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Fig. 3. An example of the replica in ��� � � for (a) � � ���MHz without
an ordering constraint, and (b) � � ������	 MHz with an ordering con-
straint.

[8] is more efficient. (The method in [8] is not compared in Table I
as it does not compute minimum sampling frequency without ordering
restriction.) Comparing Tables I and II, we can see that the minimum
sampling frequency without a constraint can be much smaller than that
with a constraint. Fig. 3 shows the replica in ��� ��� with a constraint
(������ � ������ MHz) and without a constraint (������ � 	�� MHz)
when the bandpass signals are GSM 900 and GSM1800 as in the first
case of Table II.

VI. CONCLUSION

We have proposed a new algorithm for finding the minimum sam-
pling frequency for multiband signals. We have derived a new set of
conditions for alias-free sampling. These conditions lead to an itera-
tive algorithm for finding the minimum sampling frequency. There is
no need to consider ordering of the signal bands in the folded spectrum
in the implementation of algorithm. The method can be generalized to
find alias-free sampling frequency intervals and to find the minimum
sampling frequency when the ordering of replicas is constrained.
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Cooperative Interference Management With
MISO Beamforming

Rui Zhang and Shuguang Cui

Abstract—In this correspondence, we study the downlink transmission
in a multi-cell system, where multiple base stations (BSs) each with mul-
tiple antennas cooperatively design their respective transmit beamforming
vectors to optimize the overall system performance. For simplicity, it is as-
sumed that all mobile stations (MSs) are equipped with a single antenna
each, and there is one active MS in each cell at one time. Accordingly,
the system of interests can be modeled by a multiple-input single-output
(MISO) Gaussian interference channel (IC), termed as MISO-IC, with in-
terference treated as noise. We propose a new method to characterize dif-
ferent rate-tuples for active MSs on the Pareto boundary of the achievable
rate region for the MISO-IC, by exploring the relationship between the
MISO-IC and the cognitive radio (CR) MISO channel. We show that each
Pareto-boundary rate-tuple of the MISO-IC can be achieved in a decentral-
ized manner when each of the BSs attains its own channel capacity subject
to a certain set of interference-power constraints (also known as interfer-
ence-temperature constraints in the CR system) at the other MS receivers.
Furthermore, we show that this result leads to a new decentralized algo-
rithm for implementing the multi-cell cooperative downlink beamforming.

Index Terms—Beamforming, cooperative multi-cell system, interference
channel, multi-antenna, Pareto optimal, rate region.

I. INTRODUCTION

Conventional wireless mobile networks are designed with a cel-
lular architecture, where base stations (BSs) from different cells
control communications for their associated mobile stations (MSs)
independently. The resulting inter-cell interference is treated as
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additive noise and minimized by applying a predesigned frequency
reuse pattern such that the same frequency band is reused only by
non-adjacent cells. Due to the rapidly growing demand for high-rate
wireless multimedia applications, conventional cellular networks
have been pushed towards their throughput limits. Consequently,
many beyond-3G wireless technologies such as WiMAX and 3GPP
UMTS Long Term Evolution (LTE) have relaxed the constraint on the
frequency reuse such that the total frequency band becomes available
for reuse by all cells. However, this factor-one frequency reuse pattern
renders the overall network performance limited by the inter-cell
interference; consequently, more sophisticated interference manage-
ment techniques with multi-cell cooperation become crucial. Among
others, one effective method to cope with the inter-cell interference
in the cellular network is via joint signal processing across different
BSs. In this correspondence, we study a particular type of multi-BS
cooperation for the downlink transmission, where we are interested
in evaluating the benefit in terms of network throughput by coopera-
tively optimizing the transmit beamforming vectors for different BSs
each with multiple antennas. Notice that the problem setup of our
work is different from that for a fully cooperative multi-cell system
considered in, e.g., [1]–[6], where a central processing unit is assumed
with the global knowledge of all the required downlink channels and
user messages to jointly design the transmitted signals for all BSs.
In contrast, our work focuses on the decentralized implementation
of the multi-cell cooperative downlink beamforming assuming only
the local message and neighboring-channel knowledge at each BS,
which is more practical than implementing the full baseband-level
coordination. It is worth noting that decentralized multi-cell coop-
erative downlink beamforming has been studied in [7] to minimize
the total power consumption of all BSs to meet with MSs’ individual
signal-to-interference-plus-noise ratio (SINR) targets, based on the
uplink-downlink beamforming duality. In this work, we provide a
different design approach for rate-optimal strategies in decentralized
multi-cell cooperative beamforming.

For the purpose of exposition, in this work we consider a simplified
scenario, where each MS is equipped with a single antenna, and
at any given time there is only one active MS in each cell (over a
particular frequency band). Accordingly, we can model the multi-cell
cooperative downlink transmission system as a multiple-input
single-output (MISO) Gaussian interference channel (IC), termed
as MISO-IC. From an information-theoretic viewpoint, the capacity
region of the Gaussian IC, which constitutes all the simultaneously
achievable rates for all users, is still unknown in general [8], while
significant progresses have recently been made on approaching this
limit [9]. Capacity-approaching techniques for the Gaussian IC in
general require certain signal-level encoding/decoding cooperations
among the users, while a more pragmatic approach that leads to subop-
timal achievable rates of the users is to allow only single-user encoding
and decoding by treating the interference from other users as additive
Gaussian noise. In this work, we adopt the latter approach to study the
design of cooperative transmit beamforming for the MISO-IC. Partic-
ularly, we focus on the design criterion to achieve different rate-tuples
for the users on the Pareto boundary of the achievable rate region
for the MISO-IC. Due to the coupled signal structure, the achievable
rate region for the MISO-IC with interference treated as noise is in
general a non-convex set,1 which renders the joint optimization of
beamforming vectors to achieve different Pareto-boundary rate-tuples
a challenging task. Note that this problem has been studied in [10],
where for the special two-user case, it was shown that the optimal
transmit beamforming vector to achieve a Pareto-boundary rate-pair
for the MISO-IC can be expressed as a linear combination of the
zero-forcing (ZF) and maximum-ratio transmission (MRT) beam-
formers. The rate maximization for the IC with interference treated
as noise has also been studied in the literature via various “pricing”
algorithms (see, e.g., [11] and references therein), while in general

1It is noted that the non-convex rate region is obtained without time-sharing
(convex-hull operation) between different achievable rate-tuples. With time-
sharing, the achievable rate region will become a convex set.

the price-based approach does not achieve the Pareto-optimal rates
for the MISO-IC. In [12], the maximum sum-rate for the Gaussian
IC is characterized in terms of degrees of freedom (DoF) over the
interference-limited regime.

In this correspondence, we develop a new parametrical characteri-
zation of the Pareto boundary for the MISO-IC in terms of the inter-
ference-power levels at all receivers caused by different transmitters,
also known as the interference temperature (IT) levels in the newly
emerging “cognitive radio (CR)” type of applications [13]. We show
that each Pareto-boundary rate-tuple can be achieved in a decentral-
ized manner when each of the users maximizes its own MISO channel
capacity subject to a certain set of IT constraints at the other users’ re-
ceivers, which is identical to the CR MISO channel transmit optimiza-
tion problem studied in [14] and thus shares the same solution struc-
ture. We derive new closed-form solutions for the optimal transmit co-
variance matrices of all users to achieve an arbitrary rate-tuple on the
Pareto boundary of the MISO-IC rate region, from which we see that
the optimal transmit covariance matrices should all be rank-one (i.e.,
beamforming is optimal).2 Furthermore, we derive the conditions that
are necessary for any particular set of mutual IT constraints across all
users to guarantee a Pareto-optimal rate-tuple for the MISO-IC. Based
on these conditions, we propose a new decentralized algorithm for im-
plementing the multi-cell cooperative downlink beamforming. For this
algorithm, all different pairs of BSs independently search for their mu-
tually desirable IT constraints (with those for the MSs associated with
the other BSs fixed), under which their respective beamforming vectors
are optimized to maximize the individual transmit rates. This algorithm
improves the rates for the BSs in a pairwise manner until the transmit
rates for all BSs converge with their mutual IT levels.

Notation: ��� and � denote the identity matrix and the all-zero ma-
trix, respectively, with appropriate dimensions. For a square matrix ����
�������� ������ �����, and ������ denote the trace, determinant, inverse, and
square-root of ���, respectively; and ��� � � means that ��� is positive
semi-definite [16]. ���	����� denotes a diagonal matrix with the diag-
onal elements given by ���. For a matrix��� of arbitrary size,���� � ���� ,
and 
�������� denote the Hermitian transpose, transpose, and rank
of ��� , respectively. �� denotes the statistical expectation. The dis-
tribution of a circularly symmetric complex Gaussian (CSCG) random
vector with the mean vector ��� and the covariance matrix � is denoted
by �� �������; and � stands for “distributed as”. ��� denotes the
space of � � � complex matrices. ����� denotes the Euclidean norm
of a complex vector (scalar) ���. The ��	� � � function is with base 2 by
default.

II. SYSTEM MODEL

We consider the downlink transmission in a cellular network con-
sisting of 	 cells, each having a multi-antenna BS to transmit inde-
pendent messages to one active single-antenna MS. It is assumed that
all BSs share the same narrowband spectrum for downlink transmis-
sion. Accordingly, the system under consideration can be modeled by
a 	-user MISO-IC. It is assumed that the BS in the 
th cell, 
 �
�� � � � � 	 , is equipped with �� transmitting antennas, �� 	 �. The
discrete-time baseband signal received by the active MS in the 
th cell
is then given by

�� � ���
�
������ �

� ���

���
�
������ � � (1)

where ���� 
 � �� denotes the transmitted signal from the 
th BS;
������ 


��� denotes the direct-link channel for the 
th MS, while
������ 


��� denotes the cross-link channel from the �th BS to the

th MS, � �� 
; and � denotes the receiver noise. It is assumed that
� � �� ��� ������
, and all �’s are independent.

2We thank the anonymous reviewer who brought our attention to [15], in
which the authors also showed the optimality of beamforming to achieve the
Pareto-boundary rates for the Gaussian MISO-IC with interference treated as
noise, via a different proof technique.
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We assume independent encoding across different BSs and thus����’s
are independent over �. It is further assumed that a Gaussian codebook
is used at each BS and ���� � �� ��� ������ � � �� � � � � � , where
���� � ��������

�
� � denotes the transmit covariance matrix for the �th

BS, with ���� � � �� and ���� � �. Notice that the CSCG distri-
bution has been assumed for all the transmitted signals.3 Furthermore,
the interferences at all the receivers caused by different transmitters are
treated as Gaussian noises. Thus, for a given set of transmit covariance
matrices of all BSs, ����� � � � � ���� , the achievable rate of the �th MS is
expressed as

�������� � � � � ����� � 	
� � �
���������������

� ��� ���
�
����������� � ���

	 (2)

Next, we define the achievable rate region for the MISO-IC to be the
set of rate-tuples for all MSs that can be simultaneously achievable
under a given set of transmit-power constraints for the BSs, denoted by

�� � � � � 
� :

�

���� �������� ��� �����			��

����� � � � � ��� 

� � �� � �������� � � � � ������ � � �� � � � � �	 	 (3)

The upper-right boundary of this region is called the Pareto boundary,
since it consists of rate-tuples at which it is impossible to improve a
particular user’s rate, without simultaneously decreasing the rate of at
least one of the other users. More precisely, the Pareto optimality of a
rate-tuple is defined as follows [10].

Definition 2.1: A rate-tuple ���� � � � � ��� is Pareto optimal if there
is no other rate-tuple ����� � � � � �

�
�� with ����� � � � � �

�
�� 
 ���� � � � � ���

and ����� � � � � �
�
�� �� ���� � � � � ��� (the inequality is component-wise).

In this work, we consider the scenario where multiple BSs in the
cellular network cooperatively design their transmit covariance ma-
trices in order to minimize the effect of the inter-cell interference on
the overall network throughput. In particular, we are interested in the
design criterion to achieve different Pareto-optimal rate-tuples for the
corresponding MISO-IC defined as above.

It is worth noting that in prior works on characterizing the Pareto
boundary for the MISO-IC with interference treated as noise (see, e.g.,
[10] and references therein), it has been assumed (without proof) that
the optimal transmit strategy for users to achieve any rate-tuple on the
Pareto boundary is beamforming, i.e., ���� is a rank-one matrix for all
�’s. Under this assumption, we can express���� as���� � �������

�
� � � �

�� � � � � � , where ���� � � �� denotes the beamforming vector for
the �th user. Similarly as in the general case with ���������� 
 �, the
achievable rates and rate region of the MISO-IC with transmit beam-
forming (BF) can be defined in terms of����’s. However, it is not evident
whether the BF case bears the same Pareto boundary as the general case
with ���������� 
 � for the MISO-IC. In this work, we will show that
this is indeed the case (see Section III). Accordingly, we can choose to
use the rate and rate-region expressions in terms of either ����’s or����’s
to characterize the Pareto boundary of the MISO-IC, for the rest of this
correspondence.

In the following, we review some existing approaches to characterize
the Pareto boundary for the MISO-IC with interference treated as noise.
For the purpose of illustration, in Fig. 1, we show the achievable rate
region for a two-user MISO Gaussian IC with interference treated as

3It is worth noting that in [17] the authors point out that the CSCG distribution
for the transmitted signals is in general non-optimal for the Gaussian IC with
interference treated as noise, since it can be shown that the complex Gaussian but
not circularly symmetric distribution can achieve larger rates than the symmetric
distribution for some particular channel realizations.

Fig. 1. Achievable rate region and Pareto boundary for a two-user MISO
Gaussian IC with interference treated as noise.

noise (prior to any time-sharing of achievable rate-pairs), which is ob-
served to be non-convex. A commonly adopted method to obtain the
Pareto boundary for the MISO-IC is via solving a sequence of weighted
sum-rate maximization (WSRMax) problems, each for a given set of
user rate weights, � 
 �� ��, and given by

����
���� �

�

���

� 	
� �� � �������� � � � � ������

���� ����
� � 
�� � � �� � � � � � (4)

where �������� � � � � ����� is the receiver SINR for the �th user defined
as

�������� � � � � ����� �
����������

�

� ��� ���
�
������� � ���

� � � �� � � � � �	 (5)

This problem can be shown non-convex, and thus cannot be solved effi-
ciently. Moreover, the WSRMax method cannot guarantee the finding
of all Pareto-boundary points for the MISO-IC (cf. Fig. 1).

An alternative method to characterize the complete Pareto boundary
for the MISO-IC is based on the concept of rate profile [18]. Specifi-
cally, any rate-tuple on the Pareto boundary of the rate region can be
obtained via solving the following optimization problem with a partic-
ular rate-profile vector, ��� � ���� � � � � ���:

����
� ����� �

�
��

���� 	
��� � �������� � � � � ������ 
 ���
���

� � �� � � � � �

����
� � 
�� � � �� � � � � � (6)

with �� denoting the target ratio between the �th user’s achievable rate
and the users’ sum-rate, �
��. Without loss of generality, we assume
that �� 
 ����, and �

��� �� � �. For a given ���, let the optimal so-
lution of Problem (6) be denoted by�	
��. Then, it follows that�	
������
must be the corresponding Pareto-optimal rate-tuple, which can be ge-
ometrically viewed as (cf. Fig. 1) the intersection between a ray in the
direction of��� and the Pareto boundary of the rate region. Thereby, with
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different���’s, solving Problem (6) yields the complete Pareto boundary
for the rate region, which does not need to be convex.

Next, we show that Problem (6) is solvable via solving a sequence
of feasibility problems each for a fixed ���� and given by

���� ������
���� ����� � �������� � � � � ������ � �������

� 	 �� � � � � �

������� � ��� � 	 �� � � � � �	 (7)

If the above problem is feasible for a given sum-rate target,����, it
follows that
�

��� � ����; otherwise,
�
��� � ����. Thus, by solving

Problem (7) with different ����’s and applying the simple bisection
method [16] over ����� 
�

��� can be obtained for Problem (6). Let

�� 	 �� � � �� � 	 �� � � �� . Then, for Problem (7), we can
replace the rate constraints by the equivalent SINR constraints:

�������� � � � � ����� � 
��� � 	 �� � � � � �	 (8)

Similarly as shown in [19], the resultant feasibility problem can be
transformed into a second-order cone programming (SOCP) problem,
which is convex and can be solved efficiently [20].

III. CHARACTERIZING PARETO BOUNDARY FOR MISO-IC VIA

INTERFERENCE TEMPERATURE CONTROL

In this section, instead of investigating centralized approaches, we
present a new method to characterize the Pareto boundary for the
MISO-IC in a distributed fashion, by exploring its relationship with
the CR MISO channel [14]. We start with the general-rank transmit
covariance matrices ����’s for the MISO-IC. First, we introduce a set
of auxiliary variables, ��� � � 	 �� � � � � ��  	 �� � � � � ��  �	 �,
where ��� is called the interference-power or interference-temperature
(IT) constraint from the �th BS to th MS,  �	 �� ��� � . For
notational convenience, let � be the vector consisting of all ������
different ��� ’s, and �� be the vector consisting of all ��� � ��
different ��� ’s and ���’s,  	 �� � � � � ��  �	 �, for any given
� � ��� � � � � ��.

Next, we consider a set of parallel transmit covariance optimization
problems, each for one of the � BSs in the MISO-IC expressed as

�	
�
���

��� � �
���������������

� ��� ��� � ���

���� ���
�
����������� � ��� � 	 �	 �

�������� � ��� ���� 
  (9)

where � � ��� � � � � ��. Note that in the above problem for a given ��
�� is fixed. For notational convenience, we denote the optimal value
of this problem as ������. If in the objective function of (9) we set
��� 	 ���������������� 	 �	 �� ������ becomes equal to the max-
imum achievable rate of an equivalent MISO CR channel [14], where
the �th BS is the so-called “secondary” user transmitter, and all the
other � � � BSs, indexed by  	 �� � � � � ��  �	 �, are the “primary”
user transmitters, each of which has a transmit covariance matrix, ���� ,
and its intended “primary” user receiver is protected by the secondary
user via the IT constraint: ��������������� � ��� . In [14], it was proved
that the solution for Problem (9) is rank-one, i.e., beamforming is op-
timal, and in the special case of� 	 � (i.e., one single primary user), a
closed-form solution for the optimal beamforming vector was derived.
In the following proposition, we provide a new closed-form solution
for Problem (9) with arbitrary values of � , from which we can easily
infer that beamforming is indeed optimal.

Proposition 3.1: The optimal solution of Problem (9) is rank-one,
i.e., ���� 	 �������

�
� , and

���� 	
� ���

�����������
�
�� � ������

��

�����
�
�� (10)

where ��� �  �	 �, and ��� , are non-negative constants (dual variables)
corresponding to the �th BS’s IT constraint for the th MS and its own
transmit-power constraint, respectively, which are obtained as the op-
timal solutions for the dual variables in the dual problem of Problem
(9); and �� is given by

�� 	
�

�� �
� � ��� ��� � ���

������������
�

�

������������ (11)

where���� � � ��� �����������
�
����������

��	� and ���� ����� ��.
Proof: Please see Appendix I.

Now, we are ready to present a parametrical characterization of the
Pareto boundary for the MISO-IC in terms of � as follows.

Proposition 3.2: For any rate-tuple �
�� � � � � 
�� on the Pareto
boundary of the MISO-IC rate region defined in (3), which is achiev-
able with a set of transmit covariance matrices, ����� � � � � ���� , there is
a corresponding interference-power constraint vector, � � , with
��� 	 ��������������� � 	 �	 ��  � ��� � � � � ��, and � � ��� � � � � ��,
such that 
� 	 ������� 	�, and ���� is the optimal solution of
Problem (9) for the given �.

Proof: Please see Appendix II.
From Proposition 3.2, it follows that the Pareto boundary for the

MISO-IC is parameterized in terms of a lower-dimensional manifold
over the non-negative real vector �, in comparison with that over the
complex transmit covariance matrices,����’s, or with that over the com-
plex beamforming vectors, ����’s. Furthermore, by combining Propo-
sitions 3.1 and 3.2, it follows that beamforming is indeed optimal to
achieve any rate-tuple on the MISO-IC Pareto boundary.

Remark 1: It is worth noting that the dimensionality reduction ap-
proach proposed in this work for characterizing the Pareto boundary
of the MISO-IC is in spirit similar to that proposed in [10], where it
has been shown that the transmit beamforming vectors to achieve any
Pareto-boundary rate-tuple of the �-user MISO-IC with interference
treated as noise can be expressed in the following forms:

���� 	

�

���

�������� � � 	 �� � � � � � (12)

where ��� ’s are complex coefficients. Note that under the assumption
of independent ����� ’s, the above beamforming structure is non-trivial
only when �� � � . For this case, from Remark 2 in Appendix I, it
is known that for the optimal beamforming structure given in (10), we
have ��� � . With this and by applying the matrix inversion lemma
[21], it can be shown (the detailed proof is omitted here for brevity)
that the optimal beamforming structure given by (10) is indeed in ac-
cordance with that given by (12). The main difference for these two
methods to characterize the Pareto boundary for the MISO-IC lies in
their adopted parameters: The method in our work uses ��� � ��
real ��� ’s, while that in [10] uses ���� �� complex ��� ’s. Note that
��� corresponds to the IT constraint from the �th user transmitter to
the th user receiver, whereas there is no practical meaning associated
with ��� . Consequently, as will be shown next, the proposed method
in our work leads to a practical algorithm to implement the multi-cell
cooperative downlink beamforming, via iteratively searching for mu-
tually desirable IT constraints between different pairs of BSs.
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IV. DECENTRALIZED ALGORITHM FOR MULTI-CELL

COOPERATIVE BEAMFORMING

In this section, we develop a new decentralized algorithm that prac-
tically implements the multi-cell cooperative downlink beamforming
based on the results derived in the previous section. It is assumed that
each BS in the cellular network has the perfect knowledge of the chan-
nels from it to all MSs. Furthermore, it is assumed that all BSs operate
according to the same protocol described as follows. Initially, a set of
prescribed IT constraints in � are set over the whole network, and the
�th BS is informed of its corresponding ��� � � �� � � � � � . Accord-
ingly, each BS sets its own transmit beamforming vector via solving
Problem (9) and sets its transmit rate equal to the optimal objective
value of Problem (9), which is achievable for its MS since the actual IT
levels from the other BSs must be below their prescribed constraints.
Then, by assuming that there is an error-free link between each pair
of BSs, all different pairs of BSs start to communicate with each other
for updating their mutual IT constraints (the details are given later in
this section), under which each pair of BSs reset their respective beam-
forming vectors via solving Problem (9) such that the achievable rates
for their MSs both get improved. Notice that each pair of updating BSs
keeps the IT constraints for the MSs associated with the other BSs ex-
cluding this pair fixed; and as a result, the transmit rates for all the
other MSs are not affected. Therefore, the above algorithm can be im-
plemented in a pairwise decentralized manner across the BSs, while it
converges when there are no incentives for all different pairs of BSs to
further update their mutual IT constraints.

Next, we focus on the key issue on how to update the mutual IT con-
straints for each particular pair of BSs to guarantee the rate increase
for both of their MSs. To resolve this problem, in the following propo-
sition, we first provide the necessary conditions for any given � � �
(component-wise) to correspond to a Pareto-optimal rate-tuple for the
MISO-IC, which will lead to a simple rule for updating the mutual IT
constraints between different pairs of BSs. Note that from Proposition
3.2, it follows that for any Pareto-optimal rate-tuple of the MISO-IC,
there must exist a � such that the optimal solutions of the problems
given in (9) for all �’s are the same as those for the general formu-
lation of MISO-IC to achieve this rate-tuple. However, for any given
� � �, it remains unknown whether this value of � will correspond to
a Pareto-optimal rate-tuple.

Proposition 4.1: For an arbitrarily chosen� � �, if the optimal rate
values of the problems in (9) for all �’s, ������’s, are Pareto-optimal
on the boundary of the MISO-IC rate region defined in (3), then for any
pair of ��� ��� � � ��� � � � � ��� � � ��� � � � � ��, and � �� �, it must
hold that ������ � � �, where ����� is defined as

����� �

�� �� �
��

�� �� �
��

�� �� �

��

�� �� �

��

� (13)

Proof: Please see Appendix III.
Note that ����� ’s for all different pairs of ��� �� can be obtained from

the (primal and dual) solutions of the problems given in (9) for all �’s
with the given � (for the details, please refer to Appendix I). More
specifically, we have

	������

	���
� 
�� (14)

where 
�� is the solution for the dual problem of Problem (9) with � �
�, which corresponds to the �th IT constraint, and from the objective
function of Problem (9),

	������

	���
�

����������
�
������

�	 

� ��� ��� � �� ���� ��� � �� � ���������

�
������

(15)

where ����� is the optimal solution of Problem (9) with � � �. Simi-
larly, �	���������	���� and �	���������	���� can be obtained from
solving Problem (9) via the Lagrange duality method with � � �.

From Proposition 4.1, the following observations can be easily ob-
tained (the proofs are omitted for brevity):

• for any particular � that corresponds to a Pareto-optimal rate-
tuple, it must hold that ��� � ���� � 	�� �� � �� �, where ���� �
�
�����������


������
�����

�� corresponds to the case of using max-

imum transmit power with MRT beamforming for the �th BS;
• for any particular � that corresponds to a Pareto-optimal rate-

tuple, it must hold that ���������
�
������ � ��� � 	�� �� � �� �, i.e., the

IT constraints across all BSs must be tight.
From the above observations, we see that if we are only interested

in the values of � that correspond to Pareto-optimal rate-tuples for the
MISO-IC, it is sufficient for us to focus on the subset of � within the
set � � �, in which ��� � ���� and ��� � ���������

�
������ � 	�� �� � �� �.

Based on Proposition 4.1, we can develop a simple rule for different
pairs of BSs in the cooperative multi-cell system to update their mutual
IT constraints for improving both of their transmit rates, while keeping
those of the other BSs unchanged. From the Proof of Proposition 4.1
given in Appendix III, it follows that the method for any updating BS
pair ��� �� to fulfill the above requirements is via changing ��� and
��� according to (38). Note that in general, the choice for ����� in (38)
to make ���������� � � is not unique. For notational conciseness, let

����� �
� �

� �
; it can then be shown that one particular choice for

����� is

����� � ��	���� ��� � ������ �� �� �����
	 (16)

where ��	��� � � if � � � and � �� otherwise; ��� � � is a
constant that controls the ratio between the rate increments for the �th
and �th BSs. It can be easily verified that when ��� � �, a larger
rate increment is resulted for the �th BS than that for the �th BS, and
vice versa when ��� � � (provided that the step-size ��� in (38) is
sufficiently small).

More specifically, the procedure for any BS pair ��� ��� � �� �� � �
��� � � � � ��, and � � ��� � � � � ��, to update their mutual IT constraints
is given as follows. First, the �th BS computes the elements � and � in
����� according to (14) and (15), respectively, with the present value of
��. Similarly, the �th BS computes � and � with the present value of
�� . Next, the �th BS sends � and � to the �th BS, while the �th BS sends
� and � to the �th BS. Then, assuming that ��� and ��� are preassigned
values known to these two BSs, they can both compute ����� according
to (16) and update ��� and ��� according to (38) in Appendix III. Last,
with the updated values ��

�� and ��
��, these two BSs reset their respec-

tive beamforming vectors and transmit rates via solving (9) indepen-
dently. Note that the above operation requires only local information
(scalar) exchanges between different pairs of BSs, and thus can be im-
plemented at a very low cost in a cellular system. One version of the
decentralized algorithm for cooperative downlink beamforming in a
multi-cell system is described in Table I. Since in each iteration of
the algorithm the achievable rates for the pair of updating BSs both
improve and those for all other BSs are unaffected (non-decreasing),
and the maximum achievable rates for all BSs are bounded by finite
Pareto-optimal values, the convergence of this algorithm is ensured.

Example 4.1: In Fig. 2 (with the same two-user MISO-IC as for
Fig. 1), we show the Pareto boundary for an example MISO-IC with
� � 
� �� � �� � �� �� � �� �� � �, and �� � �� � �,
which is obtained by the proposed method in this correspondence, i.e.,
solving the problems given in (9) for � � �� 
, and a given pair of
values ��� and ��� with � � ��� � ���� and � � ��� � ����, and
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TABLE I
ALGORITHM FOR COOPERATIVE DOWNLINK BEAMFORMING

Fig. 2. Achievable rates for the proposed algorithm in a two-user MISO
Gaussian IC with interference treated as noise.

then taking a closure operation over the resultant rate-pairs with all dif-
ferent values of ��� and ��� within their respective ranges. We demon-
strate the effectiveness of the proposed decentralized algorithm for im-
plementing the multi-cell cooperative downlink beamforming with two
initial rate-pairs, indicated by “ZF” and “MRT” in Fig. 2, which are ob-
tained when both BSs adopt the ZF and the MRT beamforming vectors,
respectively, with their maximum transmit powers. It is observed that
the achievable rates for both MSs increase with iterations and finally
converge to a Pareto-optimal rate-pair.4 Comparing the two cases with
��� � � and ��� � ��, it is observed that a larger value of ��� results
in larger rate values for the first MS in the converged rate-pairs, which
is in accordance with our previous discussion.

V. CONCLUDING REMARKS

In this correspondence, based on the concept of interference tem-
perature (IT) and under a cellular downlink setup, we have developed
a new method to characterize the complete Pareto boundary of the

4We have verified with a large number of random channels and a variety of
system parameters that the proposed algorithm always converges to Pareto-op-
timal rate-pairs for the two-user MISO-IC with randomly selected initial rate-
pairs. However, we could not prove this result in general by, e.g., showing that
the conditions given in Proposition 4.1 are not only necessary (as proved in this
work) but also sufficient for any given � to achieve a Pareto-optimal rate-tuple
for the MISO-IC.

achievable rate region for the�-user Gaussian MISO-IC with interfer-
ence treated as noise. It is shown that the proposed method also leads to
a new decentralized algorithm for implementing the downlink beam-
forming in a cooperative multi-cell system to achieve maximal rates
with a prescribed fairness guarantee.

There are a number of directions along which the developed results
in this work can be further investigated. First, it would be interesting
to extend the multi-cell cooperative beamforming design based on the
principle of IT to the scenario where each BS supports simultaneous
transmissions to multiple active MSs each with a single antenna or mul-
tiple antennas. Second, it remains yet to be proved whether the neces-
sary conditions derived in this work for any particular set of IT con-
straints across the BSs to guarantee a Pareto-optimal rate-tuple for the
MISO-IC are also sufficient, even for the special two-user case. This
proof is essential for the proposed downlink beamforming algorithm
to achieve the global convergence (Pareto-optimal rates). Last but not
least, it is pertinent to analyze the proposed decentralized algorithm that
iteratively updates the mutual IT constraints between different pairs of
BSs from a game-theoretical viewpoint.

APPENDIX I
PROOF OF PROPOSITION 3.1

It can be verified that Problem (9) is convex, and thus it can be solved
by the standard Lagrange duality method [16]. Let ��� � � �� �, and
��� be the non-negative dual variables for Problem (9) associated with
the �th BS’s IT constraint for the �th MS and its own transmit-power
constraint, respectively. The Lagrangian function for this problem can
be written as

������� ����� � ��	 � 

			�������			��

� ��� ��� 
 
��

�

� ���

����			
�
������			�� � ��������������������� (17)

where���� � ���� � � � � ��� �. The dual function of Problem (9) is given
by

������� � ���
��� ��

������� ����� (18)

Accordingly, the dual problem is defined as

���
��� ��

������� (19)

where���� � �means component-wise non-negative. Since Problem (9)
is convex with strictly feasible points [16], the duality gap between its
optimal value and that of the dual problem is zero; thus, Problem (9) can
be equivalently solved via solving its dual problem. In order to solve
the dual problem, we need to obtain the dual function ������� for any
given ���� � �. This can be done by solving the maximization problem
given in (18), which, according to (17), can be explicitly written as (by
discarding irrelevant constant terms)

����
���

��	 � 

			�������			��

� ��� ��� 
 
��
� ������������������

���� ���� � � (20)

where ���������� � ��� ���			��			
�
�� 
 ������ and ���������� � � of

dimension �� � �� . In order for Problem (20) to have a bounded
objective value, it is shown as follows that ���������� should be a full-
rank matrix. Suppose that���������� is rank-deficient, such that we could
define ���� � ���������

�
� , where �� � � and ���� �

� �� satisfying
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������ � � and �������������� � �. Thereby, the objective function of
Problem (20) reduces to

��� � �
������

�
�������

�

� ��� 	�� � ���
� (21)

Due to the independence of ����� and ����� ’s, and thus the independence
of ����� and ���� , it follows that ������������ � 
 with probability one such
that (21) goes to infinity by letting �� � �. Since the optimal value
of Problem (9) must be bounded, without loss of generality, we only
need to consider the subset of ���� in the set ���� � 
 to make ����������
full-rank.

Remark 2: Note that from the definition of ���������� and the
Karush–Kuhn–Tucker (KKT) optimality conditions [16] of Problem
(9), it follows that ���������� is full-rank only when either of the fol-
lowing two cases occurs:

• ��� � 
: in this case, the transmit power constraint for the 	th
BS is tight for Problem (9);

• ��� � 
, but there are at least 
� ��� ’s, � �� 	, having ��� � 
:
in this case, regardless of whether the transmit power constraint
for the 	th BS is tight, there are at least 
� out of the � � � IT
constraints of the 	th BS are tight in Problem (9). Note that this
case can be true only when 
� � � � �.

From the above discussions, it is known that ������������
�� exists.

Thus, we can introduce a new variable �� for Problem (20) as

�� � ������������
���

�������������
��� (22)

and substituting it into (20) yields

����
�

��� � �
������������������

������������������
���������

� ��� 	�� � ���

� �����

���� �� � 
� (23)

Without loss of generality, we can express �� into its
eigenvalue decomposition (EVD) as �� � ���������

�
� ,

where ���� � ������� � � � � ����� � 	 � �� is unitary and
�� � ���������� � � � � ��� �� � 
. Substituting the ED of �� into
(23) yields

Max.
��� ��

��� � �
�
��� �������

�
��������������

����������
�

� ��� 	�� � ���

�

�

���

���

s.t. ������� � ��
�� ����������	 � 
�
� �� �

��� � 
�
�� (24)

For any given���� , it can be verified that the optimal solution of�� for
Problem (24) is given by

��� �
�

�� �
�

� �


���� 	��� 	��� 

 ��� �

�

�� � � ��


 ���������

(25)

where �� � �����	��������� �����
�
��������������

��������	�. Thus, it fol-
lows that for the optimal solution of Problem (23), �������� � �.
Furthermore, let �� denote the index of � for which ��� � 
. The ob-
jective function of Problem (24) reduces to

��� � �
��� ����

�
��������������

��������� �
�

� ��� 	�� � ���
� ��� � (26)

Clearly, the above function is maximized with any ��� � 
 when

����� �
������������

���������

�����������������������
� (27)

From (25) and (27), it follows that the optimal solution for Problem
(23) is

�� �

�
�� �

�
� �


���� 	��� 	��� 

 �

�

������������������������

�������������
����

��������
�
��������������

����
� (28)

Combining the above solution and (22), it can be shown that the optimal
solution � for Problem (9) is as given by Proposition 3.1.

With the obtained dual function ������� for any given ���� , the dual
problem (19) can be solved by searching over ���� � 
 to minimize
�������. This can be done via, e.g., the ellipsoid method [22], by utilizing
the subgradient of ������� that is obtained from (17) as 	���������

�
������

for ��� � � �� 	 and �� � ����� for ��� , where �� is the optimal
solution for Problem (20) with the given ���� . When ���� converges to the
optimal solution for the dual problem, the corresponding �� becomes
the optimal solution for Problem (9). Proposition 3.1 thus follows.

APPENDIX II
PROOF OF PROPOSITION 3.2

Since the given set of �� � � � � � achieves the Pareto-optimal rate-
tuple ���� � � � � ��� for the MISO-IC, from (2) and (3) it follows that
for any 	 	 ��� � � � � �

�� � ��� � �
������������

� ��� ���
�
�������� � ���

� (29)

Since 	�� � ������������� 
� �� 	, (29) can be rewritten as

�� � ��� � �
������������

� ��� 	�� � ���
� (30)

Note that (30) is the same as the objective function of Problem (9) for
the given 	. Furthermore, from (3) it follows that ���� � �� . Using
this and the fact that 	�� � ������������ � 
� �� 	, it follows that �
satisfies the constraints given in Problem (9) for the given 	. Therefore,
� must be a feasible solution for Problem (9) with the given 	 and�� .

Next, we need to prove that � is indeed the optimal solution of
Problem (9) for any given 	, and thus the corresponding achievable
rate �� is equal to the optimal value of Problem (9), which is ������.
We prove this result by contradiction. Suppose that the optimal solution
for Problem (9), denoted by �� , is not equal to � for a given 	. Thus,
we have

�� � ��� � �
������

�
������

� ��� 	�� � ���
(31)

� ��� � �
������

�
������

� ��� ���
�
�������� � ���

��� (32)

Furthermore, since ������
�
������ � 	�� � 
� �� 	, we have for any

� �� 	,

�� � ��� � �
������������

���� ���
�
�������� � ���

(33)

� ��� � �
������������

���� 	�� � ���
(34)
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� ��� � �
���������������

� �����
��� � ���������

�
������ � ���

(35)

� ��� � �
���������������

������
��������������� � ���������

�
������ � ���

�� � (36)

Thus, for another set of transmit covariance matrices given by
����� � � � � ������� ���

�
�� ������� � � � � ���� , the corresponding achievable

rate-tuple for the MISO-IC, 	��� � � � � ��
, satisfies that �� � �� and
�� � �� � �	 �� 
, which contradicts the fact that 	��� � � � � ��
 is
a Pareto-optimal rate-tuple for the MISO-IC. Hence, the presumption
that ���� �� ����

� for any given 
 cannot be true. Thus, we have ���� � ����
�

and �� � ��	��
��
. Proposition 3.2 thus follows.

APPENDIX III
PROOF OF PROPOSITION 4.1

As given in Proposition 4.1, with �, the corresponding optimal
values of the problems in (9) for all 
’s, ��	��
’s, correspond to a
Pareto-optimal rate-tuple for the MISO-IC, denoted by 	��� � � � � ��
.
Let ����� � � � � ���� denote the set of optimal solutions for the problems
in (9). We thus have

��	��
 � �� � ��� � �
���������������

� ���
��� � ���

� 
 � �� � � � � ��

(37)
Next, we prove Proposition 4.1 by contradiction. Suppose that there
exists a pair of 	� 	
 with ������ � �� �, where ����� is defined in (13).
Define a new�� over�, where all the elements in� remain unchanged
except ���� ����� being replaced by

����� ��
�
��

� � ���� ����
� � ��� � ����� (38)

where ��� � � is a small step-size, and ����� is any vector that satisfies
���������� � � (component-wise), with one possible value for such �����
is given by (16) in the main text. With ��, the optimal solutions for
the problems in (9) remain unchanged �
 �� � 	, while for those with

 �  and 
 � 	, the optimal solutions are changed to be ����

� and ����
� ,

respectively. Accordingly, the new achievable rates in the MISO-IC for
any 
 �� � 	 are given by

�� � ��� ��
���������������

	�������
����	����	���	� � ���������

�
������ � ���������
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(39)
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(40)

� �� (41)

where (41) is due to (37) and the facts that ���������
�
������ � ��� and

���������
�
������ � ��� . Also, it can be shown that
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���������
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������

	�����
����	����	���	� � ���������

�
������ � ���

(42)
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(43)
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 (44)

where (44) is due to the facts that ���������
�
������ � ���� and����

� achieves the
optimal value of Problem (9) with 
 �  and the given ���, denoted by

��	�
�
�
. Similarly, it can be shown that �� � ��	�

�
�
. Thus, from (38)

and ���������� � �, it follows that with sufficiently small ���

��

��
�

��	�
�
�


��	�
�
�


(45)

��
��	��


��	��

� ������������� (46)

�
��

��

� (47)

Therefore, we have found a new set of achievable rate-tuple for the
MISO-IC with ��� 	��� � � � � ��
, which has �� � ��� �� � �� ,
and �� � ��� �
 �� � 	. Clearly, this contradicts the fact that
	��� � � � � ��
 is Pareto-optimal for the MISO-IC. Thus, the presump-
tion that there exists a pair of 	� 	
 with ������ � �� � cannot be true.
Proposition 4.1 thus follows.
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Optimality of Beamforming for MIMO Multiple Access
Channels Via Virtual Representation

Hong Wan, Rong-Rong Chen, and Yingbin Liang

Abstract—In this correspondence, we consider the optimality of
beamforming for achieving the ergodic capacity of multiple-input
multiple-output (MIMO) multiple access channel (MAC) via virtual repre-
sentation (VR) model. We assume that the receiver knows the channel state
information (CSI) perfectly but that the transmitter knows only partial
CSI, i.e., the channel statistics. For the single-user case, we prove that the
capacity-achieving beamforming angle (c.b.a.) is unique, and there exists a
signal-to-noise ratio (SNR) threshold below which beamforming is optimal
and above which beamforming is strictly suboptimal. For the multi-user
case, we show that the c.b.a is not unique and we obtain explicit conditions
that determine the beamforming angles for a special class of correlated
MAC-VR models. Under mild conditions, we show that a large class of
power allocation schemes can achieve the sum-capacity within a constant
as the number of users in the system becomes large. The beamforming
scheme, in particular, is shown to be asymptotically capacity-achieving
only for certain MAC-VR models.

Index Terms—Beamforming, multiple access, multiple-input multiple-
output, sum-capacity, power allocation, virtual representation.

I. INTRODUCTION

The multiple-input multiple-output (MIMO) techniques provide
powerful means to improve reliability and capacity of wireless
channels. Significant amount of work has been done to study op-
timal input distributions and the channel capacity of single-user and
multi-user MIMO channels (see, e.g., [1]–[7]). Several models have
been adopted to capture the spatial correlation between the channel
gains corresponding to different transmit-receive antenna pairs. These
models include the i.i.d. model [1], the Kronecker model [2], [8]–[10],
the virtual representation (VR) model [4], [11], and the unitary-in-
dependent-unitary (UIU) model [5]. The i.i.d. model assumes that
the channel gains are independent and identically distributed (i.i.d.),
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and the Kronecker model assumes that the correlation between the
channel gains can be written in terms of the product of the transmit
correlation and the receive correlation. These two models apply only
to wireless environments with rich or locally rich scattering at either
the transmitter or the receiver. The VR and UIU models are more
general, and both transform the MIMO channel to a domain such that
the channel gains can be justified to be approximately independent.

In this correspondence, we adopt the VR model [11], which repre-
sents the MIMO channel in a virtual angular domain with each channel
gain corresponding to one virtual transmit and receive angle pair. The
channel gains in the angular domain can be justified to be approxi-
mately independent of each other, although not necessarily identically
distributed, because they include different signal paths (corresponding
to different transmit and receive angle pairs) with independent random
phases.

The single-user MIMO channel based on VR was studied in [4]. In
this correspondence, we generalize this study to the MIMO multiple ac-
cess channel (MAC) based on VR, denoted by MAC-VR. We first char-
acterize the optimal input distribution that achieves the sum-capacity.
Then we study the optimality of beamforming, which is a simple scalar
coding strategy desirable in practice. We first strengthen the conditions
for the optimality of beamforming for the single-user VR model in
[4] by proving that there exists a signal-to-noise ratio (SNR) threshold
below which beamforming is optimal and above which beamforming
is strictly suboptimal. This result was illustrated in [4] only numeri-
cally. For the multi-user case, we present an example to show that the
capacity-achieving beamforming angle (c.b.a) of a given user may vary
with SNR and beamforming angles of other users. This is in contrast
to the single-user case in which the c.b.a. is independent of SNR. We
also derive explicit conditions to determine possible c.b.a. for certain
MAC-VR channels. For systems with� users, we show that as� goes
to infinity, the sum-rates achieved by a large class of power allocation
schemes are within a constant of the sum-capacity, and they grow in the
order of �� ���� , where �� is the number of receive antennas. Fur-
thermore, we obtain conditions under which beamforming is asymp-
totically capacity-achieving.

Our study for the single-user case generalizes that in [2], [6] for the
Kronecker model, and is different from [12] for the double-scattering
model [13]. Our study for the MAC-VR also differs from [7] which
assumes perfect channel state information at the transmitter, and from
[14], which assumes finite feedback. We also note that the results we
derive for the MAC-VR are applicable to the MIMO-MAC Kronecker
(MAC-Kr) model in [9]. However, certain results valid for the MAC-Kr
may not hold for the MAC-VR as demonstrated in later sections.

II. CHANNEL MODEL AND VIRTUAL REPRESENTATION

We consider the�-user MIMO MAC, in which� users transmit to
one base station (BS) with each user equipped with �� antennas and
the BS equipped with �� antennas. The channel between each user �
and the BS is assumed to be a frequency-flat, MIMO fading channel.
The received signal at the BS is an ��-dimensional vector � � ��

and is given by

� �

�

���

��

��
�
�
�
� �� (1)

where �� � �� is the input vector of user � that satisfies the power
constraint 	������� � ��
 � � 	

� denotes the Hermitian operator,
�� represents the effective SNR of user � at each receive antenna,
� � �� is a proper complex Gaussian noise vector that consists
of i.i.d. entries with zero-mean and unit-variance, and �� � �� ��
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