gs — n2) page writes. The expected write cost is

(nat? + not? +t°) /(gs — na) +t°

units of time.

If the write arrives at the MLC flash, then the write costs
involve 1) writing one page, 2) maintaining the sector-
mapping information, and 3) reclaiming some free space. One
page write costs the MLC flash ¢} units of time. As mentioned
in Section 3.5, if the write goes to an LBA which does not have
cached mapping information, then the LBA’s block chain
mustbe scanned again. Let n3 be the average number of pages
scanned on a cache miss. The average overhead for scanning a
block chain is O; =" n3.*> Next, consider the garbage-
collection overhead. Let n, be the average number of blocks
erased by folding a block chain. The overhead of folding one
block chain is Oy = g,, (], + t) 4 n4t’,. Let p; be the miss
ratio of the mapping-information cache, and let p, be the
probability that a page write will trigger garbage collection.
The estimated write cost is thus

p101 +p20s + t)),

units of time.
Let a be the ratio of the amount of user data written to
the SLC flash to the amount of all user data written to a

2. According to our measurement, reading only the spare area of a page
requires nearly the same amount of time as reading the entire page. The
result has also been reported in [12].

CHANG: A HYBRID APPROACH TO NAND-FLASH-BASED SOLID-STATE DISKS

hybrid SSD. The expected response of writing one page to a
hybrid SSD is then

a((nltz + n?ﬁf + ti)/(gs - n?) + tfs'u)
+ (1= @) (101 + p20s +12).

The above analysis shows that a hybrid SSD improves upon
a conventional SSD by means of 1) switching slow MLC-
flash operations to fast SLC-flash operations and 2) reducing
the management overheads of the MLC flash, i.e.,, O; and
0. Of course, how well a hybrid SSD performs largely
depends on ny, ny, n3, n4, p1, and py, which are determined
by workload characteristics.

4.2 RAM-Space Requirements

This section shows the RAM-space requirements of the
essential data structures for managing conventional SSDs
and hybrid SSDs.

Consider the following configuration: A conventional
SSD reports itself as a 20 GB block device, and it has a 21 GB
MLC-flash array. Let one MLC-flash block be 512 KB. The
20-GB disk space has 40,960 512-KB logical blocks, and the
MLC flash has 43,008 physical blocks. Thus, there are
43,008 — 40,960 = 2,048 spare blocks. Logical blocks and
physical blocks are both addressed by 2 bytes. Based on the
same configuration, a hybrid SSD adds an extra 128-MB
SLC flash to the 21-GB MLC-flash array. Let the SLC-flash
page size be 2K bytes. The SLC flash has 65,536 pages.

The RAM-space requirements of a conventional SSD are
determined by an L2P table and an LB table, as Section 3.5
indicates. The L2P table has 40,960 entries for all the LBAs.
The LB table hash 43,008 entries for all PBAs. Each entry in
these two tables is a 2-byte PBA. Therefore, the two tables
need (40,960 + 43,008) x 2 = 164 KB.

A hybrid SSD requires the same data structures for MLC-
flash management. Unlike a conventional SSD, the SLC
flash requires a hash table. The hash table is for sector-level
address translation, as mentioned in Section 3.3. Because
hot data quickly leave many invalid data in the SLC flash,
only a small number of SLC-flash pages are mapped to
valid sector data and the hash table does not need to be
large. Let the hash table has 32,768 entries, which is half the
total number of the SLC-flash pages. For ease of explana-
tion, let a disk sector be as large as an SLC-flash page. A
hash-table entry stores a disk-sector number and an SLC-
flash page number as a (key, value) pair. The key needs
24 bits to address all the sectors of a 20-GB block device,
and 16 bits to address 65,536 2-KB pages. The hash table
requires 32,768 x (24 + 16)/8 = 160 KB of RAM space.

Compared to a conventional SSD, a hybrid SSD requires
only an extra hash table for SLC-flash management. The
experimental results below show that this investment is
very rewarding in terms of performance improvement.

5 EXPERIMENTAL RESULTS
5.1 Experimental Setup and Performance Metrics

A simulator was built to conduct experiments on the
proposed hybrid SSDs and conventional SSDs. As SSDs
present themselves as logical disks, our experimental work-
loads are disk traces of read and write. Disk traces were

1343

TABLE 2
Three Experimental Configurations of Hybrid SSDs

Geometry Timing characteristics
page block block page page block
size size endurance read write erase

C1 SLC 2KB 128KB 100K 25 pus 200 us 1.5 ms
MLC 2KB 128 KB 10K 60 pus 800 pus 1.5ms
C2 SLC 2KB 128KB 100K 25 pus 200 us 1.5 ms
MLC 4KB 512KB 10K 60 pus 800 us 1.5ms
C3 SLC 2KB 128KB 100K 25 pus 200 us 1.5 ms
MLC 4KB 512KB 5K 60pus 800 pus 15ms

collected from the daily use of a UMPC (Ultra Mobile PC)
ASUS R2H. This UMPC is equipped with a Celeron-M ULV
processor, 768 MB of RAM, and a 20 GB disk. We installed
Windows XP and Linux on the UMPC to collect different
types of disk workloads. The disk was formatted in NTFS
under Windows XP and ext3 under Linux. Applications run
on the UMPC include web browsers, e-mail clients, movie
players, FTP clients, office suites, and games. Trace collection
continued for one month for each operating system. For each
run of our experiments, workload traces were replayed
10 times on our simulator to accumulate more erasure-cycle
counts. The replay provides no artificial benefits to a hybrid
SSD, because any workload can entirely write the SLC flash
more than twice under any experimental setting.

Table 2 show the three different configurations of hybrid
SSDs considered in our experiments. Basically, the specifi-
cations of the SLC flash and the MLC flash follow those of
real products [17], [18]. The total size of the MLC flash in
the experiments remains at 21 GB, so the space utilization of
the MLC flash is never higher than 20/21 = 95 percent. The
size of the SLC flash in a hybrid SSD is an independent
variable. Configuration C; evaluates a scenario in which the
SLC flash and the MLC flash have the same geometry. In
configuration Cs, the blocks and pages of the MLC flash are
larger. In configuration C;, the endurance of MLC-flash
blocks is lower. These experiments do not consider
parallelism among the NAND-flash chips. Before each run
of experiments, the MLC flash maps every logical block to a
physical block. Unless explicitly specified, the default
settings are as follows: The total number of the hash-table
entries for the SLC flash is half the total number of the SLC-
flash pages. The MLC flash adopts the dual-pool algorithm
for wear leveling [13] with parameter T'H = 16.

Dynamic density control proposed by Kgil et al. [27] is
evaluated for performance comparison. This method as-
signs a frequently accessed LBA to the SLC mode. An LBA
in SLC mode requires double MLC-flash capacity. When an
SLC-mode LBA is accessed infrequently, the LBA can be
switched back to MLC mode to increase free capacity.

The experiments in this study also consider various
metrics of performance improvement, flash-memory life-
time, and hardware costs. Performance improvement is
evaluated in terms response: Let there be total n requests
(reads and writes) in an experimental workload. Let a
conventional SSD and a hybrid SSD respond to the
ith request in r¢ and r/ units of time, respectively. The
average response of a hybrid SSD can be denoted as

B Windows NTFS
M Linux Ext3

|II]IJ|...

1 2 4 8 16 32 64 128 256 512 1024

B Windows NTFS
M Linux Ext3

10

oo 110 JI-I-‘I

1 2 a 8 16 32 64 128 256 512 1024
Write-request size (sectors)

(@) (b)
1808 1808
M Windows NTFS Write
M Linux Ext3 Write

- IIIIi'
18400 . J.

<64 128 256 512 1024 2048 4096 8192 16384 32768

Write hit count

Frequency
Update ratio

Write-request size (sectors)

B Windows NTFS Read
M Linux Ext3 Read

-

4 B 16 32 64 128 256 >s12

Number of sectors
Number of sectors

Read hit count

(©) (d)

Fig. 7. Profiles of disk workloads collected from Windows XP and Linux
operating systems. (a) Write counts with respect to different request
sizes, (b) update ratios of writes respect to different request sizes,
(c) sector counts with respect to different write hit counts, and (d) sector
counts with respect to different read hit counts. Scales of Y-axes of
(c) and (d) are logarithmic.

(>, ") /n, and that of a conventional SSD as (>}, r%)/n.

i=1"1

The response-speedup ratio (i.e., RS ratio) is defined as

Z?:l r
Z:él T:'I'

Note that the common factor n has been reduced. The larger
the RS ratio is, the better a hybrid SSD performs.

The flash-memory lifetime issue is considered in the
following terms: 1) The evenness of the wearing of blocks of
the same type, and 2) the ratio of the average erasure-cycle
count of SLC-flash blocks to that of the MLC-flash blocks.
The second metric is referred to as block-wearing ratios
(BW ratios). If the SLC flash is well protected, the BW ratios
will be no higher than the ratio of the block endurance of
SLC flash to that of MLC flash. As for hardware costs, this
study adopts energy-saving ratios (ES ratios) and extra-cost
ratios (EC ratios). The ES ratio represents the ratio of the
total energy consumed by a hybrid SSD to that consumed
by a conventional SSD. The EC ratio denotes the ratio of the
total cost of flash-memory chips of a hybrid SSD to that of a
conventional SSD. Table 1 includes the costs and the energy
models for both SLC flash and MLC flash.

5.2 Profiles of Real-Life Disk Workloads

This section provides profiles of the experimental workloads.
This information helps reveal the rationale behind the
proposed hybrid SSD design and the experimental results.
This section first focuses on writes because they concern
flash-memory management most. Fig. 7a shows the dis-
tributions of write counts with respect to different request
sizes. The X-axis refers to the request size in terms of disk
sectors, and the Y-axis represents the total number of write
requests. The distribution of NTFS is bimodal. In most
cases, the disk is accessed by small writes of eight sectors.
The second largest part includes writes of 128 sectors. The
histogram of the ext3 workload looks very similar to that of
the NTFS workload. However, ext3 generates more small

IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 10, OCTOBER 2010

writes of eight sectors than NTFS. It also generates large
writes of 256 sectors.

The relationship between the sizes of write requests and
data attributes (i.e., hot or nonhot) may be an interesting
point. Let update ratio be the ratio of the total number of
sectors written to the total number of distinct sectors ever
written. If this ratio is related to a request size, then only
writes of that size are counted. Fig. 7b shows that, under
NTFS, small writes have very high update ratios, while
large writes are of low ratios. The update ratios of ext3 are
similar to those of NTFS.

Next, this section investigates how many sectors are
updated at high frequency. Let the write hit count be the
number of times a disk sector is written in the entire
workload. Fig. 7c shows the sector counts with respect to
different write hit counts. Note that the scale of the Y-axis is
logarithmic. In both the workloads of NTFS and ext3, a small
amount of sectors are updated no less than 16,384 times. In
summary, small writes repeatedly go to a small collection of
disk sectors, while large writes barely touch a piece of data
multiple times. Therefore, if a write is small, it may very well
go to hot data. These observations are consistent with those
reported in [5], [23], [28], [30].

Readers may question why the disk still receives so many
writes of hot data, as these should have been absorbed by
the host OS’s write buffer. However, closer inspection shows
that writes of hot data are contributed by not only file
systems, but user applications as well. In our disk traces,
writes to file-system metadata frequently arrive at the disk
storage. In particular, the Master File Table of NT file system
and cluster-group headers of ext3 file system are updated at
high frequencies. Even for read-only operations, the time
stamp of a file is updated every time the file is opened.
Additionally, NTFS and ext3 are journal file systems. For
fast crash recovery, the on-disk journal must be updated
before dirty blocks are committed onto the disk [15]. As for
user applications, many of them maintain their own index
structures for fast data retrieval. For example, a web browser
maintains its own webpage cache, and it frequently flushes
the index file onto the disk to keep it up-to-date.

Unlike writes, strong temporal localities do not occur
among reads. Fig. 7d shows sector counts with respect to
different read hit counts. Over a one-month time-span, no
sectors are read more than 256 times under NTFS, and
64 times under ext3. This is because frequent reads of a
sector are absorbed by the disk cache in the host’s operating
system. Because read shows no noticeable temporal local-
ities, whether or not the SLC flash can efficiently handle,
writes of hot data is the key to the success of hybrid SSDs.

5.3 Performance Improvement of Hybrid SSDs over
Conventional SSDs

This section examines the performance improvement of a

hybrid SSD over a conventional SSD. Diverse conditions are

considered, including different SLC-flash sizes, different

SLC/MLC configurations, and different disk workloads.

5.3.1 Size of SLC Flash

This section evaluates the RS ratios that can be achieved by a
hybrid SSD. The SLC flash of a hybrid SSD varies from 32 to
512 MB. This study also evaluates dynamic density control
[27] for comparison. Because the density of MLC flash is

CHANG: A HYBRID APPROACH TO NAND-FLASH-BASED SOLID-STATE DISKS

—e— NTFS, C1

2 | —a—nNTFS 2 3 TE;ZS’CC;
—%— NTFS, C3 d

18 | o Ext3CL

) A - Ext3, C2

x - Ext3, C3

—8

& | . e T
32 64 128 256 512 64 128 256 512 1024
SLC-flash size (MB) Extra MLC-flash capacity (MB)

(@) (b)

Fig. 8. Response-speedup ratios (RS ratios) achieved by (a) the
proposed hybrid SSD and (b) dynamic density control [27]. See Table 2
for definition of configurations C;, Cy, and Cs3. There is no SLC flash
in (b).

twice as high as that of SLC flash, the extra capacity of MLC
flash adopted by dynamic density control is between 64 and
1,024 MB for fair comparison. Different configurations (i.e.,
Cy, Cs, and Cj3) and different disk workloads (i.e., NTFS and
ext3) are considered. Figs. 8a and 8b show the results of a
hybrid SSD and the density-control method, respectively.
The Y-axes of the two figures stand for the RS ratios.

In Fig. 8a, the RS ratio appears to steadily increase as the
SLC flash increases in size. The improvement saturates
when the SLC flash reaches 256 MB for two reasons: First,
when the SLC flash is large enough, a piece of hot data can
rarely be phased out from the SLC flash. Second, large SLC
flash offers plenty room to collect valid sectors and then
writes them back to the MLC flash with proper timing (see
Section 3.6).

When the SLC flash is small, and smaller than 128 MB in
particular, performance improvement is limited for a few
reasons: First, many hot data are forcibly phased out from
the SLC flash before they are updated again. Copying hot
data from the SLC flash to the MLC flash is of little benefit
and may significantly increase response time. Second, to
maintain reasonable update traffic, the SLC flash is eager to
phase out nonhot data. The MLC flash then suffers from
random write patterns. Third, as many erasure-cycle counts
are accumulated on a small number of SLC-flash blocks, the
utilization throttle will start rejecting writes to protect the
SLC flash. Overall, 256 MB is a good size for SLC flash, as
the benefits diminish beyond this size.

Fig. 8b shows the RS ratios obtained using dynamic
density control. These results are not as good as those of a
hybrid SSD. Density control may be beneficial to disk cache
in the host operating system due to read temporal localities.
However, there are no such localities on the storage-device
side, as they have been eliminated by the host-side disk
cache. Thus, read response is not much improved. A major
fraction of write response is contributed by garbage collec-
tion, but density control has no means to deal with it. Density
control also has large space requirements: With 1,024 MB of
extra MLC-flash capacity, the RS ratio in Fig. 8b is smaller
than the ideal speedups (i.e., 1.2 times on read and two times
on write, as Table 1 indicates).

5.3.2 SLC/MLC Configurations

This section investigates how the performance of a hybrid
SSD can be affected by different SLC/MLC configurations.
Only results under the NTFS workload are considered. Fig. 9

1345

2000 2000
O SLC user writes O SLC user reads
O MLC user reads
O MLC GC reads
B MLC WL reads

O MLC scan

O SLC GC erase
2200 = & MLC GCerase
B MLC WL erase

MM SLC GC writes
O MLC user writes

1600 | & MLC GC writes 1600
B MLC WL writes

GB)

1200 1600

o
S
5]

Total bytes written (GB)
o
(=3
3

1200
800

Boll ol

c1' c1 c3 a3 c1'

Total bytes erased (GB)

Total bytes read

IS
o
5]

IS

S

5}

(a) (b) (c)

Fig. 9. Under the NTFS workload (a) write traffic, (b) read traffic, and
(c) erasure overheads of configurations C; and C;. “GC,” “WL,” and
“scan” refer to garbage collection, wear leveling, and block-chain scan,
respectively.

assists with this discussion, as it shows how user data,
garbage collection, and wear leveling contribute overheads
of read, write, and erasure. The SLC flash is 256 MB in
configurations C; and Cj, while configurations C| and Cj
have no SLC flash. Fig. 9 does not include configuration C
because it behaves nearly the same as Configuration Cj
when the SLC flash is 256 MB.

First, consider configurations C; and C}. As a hybrid SSD
directs small writes to the SLC flash, Fig. 9a shows that in
configuration C;, the SLC flash absorbs a portion of write
traffic. Even though small writes do not make a major
contribution to write traffic, since SLC flash writes four
times faster than MLC flash, configuration C; still achieves
an RS ratio of 1.3. Additionally, of all the 1,534,627 write
requests, 68 percent are handled by the SLC flash. This
implies that the user experience can be largely improved, as
the host issues small writes to a disk most of the time.

Fig. 8a shows that the RS ratio achieved by configuration
Cjy is 1.84, which is much higher than that of configuration
C;. Comparing configurations Cs to Cj in Fig. 9 shows that
the improvement is due to a significant reduction in garbage-
collection overhead of the MLC flash. Configurations C3 and
Cj; have a large MLC-flash block size, and thus the total
number of spare blocks on the MLC flash is small. With keen
competition for spare blocks, a block chain might be forcibly
folded before the free space in the last log block of the chain is
fully utilized. As free space is wasted in this way, garbage
collection becomes very inefficient. The write-back policy of
the SLC flash addresses this problem: Until a logical block of
the MLC flash is accessed by a large write, the SLC flash
keeps valid data written by small requests related to the
logical block. This delays the allocation of log blocks to the
logical block, which greatly alleviates the competition for
spare blocks.

5.3.3 Effects of Workloads

Fig. 8a shows that the RS ratios of a hybrid SSD improve
consistently under different disk workloads. However,
readers may notice that a hybrid SSD performs better
under the NTFS workload than under the ext3 workload.
The reason for this remains unclear, as in Section 5.2 the
two workloads’ profiles are shown similar. The following

1346

TABLE 3
Performance Factors of Configurations C; and C;
Measured under Workloads of NTFS and ext3

a ny ny n3 n4 P1 P2
C’s NTFS 0 — — 48.4 2.0 0.034 0.028
Cs NTFS 0.17 1258 1029 44.08 192 0.011 0.017
C’3 ext3 0 — — 81.5 197 0.012 0.011
Cs ext3 0.23 10.38 8.63 8218 192 0.005 0.009

discussion uses the analytical model presented in Section 4.1
for performance characterization.

This analytical model is first validated by comparing it to
the results reported in Fig. 8a. Table 3 shows performance
factors ni, ny, n3, ng, p1, and p, measured in experiments.
Different configurations (i.e., C3 and C_g) and different
workloads (i.e., NTFS and ext3) are also considered. The
SLC flash of configuration Cj is 256 MB, and there is no SLC
flash in configuration Cj. The estimated response of one
page write for configuration C3 under the NTFS workload is

we, = 0.17 x ((12.58t] 4+ 10.29t* + t%) /(g5 — 10.29) + t2')
+0.83 x (0.011(44.08t.,) + 0.017 (g, (¢, + t)
+1.92t¢) +t2).

Because configuration C’3 has no SLC flash, its estimated
response under the same workload is

we = 0.034(48.41],) + 0.028 (g (1], + ti) + 2.05,) +t1.

Using timing parameters in Table 1, we have w,, /w., = 1.76.
Based on the same calculation, we have we, Jwe, = 1.4 for the
ext3 workload. The above calculated ratios 1.76 and 1.4 are
very close to their counterparts 1.8 and 1.38 in Fig. 8a,
respectively. This validates the performance analysis above.

The performance factors in Table 3 show two major
differences between the NTFS workload and the ext3
workload. First, ext3 generates more small writes than
NTFS, as the « of configuration Cs is 0.23 under ext3 and is
0.17 under NTFS. Fig. 7a also reports this result. Second,
when SLC flash is not in use, garbage collection is more
intensive under NTFS (p, = 0.028) than it is under ext3
(p2 = 0.011). However, using SLC flash greatly improves p;
from 0.028 to 0.017 under NTFS, which is much better than
under ext3 (from 0.011 to 0.009). Apparently, the NTFS
workload has some behaviors that the ext3 workload does
not have.

Fig. 10 shows write requests arriving at the MLC flash in
a hybrid SSD. Figs. 10a and 10b show the results of
considering an arbitrary trace fragment extracted from the
NTEFS workload. The results of Fig. 10a are for configuration
Cj, while Fig. 10b is for configuration Cs. Figs. 10c and 10d
show their counterparts under the ext3 workload. Both of
these trace fragments generate nearly 3.5 GB of write traffic.

Notice that in Fig. 10a, writes are widely spread over the
entire disk space. The NTFS traces are collected from a one-
year old Windows XP installation. Not only are small files
distributed throughout the disk space, but large files are
fragmented into pieces as well. This widespread write
pattern is at odds with the block-level mapping scheme of
the MLC flash. Fig. 10b shows that write-pattern random-
ness is largely weakened by adopting the SLC flash. Under

IEEE TRANSACTIONS ON COMPUTERS, VOL. 59,

NO. 10, OCTOBER 2010

4.E+07 4.E+07

3.E407

2.E+07 2.E407

1.E+07 Thew 1.E:07

DD, ot e e e oo an e 0,600

(©) (d)

Fig. 10. Write traffic to the MLC flash in a hybrid SSD under different
workloads. X-axes are sequence of writes, and Y-axes are disk-sector
numbers. (a) C}, NTFS; (b) C;, NTFS; (c) Cj, ext3; (d) Cs, ext3. The
SLC-flash size is 0 MB in (a) and (c), and 256 MB in (b) and (d).

the ext3 workload, writes appear in a region of disk space,
as Fig. 10c shows. This is because the ext3 traces are
collected from a brand-new Linux installation, which
utilizes only 2.2 GB of the 20 GB disk capacity. We believe
that the write distribution of ext3 will become similar to that
of NTFS after a long period of use.

5.4 Hash-Table Designs for the SLC Flash

The SLC flash requires a hash table for address translation.
This section evaluates different hash schemes and hash-
table sizes.

This part of the experiment is based on configuration Cs
with a 256-MB SLC flash. The SLC flash has 131,072 2-KB
pages. The sector numbers of data are used as hash keys,
and the hash function seeks to find the remainder of
dividing the hash key by the largest prime number
immediately smaller than the hash-table size. If there is a
collision, linear probing or quadratic probing can be used.
The hash table size varies from 16,384 to 65,536 table
entries. To limit the time spent on probing, only a limited
number of probes can be taken. This number varies from 1
(never resolving collision) to 32. Performance of a hash
scheme is evaluated in terms of 1) the total number of
writes rejected due to unresolved collisions and 2) the
RS ratio of the hybrid SSD. Fig. 11 shows these results. The
lines in this figure are labeled with the probing method and
the hash-table size. For example, “216 Tinear” corresponds
to a hash table using linear probing over 65,536 entries.

The first part of our observation is on the hash-table size.
When the hash table has only 16,384 entries, a lot of writes
are rejected and the RS ratios are low. The hash table rejects
more writes under ext3 than under NTFS. This is because
the ext3 workload consists of more small writes than the
NTEFS workload, as Fig. 7a indicates. When the hash-table
size is increased to 32,768 entries, the number of rejected
writes decreases significantly and the response improves
greatly. This improvement begins to level off when the

CHANG: A HYBRID APPROACH TO NAND-FLASH-BASED SOLID-STATE DISKS

6.E+05 - NTFS

---e--- 2014, Linear NTFS
—=e— 2414, Quadratic
--x-- 2015, Linear
—— 215, Quadratic
--4-- 2016, Linear
—+— 216, Quadratic

5.E+05 -

4.E+05

jected

)

3.E+05 T

RS ratios

“e--:- 2014, Linear
—e— 2414, Quadratic
=++x-++ 2015, Linear
—%— 2A16, Quadratic
-+ 2A16, Linear
—+—2*16, Quadratic

Writes rej

2.E+05 T

1.E+05

0.E+00

1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128
Probes allowed Probes allowed

(a) (b)

---e--- 2A14, Linear
ext3 —=e— 2714, Quadratic ext3
---x--- 2015, Linear
—>— 215, Quadratic 180
«++4--- 2A16, Linear
—+— 2*16, Quadratic

---@-- 2014, Linear
—e— 2414, Quadratic
“+x++ 2A15, Linear
—»— 2A16, Quadratic
“++4--+ 2016, Linear
—+— 2*16, Quadratic

6.E+05

5.E+05 -

A4.E+05 x_

ected

)

3E:05 ©

Writes rej

2E405 -\

1.E+05

0.E+00

32 64 128 1 2 32 64 128

4 8 16
Probes allowed

(©) ()

Fig. 11. The total number of writes rejected by the hash table under
(a) the NTFS workload and (c) the ext3 workload. The RS ratio under
(b) the NTFS workload and (d) the ext3 workload.

8 16
Probes allowed

hash-table size is greater than 32,768. This implies that the
total amount of valid data on the SLC flash is usually close
to 32,768"512 = 16 MB (a sector is of 512 bytes), which is
only one-sixteenth the SLC-flash capacity. Sufficiently large
SLC flash provides enough buffer space to keep valid
sectors away from the tail block.

The second part of our observation is on the probe
method. Linear probing and quadratic probing show similar
performance when the hash table is sufficiently large. When
a small hash table of 16,384 entries is considered, quadratic
probing rejects more writes than linear probing. That is
because, even though a write request is classified as small, it
may involve a number of contiguous sectors. A write can
be accepted only if all the written sectors can have their
mapping information inserted in the hash table. Linear
probing tends to maintain the continuity of a key sequence
in the hash table, which reduces the possibility of rejecting a
write request. Another parameter is how many probes can
be made. Results show that a small hash table (i.e., 16,384
entries) may require more probes to resolve collisions. With
a reasonably large hash table, the benefits diminish when
more than eight probes are allowed. The observations are
consistent under different workloads. In summary, linear
probing over 32,768 entries with up to eight probes seems a
good choice.

5.5 Flash-Memory Lifetime Issues

This section examines 1) wear leveling over blocks of the
same type (i.e., SLC or MLC) and 2) the efficacy of the
utilization throttle. The second item is evaluated in terms of
the BW ratio (refer to Section 5.1). Let endurance ratio of a
configuration be the ratio of the endurance of SLC-flash
blocks to that of MLC-flash blocks. Table 2 shows that the
endurance ratios of configuration C, and configuration Cs
are 10:1 and 20:1, respectively. This section considers the
NTFS workload.

1347

1600 2
+

€3, SLC flash —e—C2/(10:1)
1200 - - €3(20:1)
€2, MLC flash
+ C3, MLC flash
80 4 «— (2, SLC flash

Erasure-cycle count

3
5
4

o 10000 20000 30000 40000 8 16 32 6 128 2 512
Physical block addresse (PBA) SLC-flash size (MB)

(a) (b)

Fig. 12. Under the NTFS workload (a) distributions of erasure-cycle
counts of SLC-flash blocks and MLC-flash blocks, and (b) BW ratios.

Fig. 12a shows the distributions of the erasure-cycle
counts of SLC-flash blocks and MLC-flash blocks. The
X-axis and the Y-axis denote flash-memory blocks” PBAs
and their erasure-cycle counts, respectively. In this experi-
ment, the SLC flash is 256 MB in both configurations C,; and
Cs. Fig. 12a shows that, as expected, wear leveling of SLC-
flash blocks is perfect. This is because the proposed scheme
erases all the SLC-flash blocks in a round-robin fashion.
Wear leveling over MLC flash is independent of the idea of
hybrid SSDs. This study adopts the dual-pool algorithm [13]
with parameter TH = 16 for wear leveling over MLC-flash
blocks. Fig. 12a shows that the wearing of MLC-flash blocks
is even.

The second issue of this experiment is whether or not the
utilization throttle properly balances the lifespan of SLC
flash and MLC flash. If the utilization throttle works
properly, the BW ratios should be no higher than the
endurance ratio (i.e., 10:1 for Cy and 20:1 for C3). The X-axis
and the Y-axis of Fig. 12b denote the SLC-flash sizes and the
BW ratios, respectively. Results show that when the SLC
flash is no larger than 16 MB, the BW ratios are strictly
controlled at 10 and 20 for configurations C; and Cs,
respectively. This is because the SLC flash is too small to
sustain all the incoming writes without violating the
endurance ratios. In this case, the utilization throttle starts
rejecting writes to protect the SLC flash. In particular,
configuration C, rejects more writes than configuration Cs
because configuration C; has a smaller endurance ratio. This
also explains why the RS ratios of configuration C, in Fig. 8
are smaller than those of configuration C3 when the SLC flash
is small. Fig. 12b shows that when the SLC flash is larger than
32 MB, the BW ratios are lower than the endurance ratios of
configurations C, and Cs because a large number of SLC-
flash blocks share the total erasure-cycle counts. This proves
the effectiveness of the utilization throttle.

5.6 Energy Consumption and Hardware Costs

This section focuses on the energy consumption and
hardware cost of hybrid SDDs. The hardware cost of a
conventional SSD and a hybrid SSD are calculated accord-
ing to Table 1. The energy models of SLC flash and MLC
flash are based on the specifications in Table 1. For example,
the energy required to write an MLC-flash page is
3.3V x 15 mA x 800 u seconds = 39.6 pJ. The following dis-
cussion is based on configuration Cs, because the energy
model, geometry, and costs of the SLC flash and MLC flash
listed in Table 1 directly apply to configuration Cs.

1348

TABLE 4
The EC Ratios and ES Ratios of Configuration Cs
with Different SLC-Flash Sizes

SLC-flash EC ratios ES ratios ES ratios
size NTFS ext3
32 100.5% 83.8% 94.2%
64 101.0% 68.9% 87.0%
128 102.0% 58.0% 78.6%
256 104.1% 54.2% 73.6%
512 108.2% 52.2% 70.9%

Table 4 shows the EC ratios and ES ratios of a hybrid SSD
with respect to configuration C; (refer to Section 5.1 for the
definition of ES ratios and EC ratios). These results show
that hybrid SSDs consume less energy than conventional
SSDs, especially when the SLC flash is large. Generally
speaking, the SLC flash helps to conserve energy like it
reduces response time. When the SLC flash is 256 MB, the
ES ratios are 54.2 and 73.6 percent under the workloads of
NTEFS and ext3, respectively. As for extra costs, results show
that the cost of hybrid SSDs with an 256 MB SLC flash is
only 1.04 times more expensive than a conventional SSD.
We believe that this investment is affordable and very
rewarding.

6 CONCLUSION

As high-capacity NAND flash is becoming affordable,
replacing power-hungry disks with large and cheap solid-
state disks is an increasing trend. However, there is always
a compromise between storage density and performance, as
reflected by the physical characteristics of SLC flash and
MLC flash. This paper investigates the combination of
heterogeneous NAND-flash chips in large SSDs. The idea is
to have SLC flash and MLC flash complement each other.
This study proposes data placement/migration and wear
leveling strategies for heterogeneous NAND flash. The
rationale behind this hybrid-SSD design is closely related to
the observations of real-life disk workloads. The primary
finding of this study is that a hybrid SSD greatly improves
upon a conventional SSD in terms of response, throughput,
and even energy consumption. All of these improvements
are achieved by adding a small SLC flash to a conventional
SSD. The extra cost of a hybrid SSD is limited, and worth
the investment.

Our goal for future study is to develop multitier
architectures. For example, a small nonvolatile RAM serving
as a write buffer, SLC flash acting as a high-speed logging
device, and MLC flash functioning as the final repository
of data.

ACKNOWLEDGMENTS

This work is in part supported by research grant NSC-96-
2218-E-009-017 from the National Science Council, Taiwan,
R.O.C., and a research grant from A-DATA Technology Co.,
Ltd. This paper is an extended version of [14].

IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 10, OCTOBER 2010

REFERENCES

(1
(2]

(3]

[4]

(5]

o]

(7]

(8]

]

(10]

(1]

[12]

(13]

(14]

[15]

[16]

[17]

(18]

[19]

(20]

(21]

(22]

(23]

(24]

(23]

A. Kawaguchi, S. Nishioka, and H. Motoda, “A Flash-Memory
Based File System,” Proc. USENIX Technical Conf., 1995.

B. Marsh, F. Douglis, and P. Krishnan, “Flash Memory File
Caching for Mobile Computers,” Proc. 27th Hawaii Conf. Systems
Science, 1993.

C. Park, P. Talawar, D. Won, M]. Jung,].B. Im, S.S. Kim, and Y.J.
Choi, “A High Performance Controller for NAND Flash-Based
Solid State Disk (NSSD),” Proc. 21st IEEE Non-Volatile Semicon-
ductor Memory Workshop (NVSMW), 2006.

C.H. Wu and T.W. Kuo, “An Adaptive Two-Level Management
for the Flash Translation Layer in Embedded Systems,” Proc.
IEEE/ACM Int’l Conf. Computer-Aided Design, 2006.

D. Roselli, J.R. Lorch, and T.E. Anderson, “A Comparison of
File System Workloads,” Proc. 2000 USENIX Ann. Technical
Conf., 2000.

E. Forgy, “Cluster Analysis of Multivariate Data: Efficiency versus
Interpretability of Classifications,” Biometrics, vol. 21, pp. 768-769,
1965.

F. Chen, S. Jiang, and X. Zhang, “SmartSaver: Turning Flash Drive
into a Disk Energy Saver for Mobile Computers,” Proc. 11th ACM/
IEEE Int’l Symp. Low Power Electronics and Design, 2006.

EJ. O'Neil, P.E. O'Neil, and G. Weikum, “The LRU-k Page
Replacement Algorithm for Database Disk Buffering,” ACM
SIGMOD Record, vol. 22, no. 2, pp. 297-306, 1993.

H.G. Lee and N. Chang, “Energy-Aware Memory Allocation in
Heterogeneous Non-Volatile Memory Systems,” Proc. Int’'l Symp.
Low Power Electronics and Design, 2007.

J.H. Yoon, E.H. Nam, Y.J. Seong, H.S. Kim, B.S. Kim, S.L. Min, and
Y.K. Cho, “Chameleon: A High Performance Flash/FRAM Hybrid
Solid-Sate Disk Architecture,” IEEE Computer Architecture Letters,
vol. 7, no. 1, pp. 17-20, Jan.-June 2008.

J.W. Hsieh, T.W. Kuo, and L.P. Chang, “Efficient Identification of
Hot Data for Flash Memory Storage Systems,” ACM Trans. Storage,
vol. 2, no. 1, pp. 22-40, 2006.

J. Kim,] M. Kim, S.H. Noh, S.L. Min, and Y. Cho, “A Space-
Efficient Flash Translation Layer for Compactflash Systems,” IEEE
Trans. Consumer Electronics, vol. 48, no. 2, pp. 366-375, May 2002.
L.P. Chang, “On Efficient Wear-Leveling for Large-Scale Flash-
Memory Storage Systems,” Proc. 22nd ACM Symp. Applied
Computing, 2007.

L.P. Chang, “Hybrid Solid-State Disks: Combining Heterogeneous
NAND Flash in Large SSDs,” Proc. 13th Asia and South Pacific
Design Automation Conf., 2008.

M.E. Russinovich and D.A. Solomon, Microsoft Windows Internals:
Microsoft Windows Server 2003, Windows XP, and Windows 2000,
fourth ed. Microsoft Press, 2004.

O. Avissar, R. Barua, and D. Stewart, “An Optimal Memory
Allocation Scheme for Scratch-Pad-Based Embedded Systems,”
ACM Trans. Embedded Computing Systems, vol. 1, no. 1, pp. 6-26,
Nov. 2002.

Samsung Electronics Company, “K9F2G08UOA 256M * 8 Bit SLC
NAND Flash Memory Data Sheet.” 2006

Samsung Electronics Company, “K9GAGO8UOM 2G * 8 Bit MLC
NAND Flash Memory Data Sheet (Preliminary).” 2006

Samsung Electronics Company, “NAND Flash-Based Solid State
Disk Data Sheet,” http://www.samsung.com/Products/
Semiconductor/FlashSSD/download /Standard_type.pdf, 2010.
T. Bisson and S. Brandt, “Reducing Energy Consumption with a
Non-Volatile Storage Cache,” Proc. Int’l Workshop Software Support
for Portable Storage (IWSSPS), 2005.

SW. Lee, DJ. Park, T.S. Chung, D.H. Lee, SSW. Park, and H.J.
Song, “A Log Buffer-Based Flash Translation Layer Using Fully-
Associative Sector Translation,” ACM Trans. Embedded Computing
Systems, vol. 6, no. 3, pp. 18:1-18:27, 2007.

W.G. Wang, Y.P. Zhao, and R. Bunt, “HyLog: A High Performance
Approach to Managing Disk Layout,” Proc. Third USENIX Conf.
File and Storage Technologies, 2004.

W. Vogels, “File System Usage in Windows NT 4.0,” Proc. 17th
ACM Symp. Operating Systems Principles, 1999.

Y.J. Kim, K.T. Kwon, and J. Kim, “Energy-Efficient File Placement
Techniques for Heterogeneous Mobile Storage Systems,” Proc.
Sixth ACM and IEEE Int’l Conf. Embedded Software, 2006.

YM. Hu and Q. Yang, “DCD-Disk Caching Disk: A New
Approach for Boosting I/O Performance,” Proc. 23rd Int’l Symp.
Computer Architecture, 1996.

CHANG: A HYBRID APPROACH TO NAND-FLASH-BASED SOLID-STATE DISKS

[26] Y.W. Park, S.H. Lim, C. Lee, and K.H. Park, “PFFS: A Scalable
Flash Memory File System for the Hybrid Architecture of Phase-
Change RAM and NAND Flash,” Proc. 23rd ACM Symp. Applied
Computing, 2008.

[27] T. Kgil, D. Roberts, and T. Mudge, “Improving NAND Flash
Based Disk Caches,” Proc. 35th Int’l Symp. Computer Architecture,
2008.

[28] A.Wang, P.L. Reiher, G.J. Popek, and G.H. Kuenning, “Conquest:
Better Performance through a Disk/Persistent-RAM Hybrid File
System,” Proc. Ann. Conf. USENIX Ann. Technical Conf., 2002.

[29] T.M. Wong and]J. Wilkes, “My Cache or Yours? Making Storage
More Exclusive,” Proc. Ann. Conf. USENIX Ann. Technical Conf.,
2002.

[30] S.Lee, D. Shin, Y. Kim, and J. Kim, “LAST: Locality-Aware Sector
Translation for NAND Flash Memory-Based Storage Systems,”
ACM SIGOPS Operating Systems Rev., vol. 42, no. 6, pp. 36-42, 2008.

[31] C. Park, W. Cheon,]J. Kang, K. Roh, W. Cho, and J. Kim, “A
Reconfigurable FTL (Flash Translation Layer) Architecture for
NAND Flash-Based Applications,” ACM Trans. Embedded Comput-
ing Systems, vol. 7, no. 4, pp. 38:1-38:23, 2008.

[32] D. Arthur and S. Vassilvitskii, “How Slow is the k-Means
Method?” Proc. 22nd Ann. Symp. Computational Geometry, 2006.

[33] H. Kim and S. Ahn, “BPLRU: A Buffer Management Scheme for
Improving Random Writes in Flash Storage,” Proc. Sixth USENIX
Conf. File and Storage Technologies, 2008.

[34] H.Jo,].U.Kang, S.Y. Park,].S. Kim, and J. Lee, “FAB: Flash-Aware
Buffer Management Policy for Portable Media Players,” IEEE
Trans. Consumer Electronics, vol. 52, no. 2, pp. 485-493, May 2006.

1349

Li-Pin Chang received the BE degree in

computer science and information engineering

from I-Shou University, Taiwan, in 1995, and
o the MSE and PhD degrees in computer
science and information engineering from the
National Taiwan University, in 1997 and 2003,
respectively. He is an assistant professor in the
Department of Computer Science, National
Chiao-Tung University, Taiwan. His research
interest is in operating systems, storage
systems, and real-time system. He had served on the editorial board
of the Journal of Signal Processing Systems (Springer, SCI-E) and
the technical committees of international conferences, including the
ACM Symposium on Applied Computing (ACM SAC), the IEEE Real-
Time Systems Symposium (IEEE RTSS), the IEEE International
Conference on Embedded and Real-Time Computing Systems and
Applications (IEEE RTCSA), and the IEEE/IFIP International Con-
ference on Embedded and Ubiquitous Computing (EUC).

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

