
ORIGINAL ARTICLE

An RFID-based enterprise application integration
framework for real-time management
of dynamic manufacturing processes

Ruey-Shun Chen & Mengru Arthur Tu & Jung-Sing Jwo

Received: 6 April 2009 /Accepted: 8 February 2010 /Published online: 18 March 2010
Springer-Verlag London Limited 2010

Abstract Enterprise application integration (EAI) is an
important issue for a company trying to transform itself into
a ubiquitous real-time organization. However, traditional
techniques for EAI are only suitable for integrating the
virtual information among different applications. The chal-
lenge of integrating physical objects with corresponding
business processes and applications at the right time and
location is a critical concern for companies building a real-
time enterprise (RTE) information system. In this research,
we proposed an EAI framework based on radio frequency
identification (RFID) technology. On the basis of this
framework, a prototype system is developed to demonstrate
the applicability of the framework in a shop floor envi-
ronment. This paper also presents a RFID-based standard
operation procedure to configure a prototype system for a
particular shop floor operation and an operator orientation
for performing the corresponding tasks. The findings of this
paper demonstrate that the proposed framework is more
capable than most current industrial practices in both man-
aging dynamic manufacturing processes and in providing
real-time visibility of work-in-process information. Using

this framework, an enterprise can easily integrate an RFID-
based solution into its IT infrastructure and manufacturing
environment to facilitate real-time management of dynamic
production operations.

Keywords Radio frequency identification (RFID) .

Enterprise application integration (EAI) .

Real-time enterprise (RTE) .

Standard operation procedure (SOP)

1 Introduction

Many manufacturing firms are currently facing increasingly
severe global competition, a shorter life cycle of new prod-
ucts, and changing customer demands. Thus, they must
change their business operations and adapt new information
systems that can manage dynamic manufacturing activities
and take immediate action to resolve any events that disrupt
production or cause customer dissatisfaction. In other
words, they must re-engineer their current business practi-
ces to a real-time enterprise (RTE) operational model.
Survival in today’s hypercompetitive environment is en-
hanced by employing a model that enables a firm to achieve
flexibility in production and quick responsiveness to
changing customer demands. The RTE is defined by the
Gartner Group as an enterprise that competes by using up-
to-date information to progressively eliminate delays to the
management and execution of its critical business processes
[18]. To achieve this, systems for a real-time enterprise must
be “adaptable” to change and “accept change as the process”
[19]. Though many technologies may help transform a
company to a real-time enterprise, we believe that an enter-
prise application integration (EAI) framework with a radio
frequency identification (RFID)-based ubiquitous computing

R.-S. Chen
Institute of Information Management,
China University of Technology,
Hsinchu, Taiwan

M. A. Tu (*)
Institute of Information Management,
National Chiao Tung University,
Hsinchu, Taiwan
e-mail: tum.iim95g@nctu.edu.tw

J.-S. Jwo
Department of Computer Science and Information Engineering,
Tunghai University,
Taichung, Taiwan

Int J Adv Manuf Technol (2010) 50:1217–1234
DOI 10.1007/s00170-010-2573-y

model can provide good guidance for developing a RTE
system.

Ubiquitous computing offers many varied applications,
but probably its most significant impact is changing the
way an enterprise conducts its business [10], and thus, it
becomes a good candidate of computing technology for a
real-time enterprise. Ubiquitous computing can be com-
bined with existing information systems to create a loosely
coupled distributed system that can be dynamically located
and invoked to accomplish a complex manufacturing task
[3, 5]. Issues related to RFID usage in ubiquitous com-
puting applications have been widely studied [2]. RFID
provides the function of data carriers that can be read and
written; thus, it can record the identity and current status of
a product as it is being manufactured [31]. Therefore,
applying a RFID-based ubiquitous computing model to
production systems will help manufacturing companies
achieve real-time management of dynamic manufacturing
processes.

When using technology and business changes for com-
petitive advantage, an enterprise seeks to build new
applications upon its existing IT infrastructure. The process
of assimilating new applications with different legacy
systems is known as EAI [4]. EAI is even more important
for a ubiquitous enterprise since it needs to bring the
physical and virtual worlds together [9]. Even though
methods that enable the implementation of ubiquitous
computing applications have been proposed [1, 2, 6], they
cannot effectively support the integration requirements in a
ubiquitous and real-time environment. Current EAI tech-
nology is most often done with some form of messaging to
link heterogeneous systems and operating environments,
with an emphasis on maximizing resilience and robustness.
However, integrating a new application with legacy systems
is a difficult and an expensive task due to the necessity of
customizing the connection that ties the two applications.
Currently, there are twomajor techniques, namely, messaging-
oriented middleware (MOM) and web services, for EAI [4].
EAI using MOM is an essential technique for integrating
intracompany operations. On the other hand, web services
offer a new integration model, designed to overcome the
constraints of traditional EAI solutions. In the service-
oriented architecture (SOA) model, each application in the
enterprise acts as a component in a loosely coupled manner
[8]. Service interfaces, communications, data transforma-
tions, and directory information are all based on open, wide-
ly adopted standards.

The above addressed EAI solutions did not take advan-
tage of using ubiquitous computing technology to integrate
both the physical objects and the virtual information in
an enterprise. By utilizing RFID, we propose a new EAI
framework that can help a real-time enterprise implement its
new integration requirements. An enterprise could naturally

evolve into a ubiquitous organization if it can unobtrusively
integrate its current business processes with RFID informa-
tion and make the integrated system capable of detecting
vital business events in real time and use this information to
take proactive actions accordingly.

An alternative tracking technology to RFID is the bar-
code, and it has long been used in retailing and manufac-
turing industry. Barcode technology has been proven to be
effective in controlling BTO/CTO production systems [17].
However, the barcode requires line of sight, cannot support
of batch reading, and is easily dirtied or scraped in harsh
manufacturing environments. The cost of RFID tags and
readers have come down in recent years, and RFID tech-
nology has started to replace the barcode in shop floor control
systems. Several studies have been conducted on ways to
integrate RFID tags in shop floor operations to further reduce
human intervention during production processes and optimize
production flows [20, 21, 26–28]. In this research, instead
of only using message or service exchanging to perform
integration for an enterprise, we use RFID to “hook” the
physical objects in an enterprise to different business appli-
cations that traditionally are not easily integrated.

The rest of this paper is organized as follows: In Section 2,
we review RFID technology. In Section 3, we describe a
software agent approach with respect to the design of our
proposed EAI framework. The framework of the proposed
system is outlined in Section 4. In Section 5, we describe the
actual implementation of the proposed system. In Section 6,
we present case studies of the proposed system and RFID-
based standard operation procedure (R-SOP). Performance
evaluation of the proposed system is discussed in Section 7.
Finally, Section 8 draws conclusions.

2 RFID technology for enterprise application integration

RFID is an automatic object identification and data col-
lection technology that utilizes radio waves [33, 34]. An
RFID system consists of hardware, such as RFID tags and
readers, and software like RFID middleware. A RFID
reader interrogates a RFID tag. The reader has an antenna
that emits radio waves, and the tag responds by sending
back its data. The middleware software usually runs on
ordinary PCs or servers and provides an interface for many
sensor technologies, including RFID, thereby achieving
cross-platform hardware integration. RFID tags can be
roughly categorized into either active or passive types.
Active tags are powered by an internal battery, can typically
function in a read/write mode, and have longer reading
ranges. Passive tags do not rely on an internal power source.
Their operating power is obtained from a transceiver.
Consequently, passive tags are much lighter and can operate
over much longer periods [33, 37]. An RFID framework for

1218 Int J Adv Manuf Technol (2010) 50:1217–1234

ubiquitous computing applications should usually handle
data such as location, neighborhood, time, linkage between
the physical and virtual world, history, context, name, and
address [7].

RFID technology has had a tremendous impact on edu-
cation, healthcare, manufacturing, transportation, retailing,
services, and even war [38]. In the field of manufacturing, a
number of researchers have utilized RFID to improve the
core activities of the manufacturing supply chain including
production, warehouse and inventory management, distri-
bution, and product life cycle management. For example, in
production operation, RFID was utilized to bridge the gap
between shop floor automation and factory information
systems for more effective and efficient factory system
integration [20]. The use of RFID was demonstrated in the
collection and synchronization of real-time field data from
manufacturing workshops where there were walking-
workers and fixed-position, flexible assembly lines [21].
For warehouse and inventory management, a RFID-assisted
object tracking algorithm and system to track and forecast
the movement state of objects in a manufacturing assembly
line were developed [36]. Also, inventory management
models that rely on RFID data for tracking and dispatching
of time-sensitive materials on a shop floor were studied
[35]. RFID-based resource management system can help
warehouse users handle orders by retrieving and analyzing
information from a case-based data warehouse [39]. In
distribution-based applications, RFID information is used to
optimize product allocations from manufacturers to distrib-
utors and retailers [32]. Finally, Parlikad and McFarlane
[40] showed that RFID-based product identification can
help manage a product’s life cycle and improve product
recovery decisions by providing the necessary information
associated with the product after its sale.

Currently, few studies have considered the application of
RFID to dynamic manufacturing process control or the real-
time enterprise operational model. Therefore, in this study,
we propose an RFID-based enterprise application integra-
tion framework to realize a real-time enterprise operational
model capable of managing dynamic manufacturing pro-
cesses. In this study, instead of only using message or
service exchanging to perform integration in an enterprise,
we used RFID to hook the physical objects in an enterprise
with applications that traditionally have not been easy to
integrate.

3 Agent-oriented approach for managing
real-time information

With the introduction of RFID technology to enterprise
information systems, demand for a new kind of software
system to process the growing influx of RFID data will

begin to rise. The software agent, in this particular situation,
becomes a right candidate to take on the new challenge. An
agent is an active object which possesses certain capabil-
ities to perform tasks and communicates with other agents
based on an organizational structure designed to coordinate
the accomplishment of tasks [14]. To cope with the dy-
namic changing data generated by a RFID system, we
define the “software agent” in this paper as a piece of
software that continuously monitors the data sources in a
global computer network where the information of interest
is made available in real-time. When certain signals are
detected in the data, the software takes the appropriate action
on the user’s behalf [11]. Such “intelligent” autonomous
agents potentially become an essential tool, interfacing with
multiple sources of data (including RFID data, say, from
RFID tags affixed to objects) to extract information and feed
processes or parameters necessary for informed and dynamic
decision making. The discrete, dynamic, and distributed
nature of data and applications require that solutions do not
merely respond to requests for data or information but
anticipate, adapt, and (support users to) predict. [12]. The
architectural design of the software agent can be seen in many
articles. Based on various designs of agent-based systems in
the literature [13, 14, 16] and considering the applicability of
the proposed EAI framework, the agent architecture in this
research has the following basic components:

& Communication Channel: It handles incoming and out-
going messages for an agent. Messages might be coming
from tag readers, web service, other enterprise systems,
and other agents.

& Agent Repository: Each software agent should have its
own memory of where various business rules/logic and
current/past state information would reside.

& Message Parser: When an agent receives an incoming
message from a communication channel, its message
parser will analyze its message type and corresponding
event lists, delivering them to an event processor to
perform appropriate business operations.

& Event Processor: The event processor interprets the
decomposed messages delivered from message parser,
consults the Agent Repository for business rules/logics,
and then undertakes the appropriate action based on the
message type/event lists and their corresponding busi-
ness rules/logics.

4 RFID-based EAI framework

Based on SOA and the software agent approach, we pro-
pose an EAI framework that utilizes RFID tags as the
physical connectors integrating the nuts and bolts of the
physical objects and the enterprise applications. Figures 1

Int J Adv Manuf Technol (2010) 50:1217–1234 1219

and 2 are diagrams that illustrate the architectural design of
our proposed EAI framework.

4.1 Architecture of the proposed EAI framework

The general EAI framework composes software agents and
RFID tags with a specially designed data structure named
“event lists,” as shown in Fig. 1. The event lists are strings
of information occupying a small memory space in a RFID
tag. Information can be read from and written into this
memory space, thus making the tag an intelligent product

or mobile agent with its own memory. Entering a location
equipped with a RFID reader, a tag is “awakened” by the
reader and virtually becomes “alive”. This “living object”
within a specific time and space can retrieve its past history
from its own event lists or Agent Repository, perform tasks
through a Service Manager Agent, and receive instructions
from the Event Manager regarding the future action plans.
The journey will go on to the next time and space. When
event handling logic is preloaded in the memory of a RFID
tag, processed events become in-memory past events, and
unprocessed events become in-memory future events.

Fig. 1 EAI framework using
RFID and software agents

Fig. 2 RFID tag’s data structure

1220 Int J Adv Manuf Technol (2010) 50:1217–1234

The roles of agents and other constitutes in the frame-
work are shown in Fig. 1 and described in detail below:

& RFID Middleware: The middleware module is mainly
responsible for managing RFID readers and filtering
raw RFID data, providing a logical interface for appli-
cation users to perform physical RFID reader manage-
ment and low-level raw RFID data handling. A simple
RFID event (containing tag content string, timestamp,
and location id) is generated by RFID middleware after
preprocessing of raw RFID signals. Further RFID event
processing is carried out by the RFID Event Processing
Agent (REA) in our proposed framework.

& REA: A RFID Event Processing Agent is designed to
handle RFID event information and take appropriate
action at a workstation. In the following, different
functional modules, which constitute the RFID Event
Processing Agent, are described.

◼ Tag Handler: The Tag Handler module is respon-
sible for the tag read/write process and parsing and
analyzing the incoming simple RFID event infor-
mation (from RFID middleware). It will convert
a simple RFID event into a workpiece processing
event if the RFID event is about processing a
workpiece. It also facilitates the tag handling
process based on location-specific tag processing
logic. It usually requires the RFID middleware to
facilitate its tag read/write processes.

◼ Session Controller: The Session Controller module
primarily performs a session control and data access/
discovery role in the REA. It also provides a data
cache for sets of parameter data accepted from a
tag handler and location- and/or operation-specific
information retrieved from Agent Repository (re-
quested by the same tag handler). The Session
Controller spawns a new event handling session for
a workpiece processing event generated by the Tag
Handler. When a workpiece event processing cycle
is completed, it synchronizes the processing infor-
mation with the Agent Repository and releases the
memory resource for use in a computer server. These
caching and RFID event session cycle management
operations provided by the Session Controller help
improve the overall RFID event processing speed
and data integrity.

◼ Event Manager: The event manager module is
responsible for preparing new events and producing
a write or clear instruction for the data of the RFID
tag through the tag handler. It retrieves new event
information from Agent Repository or receives
overwriting event handling instructions from vari-
ous services and then prepares the information
required by the new event and produces a new

event code containing associated event information.
It then requests the RFID tag handler to write the
new event code to the corresponding RFID tag.
Finally, the event manager module needs to deter-
mine next operation processing and procedure unit
for a workpiece.

& Service Manager Agent (SMA): The Service manager
agent accepts service requests from the REA and
invokes external services for the REA. Those services
can reside in a machine, a server, or any other device.
The SMA can invoke those services through the SOA
architecture or directly make function/program calls to
those services. After services complete their tasks, the
SMA is responsible for collecting the operational results
from those services and reporting back to the REA.

& Connector Module: The Connector Module is also
responsible for application integration between the frame-
work and external applications including enterprise
resource planning (ERP) systems and manufacturing
execution systems (MES). It receives related interface
information such as job orders from the ERP and working
orders from the MES, and it also sends related interface
information to them. For example, it can retrieve relevant
information for initialization of an RFID tagged work-
piece from the ERP and the MES. Likewise, it can also
retrieve certain information from operational metadata and
export them to services that request such information on a
specific occasion.

& Monitor and Alert Module: When certain signals or
patterns are detected in the operational metadata, this
module will obtain real-time process status of workpieces
and report process changes to other modules requesting
such information. The module is implemented as an in-
tegrated part of a web application module in our prototype
system, which will be fully discussed in later sections.

& Data Synchronization Module: In this module, extrac-
tion, transformation, and loading (ETL) procedures are
used to consolidate and transform data from the Agent
Repository and Transaction Log into Operational Meta-
data. These procedures will first convert RFID events
into business events and then consolidate business events
with a business process model (e.g., routing information)
stored in the Agent Repository to yield contextualized
business process events.

& Agent Repository: In the manufacturing environment,
this data repository usually resides in the line-control PC
for a processing area or a local production line. The fol-
lowing types of information are stored:

◼ Mapping information for the RFID reader/antenna
and the area/location covered by it

◼ Master data regarding each specific processing area
or production line

Int J Adv Manuf Technol (2010) 50:1217–1234 1221

◼ Recipe-related information of local machine/tools in
a processing area or production line

◼ System parameters and other data specific to the
local processing area or production line

& Transaction Log: This is an operational data store that
keeps not only all the tag transaction data as a tagged item
moves from one location to another but also some his-
torical information. This data repository can be located in
the central system that monitors all the distributed line-
control PCs. It can also reside in local line-control PCs and
then periodically shares its information with the central
system.

& Operational Metadata: It can also be called an “opera-
tional metadata store”—a special kind of data ware-
house that keeps current (near real-time) operational
metadata that has been extracted from multiple opera-
tional data sources (in this case, a tag activity log and
Agent Repository), consolidated and normalized into a
complete data model, and made available for query and
analysis. We can more easily acquire real-time infor-
mation regarding the location of a tagged item with the
help of operational metadata.

& Services: Various services encapsulated within SOA.
These services can be existing enterprise system func-
tions or custom design functions for a specific agent.

4.2 Encoding scheme for RFID tag

The RFID tag’s coding scheme can be seen as part of an
ontology model of our proposed EAI framework. Ontology
is used for agent’s knowledge sharing and is becoming
a crucial element for building a multiagent system. Only
what can be represented using ontologies can be repre-
sented in agent’s knowledge bases [23]. Recent writings
[24] describe a multiagent system that applied ontology and
agent technology to construct virtual observatory capabil-
ities. RFID and agent-based collaborative mold production
system that incorporated the ontology model in its multi-
agent system design are good examples of using ontology
in agent-based system [25].

The memory’s data structure of a RFID tag attached to a
workpiece mainly comprises three main areas as shown on
Fig. 2 (the structure can be extended to include more areas),
namely Tag ID denoted as tid, Tag object type and attribute
denoted as id_type, and event content denoted as Eid. The
reserved flexible area is an optional memory space to
capture information not categorized. Except for a tag ID
that may reside in tag identification memory, a predefined
memory organization by industry standard, the rest of data
types are allocated in programmable user memory, a free
memory space that allows user-specific data storage, and its

memory organization is user-defined. The details of these
data types are explained below:

& Tag ID (tid): The tag ID is a unique code of the RFID
tag representing a physical object, and the coding can
follow an industry standard (e.g., EPC Global or ISO
standards) or be unique to the company.

& Tag object attribute type (id_type): The ID type is used
for recording the class of the product and associated
information related to the product to facilitate the rapid
classification of tagged physical objects. For example,
we can define id_types as product or component to
discern whether a tag id represents an end product or an
assembly component in the manufacturing process.

& Event identifier (Eid): Event identifier provides storage
space for recording processing instructions and produc-
tion pedigrees for workpieces or products. Each Eid
contains either a pointer or encoded information to rep-
resent actual routing or service instructions. Each Eid
comprises an event header (EH) and an event payload
(EP). The EH is used to record various process flags
and status information, and the EP is used to store
various event-related setting data. These Eids can be
either predefined where event handling logic is pre-
loaded in the memory of RFID tag or dynamically
determined at run time where event handling logic of
next stage is written to RFID tag only after a current
operation is completed. If the case is static, one simple
design scheme for Eid structure will have an EP that
contains a recipe code of a processing stage and an
EH that contains a status flag indicating whether a
corresponding processing stage has been finished or
not. Eid lists can form a type of production pedigree
that contains the history of events that have taken place
for a tagged product. On the other hand, if the case is
dynamic, we can make the Eid record the processing
results only, like a production pedigree, and store the
dynamic part of processing instruction in the reserved
block. The prototype system implemented this scheme.
Nevertheless, the data structure of the event identifier is
not limited to containing only routing or processing
instruction. Event identifier can be designed to contain
various flags, data types, and coding schemes that
provide shared ontology to represent the common
definitions that describe tag object characteristics.
These Eid lists form event link-lists that can be manip-
ulated by RFID Event Processing Agents and Service
Manager Agents. These agents must also ascribe the
same meaning to the coding scheme of the RFID tag
for the effective communication between agents and
intelligent products (tagged items) and among agent
themselves. We will use the term event lists to represent
Eid lists.

1222 Int J Adv Manuf Technol (2010) 50:1217–1234

Such a RFID tag can be treated as an intelligent product
or mobile agent which has the following characteristics
[15]:

1. Possesses a unique identification
2. Is capable of communicating effectively with its

environment
3. Can retain or store data about itself
4. Deploys a language to display its features, production

requirements, etc.
5. Is capable of participating in or making decisions

relevant to product’s own destiny

Even though our current tag design cannot satisfy
characteristics 2 and 5, we still can make it a mobile agent
by making RFID Event Processing Agent assume such a
role when it is processing a tagged workpiece. The details
of how it is done will be shown when we discuss RFID
Event Processing Agent in later sections.

4.3 Agent-based control and RFID event processing model

The interactions and information flows among components
of the framework used for processing RFID event informa-
tion are referred to as event processing steps (EPS), as
illustrated by Fig. 3. The details of these interactions and
the corresponding event handling logic are described below
(these generic event processing steps may be modified for
different applications):

& EPS-1: A tagged object (ex. a workpiece) transmits its
data to an RFID reader whenever it enters the reading

range of a reader’s antenna. The RFID reader then passes
these data to the RFID Middleware which constantly
monitors several reader devices. The RFID Middleware,
upon receiving the raw tagged data, performs data
filtering and obtains the tag ID, the product type and
attributes, and the event content from the RFID reader.
This middleware then relays them to the target Tag
Handler module. In a case where the tag data need to be
parsed, the Tag Handler module must also incorporate a
data parser to perform the parsing operation.

& EPS-2: The Tag Handler is coupled to the RFID
Middleware, and the tag data can either be sent to the
Tag Handler by the Middleware or be cached in the
Middleware first and then retrieved by Tag Handler
when it has the capacity to process more tag data (in the
case of processing multiple tags).

& EPS-3: After receiving tag data, the Tag Handler
immediately parses and analyzes that data and generates
a new RFID event (ex. a workpiece processing event).
The Tag Handler then invokes Session Controller to
spawn a new event handling session for that RFID event
and transmits associated parameters (information such as
tag ID, ID type, and Eid) to the Session Controller.

& EPS-4: The Session Controller creates an event han-
dling session and assigns a session memory for it. We
prefer to create a session memory in persistent storage
to avoid data loss and preserve data integrity during the
entire lifecycle of event handling session. The Session
Controller then obtains the associated information with
respect to a workpiece as well as location- and/or

Fig. 3 Event processing and
information flows of the
proposed EAI framework

Int J Adv Manuf Technol (2010) 50:1217–1234 1223

operation-specific information from Agent Repository
using the parameters passed from the tag handler and
then caches these data in its memory.

& EPS-5: The Session Controller sends key parameters
regarding a tagged object back to the Tag handler for
further determination and processing.

& EPS-6: Using the parameters obtained from the Session
Controller, the Tag Handler compares and analyzes tag
ID and event parameters to determine whether an event
can be processed at this location and at this time. If the
result is positive, the Tag Handler sends a notification
with associated parameter data to the Service Manager
Agent to process the event; otherwise, it informs the
Service Manager Agent to handle the exception and to
display error message and relevant correcting informa-
tion for the user.

& EPS-7: The Service Manager Agent, upon receiving an
event processing notification and associated parameters
from the Tag Handler, retrieves event process logic or
recipe information either from the Agent Repository or
External Sources. Alternatively, if detailed event data
are predefined and preloaded in the tag memory bank
during the initialization of the tagged object, the Service
Manager Agent performs its operation directly in
accordance with the associated setting data and instruc-
tions associated with the tag sent from the tag handler.
The Service Manager Agent then transmits the event
process logic or recipe information to the external
systems such as processing machines or MES and
drives the automatic process flow (either directly drives
or communicates with the external system through
network service or waits for a manual process).

& EPS-8: When external process/operation is completed,
the external processing information is sent back to the
Service Manager Agent by the external system.

& EPS-9: The service Manager Agent then relays the
external processing information to the Session Controller.

& EPS-10: The Session Controller registered the external
processing information in its cache memory and sends a
completion notice and the associated parameters to the
Event Manager.

& EPS-11: The Event Manager reads the associated event
process flow information from the Agent Repository
(through the Session Controller) in accordance with the
associated parameters, and it obtains the latest informa-
tion regarding the status of an intelligent product
(tagged object) and its environment (such as resource
or routing information). Finally, data comparison and
computing are performed in accordance with the
information, and the associated information of the event
to be completed in the next stage of the tag (workpiece)
is obtained. New event information (e.g., ID type and
Eid) is generated. Alternately, if the Eid is predefined

and preloaded in the tag during the initialization of the
tagged object, then the Event Manager directly reads
out the new event information from the Eid lists
residing in the tag memory. Finally, the Event Manager
transmits the new event information to the Tag Handler.

& EPS-12: The Tag Handler writes the new event into the
RFID tag (i.e., the corresponding tagged object/work-
piece) through the RFID middleware and RFID reader,
and it also updates the associated parameters of the
current event. Additionally, the Event Manager may
request the Tag Handler to obtain a workpiece’s tag id
from Middleware and consult with the Session Con-
troller whether that id is the same with the one currently
cached in session. This extra procedure can help RFID
Event Processing Agent to make sure it is working on
the same workpiece and thus can avoid updating in-
formation to a wrong workpiece.

& EPS-13: After the tag event is written successfully, the
Tag Handler informs the Session Controller so that the
associated data registered in its cache memory is written
to the system database (Agent Repository and Transac-
tion Log), thus releasing the corresponding cached event
data associated with the workpiece from the memory of
the Session Controller during this event handling session.

5 Prototyping of the proposed EAI framework

In order to prove the applicability and usefulness of the
proposed EAI framework, we developed a prototype to
validate the design of the framework. Based on the scenario
of semiconductor testing processes, the prototype system is
applied on a pilot production site of a local IC testing firm
to provide a proof of concept demonstration. It helps firms
evaluate the feasibility of possible future implementation of
such system and its improving effect on manufacturing
process control and product quality. This pilot study was
conducted for a leading semiconductor packaging and testing
contract manufacture in Taiwan.

5.1 System infrastructure

The processing of the real-time RFID data can be divided
into four layers, as illustrated in Fig. 4. This layered
information processing architecture decouples different
RFID event handling phases where each phase requires a
different set of data processing logic and techniques. This
research constructs the prototype of the proposed EAI
framework based on such layered architecture and a
multitiered, web-based infrastructure to facilitate real-time
RFID information processing. Figure 5 depicts the infor-
mation infrastructure of the proposed system. The architec-
ture consists of three parts—the hardware device that

1224 Int J Adv Manuf Technol (2010) 50:1217–1234

includes passive RFID Tag and RFID Reader with Antenna.
The RFID Middleware provides a logical control interface
to manage physical RFID readers and preprocessing large
volume of raw RFID data. Finally, the RFID application
contains most of the software components and application
modules and a system database. We deployed RFID Mid-
dleware system to a small Intel-based server (system server
#1) and RFID application and database to another server
(system server #2). The RFID readers are connected to the
system server #1 through LAN system, and the RFID
application communicates with RFID middleware through
Internet system. Mapping the information infrastructure of
the prototype system (Fig. 5) to the layered RFID infor-
mation processing architecture (Fig. 4), we can see that
RFID readers and tags correspond to the bottom layer of the

processing architecture; RFID Middleware corresponds to
the RFID Event Handling Layer, and the RFID application
implements both Business Logic Processing and Business
Process Integration Layers. Section 5.2 will discuss the com-
ponents of the RFID Middleware and RFID application.

The development environment of the prototype system is
briefly described below:

& Operating Systems: server:WindowXP, client:WindowXP
& Database: SQL Server
& Programming language: Java technology stack (JSP,

JDBC, Java Beans…,etc.)
& Application Server: Tomcat
& RFID Tag: EPC C1Gen 2 passive RFID Tag
& RFID Reader: AWID UHF RFID Reader

Fig. 4 The layered RFID
information processing
architecture

Fig. 5 Prototype system’s
infrastructure

Int J Adv Manuf Technol (2010) 50:1217–1234 1225

5.2 Design and implementation of system components

A prototype of the proposed EAI framework was implemen-
ted as a computer integrated manufacturing system (Fig. 6)
used in a shop floor environment. The system was designed
to facilitate dynamic control of semiconductor testing pro-
cesses and real-time tracking and tracing of these processing
flows. Three main objectives of the system are to provide
better process visibility, to better handle process changes,
and to enhance quality of testing service. As shown in Fig. 6,
we divided the prototype system into three parts. Each part
has its own components and is implemented separately.

1. RFID Middleware: RFID Middleware is an application
that directly controls the physical RFID readers and
performs RFID raw data preprocessing. Built upon the
middleware application is a RFID reader management
console, which is a Java client application providing
graphics user interfaces for configuring reader settings
and monitoring reader activities. The RFID reader
management console is shown in Fig. 7. To cope with
different requirements from both manufacturing and
logistic operations, we incorporated control mechanisms
to allow the Middleware to handle both cases. In the
“Modify Reader” function of the Middleware, users can
set RFID readers to writing mode (single tag), single tag
reading mode, and multiple tags reading mode. Single
tag reading mode is designed to facilitate manufacturing
operations for readers deployed at workstations. If more

than one RFID tag is detected by reader at a work-
station’s input/output buffer, the RFID reader manage-
ment console will prompt operator with warning
message. On the other hand, multiple tags reading mode
is designed to accommodate logistic operations for
readers deployed at dock doors where Middleware must
capture all tags passing through the door. These
specialized features make our RFID Middleware flexible
enough to meet different needs of manufacturing and
logistic tasks.

2. REA: Three functional modules of the REA are imple-
mented in Java, each with its own execution logic as
described in Section 4.1. These modules help REA
perform various tasks. For example, the agent can use
event validation algorithms implemented in the Tag
Handler module to validate the testing process sequence
and the testing process logic of a semiconductor testing
lot; decision-making algorithms implemented in Event
Manager can help the agent schedule new task for a
semiconductor testing lot. Details of these algorithms
will be discussed in later sections. In addition, a variant
of the standard Tag Handler module was created to
handle batch reading of workpieces in a queuing or
buffer area. This specialized Tag Handler submodule
only performs item counting and bypasses other com-
plex event handling processes of the standard Tag
Handler. We called this a pure tag logging mode, and
the tag handler of a REA can be configured for standard
mode or pure tag logging mode.

Fig. 6 System architecture of
the prototype system

1226 Int J Adv Manuf Technol (2010) 50:1217–1234

3. RFID Integration Modules: This portion of system
takes care of shared system processes that support the
RFID event processing agent. The data mapping and
synchronization programs are responsible for most data
intensive operations like data extraction, consolidation,
and synchronization. For example, retrieved master
data and other reference information from external data
sources like the ERP or MES (manufacturing execution
system) are consolidated, synchronized, and finally
stored as normalized information in the Agent Repos-
itory. The RTE web application module is designed to
support front-end, user interface operations of the web
portal. The RTE web application module may also
accept requests from the Service Manager Agent and
prompt users to perform certain tasks accordingly. The
RTE web application module incorporates monitoring
mechanisms which constantly retrieve workpiece pro-
cess changing information from Operational Metadata
and reflect such information on the web portal as
shown in Fig. 6. Internal and external system users can
access a unified web portal with different levels of user
privileges and roles. Lastly, the Service Manager Agent
is implemented as a service broker for the RFID event
processing agent. The service broker acts like a
mediator or communicator between a RFID event
processing agent and any external services that may
dwell in a machine, a server, or other device. The
Service manager agent is able to service requests from
multiple RFID event processing agents.

Another issue for system implementation is the design of
RFID tag coding scheme. The tag data structure is designed
based on a company’s specific requirements as shown in
Fig. 8. Based on the discussion of the encoding scheme for
a RFID tag in Section 4, we determined that our prototype
has dynamic processing flow, and the tag data structure is
designed accordingly. We made the Eid record the process-
ing results which served as a production pedigree where the
EH of each Eid contained a pass/fail status flag indicating
whether a corresponding processing stage has been suc-
cessfully executed or not, followed by an EP containing
operation code and workstation code of that processing
stage. For the dynamic part of processing instructions, we
stored the next operation code and workstation code in the
reserved block. Also stored in the reserved block were total
chip and bad chip quantities. The order of the Eids thus
forms a production pedigree of semiconductor testing for a
tagged lot container. Finally, part of the prototype system
is implemented based on a R-SOP. The R-SOP will be
discussed in the following sections.

6 Case study

The prototype system simulates a shop floor operation in a
semiconductor packaging and testing environment with
build to order strategy. The simplified manufacturing pro-
cesses and their material and information flow are shown
in Fig. 6. The facility layout in the pilot production site

Fig. 7 The RFID reader
management console

Int J Adv Manuf Technol (2010) 50:1217–1234 1227

consists of three types of facility items: kitting area, pro-
duction control area, and stocking area. The kitting area is
set up for material preprocessing and the stocking area for
storing finished products. The labels numbered OP0∼OP3
are routing/processing steps for a tagged workpiece (in this
case, a chip container). Several workstations are deployed
to simulate actual semiconductor testing processes. These
are grouped by three different type of operations (OP1∼OP3)
where final test FT1 operation has three workstations and
FT2 and inspection operations each has two workstations,

respectively. RFID readers are deployed at the check-in
buffer and the check-out buffer of each workstation as shown
in Fig. 9 and on top of a dock door as showed in Fig. 10.
Using one reader with two antennas positioned inside and
outside of a dock door, we can distinguish incoming and
outgoing tagged objects. Each check-out buffer can also
serve as a quality control station where a testing lot that does
not pass the testing criteria can be stopped from flowing to
the next production phase, and remedy actions can proceed
immediately.

Fig. 8 RFID tag coding scheme
of the prototype system

Fig. 9 Mechanism of
RFID-based SOP
for scenario 1

1228 Int J Adv Manuf Technol (2010) 50:1217–1234

6.1 Scenario 1: RFID-based standard operation procedure
for shop floor operation

The system architecture shown in Fig. 6 illustrates an
operation scenario of semiconductor testing for our pilot
research. When receiving customer orders, the company’s
ERP system generates a corresponding job order and
transfers it to the MES system. Then, the MES system
transforms the job order into working orders and notifies our
prototype system of the arrival of new working orders. The
prototype system then extracts the working orders from
the MES database and consolidates the information into the
Agent Repository. A production supervisor can release the
working orders from the web portal. The manufacturing
processes are initiated in the preprocessing stage, and
relevant information is written to the RFID tags attached to
an IC chip containers at this stage. A RFID tag attached to an
IC chip container contains several chips belonging to a single
testing lot. Information written to the tag follows the coding
scheme revealed in Fig. 8. Initially, the bad chip quantity is
set to zero, the next operation code is set to FT01, the
workstation code of next operation is set to workstation 1 of
FT01, and the event logging block is set to null. When a lot
completes its initialization process, its information is relayed
to the first workstation, and shop floor operators immediately
receive this information on the web portal. Additionally, the
required parts or materials are also prepared in the Kitting
Area and will be delivered to workstation on demand. As
a lot moves into a workstation, operators will perform
a serious of shop floor operations as shown in Fig. 9
(numbered from 1 to 7). We propose a R-SOP to model these
sequences of actions as a discrete event system. The R-SOP
is used to configure the prototype system for a particular
shop floor operation and guide operators to correctly perform
tasks for the operation. The R-SOP of Fig. 9 displays a
semiconductor testing process used in our research. Tradi-
tionally, SOP are written in documents to serve as guidelines
for operators to efficiently perform tasks without errors.
Likewise, R-SOPs are designed to correctly and efficiently
guide operators carrying out tasks that involve RFID
technologies in the operational processes. Thus, R-SOPs
must be customized to meet different requirements for each
unique business case. In our case study, the R-SOP starts
when triggered by the RFID reader detecting a lot (chip
container) being placed on the check-in buffer of a work-
station and ends after tag event parameters are written to the
container’s RFID chip. The mechanism to support the R-
SOP is based on our proposed RFID-based EAI framework.

Figure 9 shows the R-SOP of a typical operational sce-
nario in our prototype system. The R-SOP involves fol-
lowing steps.

1. A RFID tagged IC chip container being placed on the
check-in buffer of a workstation (ex. FT01) and

detected by the motion sensor of the buffer: The motion
sensor then triggers the RFID middleware to launch the
RFID reader to retrieve lot information from the RFID
tag attached on the chip container. RFID middleware
first conducts RFID signal preprocessing to generate a
raw event, or a string holding parameters from both the
container’s tag and the RFID reader. Middleware then
switches the reader from reading mode to sleep mode
and relays raw event to the REA. The REA first parses
the raw event to obtain relevant parameters and then
performs a lot validation based on obtained parameters
and relevant lot information retrieved from Agent Re-
pository. Detailed lot validation activities will be ana-
lyzed in the next section.

2. If a lot passes the validation, the REA will invoke a
check-in process as shown in Fig. 9. Operators simply
click the check-in button to complete the check-in
process.

2.1. On the other hand, if a lot does not pass the
validation, an alert message will be prompted to instruct
operator to move the wrong chip container out of the
check-in buffer.

3. If a lot passes the validation, a field operator or engineer
will take the chip container to processing/testing equip-
ment and start performing the testing operation. In our
lab environment, a separate computer loaded with sim-
ulated testing and inspection programs is used to mimic
the real testing operation. The testing results are shown
on this computer, and the event status corresponding to
the testing results are relayed and stored in a testing
information server.

4. Once the testing is completed, the operator must move
the chip container from the testing equipment to the
check-out buffer.

5. The operator places the RFID tagged IC chip container
on the check-out buffer of the same workstation, and
the motion sensor of the buffer will detect the presence
of a chip container. The motion sensor then triggers the
RFID middleware to launch the RFID reader to retrieve
lot information from the RFID tag attached to the chip
container. After the reading is completed, the RFID
middleware obtains raw event and switches the reader
from reading mode to sleep mode. Middleware then
relays the raw event to the REA. The REA parses the
raw event to acquire the unique identification of the
container. Based on the container ID, the REA verifies
the lot on the check-out buffer to make sure it is the same
lot that just completed testing in the same workstation.

6. Once the lot passes the validation, it triggers the REA to
perform a serious of postprocessing activities, including
scheduling a new task for the lot and updating relevant
information in the system database and container’s tag.

Int J Adv Manuf Technol (2010) 50:1217–1234 1229

Finally, the REA will invoke a check-out process as
shown in Fig. 9. Operators simply click the check-out
button to complete the check-out process.

6.1. On the other hand, if a lot does not pass the
validation, an alert message will be prompted to instruct
operators to replace the wrong container with the right
one on the check-out buffer.

7. After confirming the check-out state, operators will
take chip container out of the check-out buffer. This
concludes the R-SOP portion of this scenario.

As a chip container comes off the check-out point, the
system will relay its lot number to the next workstation, and
this process will continue until a lot completes all necessary
operations.

Main duties performed by the REA to facilitate a RFID-
based SOP for shop floor operation (scenario 1) are sum-
marized in the following tables (Tables 1, 2, 3, 4, 5). Both
procedures and algorithms are elucidated in the tables using
pseudo code.

6.2 Scenario 2: Real-time lot process visualization

4. RFID has proved to be very effective in facilitating real-
time tracking and management of logistic processes. A
dynamic logistics process knowledge-based system [29]
to automatically identify various logistics process status

in real time and perform process logic checking/
reasoning is a good example. Unlike the RFID-based
SOP case where REA must handle complex RFID event
processing, most pure logistic events like workpieces
passing through a RFID-based dock door only require
the REA to simply log their entrance/exit events, as
shown in Fig. 10. Thus, we configured another instance
of a REA with its tag handler set to pure tag logging
mode. This REA is constantly updating logistic process
status into a Transaction Log after receiving tag
transaction events relayed from RFID middleware.
Besides the logistic events, the Transaction Log also
stores the manufacturing process status of each tagged
chip container (lot) as it completes its check-in and
check-out operations as mentioned in previous section.
The Data Synchronization Module then performs ETL
processing to convert data in Transaction Log into
Operational Metadata at every preset time interval.
Finally, the RTE web application can retrieve real-time
lot process information and present it to application users
through the RTE web portal. These steps of visualizing
lot processes are illustrated in Fig. 10. Figure 10 also
demonstrates scenarios where custom orders are corre-
lated to the lot status. The lot status on the portal is
changed in near real-time when an underlying tagged
chip container (corresponding to the same lot) is
physically being moved from one place to another.

Table 1 Task 1 of REA to validate testing process sequence

1230 Int J Adv Manuf Technol (2010) 50:1217–1234

7 Performance evaluation

The surveyed company currently uses paper travelers (run
cards) with bar code labels for tracking and identifying the
thousands of chip containers moving around its testing
facility each day. Tracking and tracing its manufacturing
process information involves human intervention that often
causes many errors and information delay. These problems
further affect its process quality control. In our proof of
concept pilot research, we found that the overall manufac-
turing process monitoring and control was improved by the
application of RFID technology and our prototype system.
Table 6 presents a comparison of information tracking capa-
bility between that company’s current tracking technology

and our proposed one. It seems obvious that RFID
technology can significantly close the gaps between product
flow and information flow. A RFID-based material flow
control system developed for an IC assembly firm suggested
that RFID contributes significant improvements to the wafer-
receiving process and the inventory transaction process in
terms of reducing man-made errors and labor costs [30]. We
also obtain similar performance results from our prototype
system. In addition to improved tracking and tracing capa-
bility, the prototype system greatly enhanced the quality of
the firm’s testing service as our proposed R-SOP helped
shop floor operators correctly handle dynamic testing pro-
cedures and thus greatly reduce operational errors. With the
help of our proposed solution, field operators can correctly

Table 2 Task 2 of REA to validate testing process logic

Table 3 Task 3 of REA to validate a lot on check-out buffer

Int J Adv Manuf Technol (2010) 50:1217–1234 1231

resolve shop floor problems before they propagate to the
next testing process.

8 Conclusion

One of the major trends in globalization is the use of mass-
customization production and a ubiquitous and real-time

organization in manufacturing enterprises. To become a
RTE, it is necessary to use information technology to
integrate related information and physical objects at
different times and different locations. The proposed EAI
framework and prototype system can serve as a reference
model for a surveyed company. The framework can also
be applied to many other semiconductor manufacturers,
helping them to build their next generation of virtual fabs

Table 4 Task 4 of REA to schedule task assignment of next operation

Table 5 Task 5 of REA to schedule task for a lot-assignment of workstation

1232 Int J Adv Manuf Technol (2010) 50:1217–1234

(VF; a VF is a foundry that provides integrated manufac-
turing services to its customers as if this foundry fab were
the customer’s own fab and has been adopted by leading
semiconductor manufactures like TSMC and UMC [22]).

Despite the apparent benefits of RFID, environmental
interference of RFID signals, especially metal in the manu-
facturing environment, is still one of the major challenges
of UHF RFID technology. Current ways around this issue
include the purchase antimetal tags and installation of more
antennas to capture a tag signal from different angles. These
increase implementation costs. Thus, further research and
development of better tag data preprocessing and RFID
event generation algorithms for Tag Handler are recom-
mended to help the prototype system realize its best poten-
tial when applied to a harsh shop floor environment.

In summary, this study makes the following contribu-
tions to improving the traceability, visibility, and manage-
ability of dynamic manufacturing processes.

& We have proposed a RFID-based EAI framework for
tracking and controlling the dynamic manufacturing pro-
cess flow.

& On the basis of the framework, we implemented an
integrated prototype system that consists of RFID mid-
dleware and a shop floor control and monitoring in-
formation system to process RFID data in real time.

& The proposed framework can markedly improve the
manufacturing process and quality control.

& The findings of this study reveal that the prototype
system can provide both the shop floor operators and

Fig. 10 Real-time product
status information keeps internal
and external users informed

Table 6 Comparison of manufacturing process tracking between two information systems

Criteria Barcode- and run card-based (paper travelers) tracking system RFID-based tracking system

Convenience Requires line of sight scan Automatic scan without line of sight

Efficiency Cannot support batch reading Can read multiple tags at once

Accuracy Susceptible to misreads and human error Reduced human error and misreads improves data accuracy

Traceability Limited traceability. Some harsh manufacturing processes
(like baking) make barcode tacking impossible

Allows detailed tracking and tracing of process status,
inputs/outputs, and the time that each processing step
was performed

Speed Process information not in real-time Real-time process information

Reliability Barcode are easily dirtied or scraped in harsh
manufacturing environment

RFID tag can survived harsh environment like dirty or
high temperature

Automation Need more human labor to collect and track process data Replace or reduce human labor in data collection and tracking

Information Limited process information Vast amount of detailed process information

Storage (data) Allows only centralized data storage Mixed of centralized and decentralized

Int J Adv Manuf Technol (2010) 50:1217–1234 1233

the production supervisor with real-time production
process information, helping them to respond to the
status of the production line in real time and make
better decisions when handling production events.

References

1. Arregui D, Fernstrom C, Pacull F, Rondeau G, Willamowski JS
(2003) Middleware for ubiquitous applications. In: Proceedings of
smart objects conference 2003. Grenoble, France, pp 15–17

2. Floerkemeier C, Lampe M (2004) Issues with RFID usage in ubiq-
uitous computing applications. Lect Notes Comput Sci 3001:188–193

3. Yamaguchi A, Ohashi M, Murakami H (2005) Autonomous
decentralized control in ubiquitous computing. IEICE Trans Commun
E88-B(12):4421–4426

4. Gorton I, Liu A (2004) Architectures and technologies for
enterprise application integration. In: Proceedings of 26th inter-
national conference on software engineering, Edinburgh, pp 726–
727

5. Kotorov R (2002) Ubiquitous organization: organizational design
for e-CRM. Bus Process Manag J 8(3):218–232

6. Langheinrich M, Mattern R, Romer K, Vogt H (2000) First steps
towards an event-based infrastructure for smart things. Ubiquitous
Computing Workshop at PACT, Philadelphia, pp 1–13

7. Römer K, Schoch T, Mattern F, Dübendorfer T (2003) Smart
identification frameworks for ubiquitous computing applications.
In: Proceedings of the 1st IEEE international conference on
pervasive computing and communications, pp 253–262

8. Stojanovic Z, Dahanayake A, Sol H (2004) Modeling and design
of service-oriented architecture. In: IEEE International Conference
on Systems, Man and Cybernetics, pp 4147–4152

9. Want R, Fishkin K, Gujar A, Harrison B (1999) Bridging physical
and virtual worlds with electronic tags. In: Proceedings of ACM
CHI, Pittsburgh, pp 15–20

10. Weiser M (1991) The computer for the twenty-first century. Sci
Am 265(3):94–104

11. Kalakota R, Stallaert J, Whinston AB (1995) Implementing real-
time supply chain optimization systems. In: Proceedings of the
Conference on Supply Chain Management, Hong Kong

12. Datta Shoumen (2003) Adapting decisions, optimizing facts and
predicting figures. In: MIT forum for supply chain innovation.
Working Paper, First Draft

13. Swaminathan JM, Smith SF, Sadeh NM (1998) Modeling Supply
chain dynamics: a multiagent approach. Decis Sci 29(3):607–632

14. Lin FR, Tan GW, Shaw MJ (1998) Modeling supply-chain
networks by a multi-agent system. In: IEEE proc. thirty-first annual
Hawaii international conference on system science, pp 05–114

15. McFarlane Duncan, Sarma Sanjay, Chirn Jin Lung, Wong CY,
Ashton Kevin (2002) The intelligent product in manufacturing
control. Journal of EAIA

16. Jeng J-J, Schiefer J, Chang H (2003) an agent-based architecture for
analyzing business processes of real-time enterprises. In: IEEE proc.
enterprise distributed object computing conference, pp 86–97

17. Chen R, Lu K, Yu S, Tzeng H, Chen C (2003) A case study in the
design of BTO/CTO shop floor control system. Inf Manage
41:25–37

18. Kuhlin Bernd, Thielmann Heinz (2005) I&C technologies for a
real-time enterprise. The practical real-time enterprise. Springer,
Berlin, pp 201–235

19. Khosla V, Pal M (2002) Real time enterprises, a continuous
migration approach. Inf Knowl Syst Manag 3(1):53–79

20. Qiy RG (2007) RFID-enabled automation in support of factory
integration. Robot Comput Integrated Manuf 23:677–683

21. Huang GQ, Zang YF, Jiang PY (2006) RFID-based wireless
manufacturing for walking-worker assembly islands with fixed-
position layouts. Robot Comput Integrated Manuf 23(4):469–477

22. Sua R, Guoa R, Chang S (2005) Virtual fab: an enabling frame-
work and dynamic manufacturing service provision mechanism.
Inf Manage 42:329–348

23. Obitko M, Marik V (2002) Ontologies for multi-agent systems in
manufacturing domain. In: Proceedings of IEEE 13th international
workshop on database and expert systems applications, DEXA

24. Chen R, Chen D (2008) Apply ontology and agent technology to
construct virtual observatory. Expert Syst Appl 34:2019–2028

25. Trappey AJC, Lu T-H, Fu L-D (2007) Development of an
intelligent agent system for collaborative mold production with
RFID technology. Robot Comput Integrated Manuf 25:42–56

26. Huang George Q, Zhang YF, Jiang PY (2008) RFID-based
wireless manufacturing for real-time management of job shop
WIP inventories. Int J Adv Manuf Technol 36:752–764

27. Shouqin Z, Weiqing L, Zhongxiao P (2007) An RFID-based
remote monitoring system for enterprise internal production
management. Int J Adv Manuf Technol 33:837–844

28. Martyn F, Duncan McFarlane, Alan T, Dennis J, Andrew L (2004)
Evaluating a holonic packing cell. Lect Notes Comput Sci
2744:1087

29. Chow Harry KH, Choy KL, Lee WB (2007) A dynamic logistics
process knowledge-based system—an RFID multi-agent approach.
Knowl-Based Syst 20:357–372

30. Liu C-M, Chen LS, Romanowski RM (2008) An electronic
material flow system for improving production efficiency in
integrated-circuit assembly industry. Int J Adv Manuf Technol 42
(3–4):348–362

31. Doerr KH, Gates WR, Mutty JE (2006) A hybrid approach to the
valuation of RFID/MEMS technology applied to ordnance
inventory. Int J Prod Econ 103(2):726–741

32. Dong L, Dennis K, Paul D (2006) Dynamic planning with a
wireless product identification technology in food supply chains.
Int J Adv Manuf Technol 30:938–944

33. Paret D (2005) RFID and contactless smart card applications.
Wiley, New York

34. Tanaka K, Kimuro Y, Yamano K, Hirayama M, Kondo E,
Matsumoto M (2007) A supervised learning approach to robot
localization using a short-range RFID sensor. IEICE Trans Inf Syst
E90-D(11):1762–1771

35. Mills-Harris MD, Soylemezoglu A, Saygin C (2007) Adaptive
inventory management using RFID data. Int J Adv Manuf Technol
32:1045–1051

36. Jiahao W, Zongwei L, Wong Edward C (2010) RFID-enabled
tracking in flexible assembly line. Int J Adv Manuf Technol
46:351–360

37. Finkenzeller K (2003) RFID handbook: fundamentals and
applications in contactless smart cards and identification. Wiley,
New York

38. Gunasekaran A, Ngai EWT, McGaughey RE (2006) Information
technology and systems justification: a review for research and
applications. Eur J Oper Res 173(3):957–983

39. Chow HKH, Choy KL, Lee WB, Lau KC (2006) Design of a
RFID case-based resource management system for warehouse
operations. Expert Syst Appl 30(4):561–576

40. Parlikad AK, McFarlane D (2007) RFID-based product information
in end-of-life decision making. Control Eng Pract 15(11):1348–1363

1234 Int J Adv Manuf Technol (2010) 50:1217–1234

	An RFID-based enterprise application integration framework for real-time management of dynamic manufacturing processes
	Abstract
	Introduction
	RFID technology for enterprise application integration
	Agent-oriented approach for managing real-time information
	RFID-based EAI framework
	Architecture of the proposed EAI framework
	Encoding scheme for RFID tag
	Agent-based control and RFID event processing model

	Prototyping of the proposed EAI framework
	System infrastructure
	Design and implementation of system components

	Case study
	Scenario 1: RFID-based standard operation procedure for shop floor operation
	Scenario 2: Real-time lot process visualization

	Performance evaluation
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

