SHORT NOTES

Performance of the algorithm (Average)

No. of procedure calls (Thousands)

T
0 0.2 04

Figure 4. Number of nodes: [J swapping; + number of nodes;

nodes).

in the tree. During the insertion process, the
number of swapping required to insert a node
at level LOO<I<h), is n—2"""V_1, h=
llog, (n+ 1)]. Gerasch’s algorithm’ produces a
nearly optimal tree with swapping as the basic
operation. In this algorithm’ imbalancing
occurs at a node P if a subtree of P has more
number of complete levels than the other
subtree of P. In this case, P becomes the pivot
node for rebalancing and keys are displaced in
an ‘inorder’ fashion to make room for the
new key. The key that is displaced out of the
subtree of P replaces the key in P that in turn
becomes the key to insert into the other
subtree of P in order to complete the ap-
propriate incomplete level of the subtree.
Therefore for trees with nodes just above 2%,
for any &k, Gerasch’s algorithm runs
approximately in logarithmic time. In a similar
situation the present algorithm runs in linear
time as a consequence of the strict balancing
condition for maintaining the optimal shape.
In average situations, the algorithm runs in
between logarithmic and linear with the
number of nodes in the tree. Empirical studies
of the present algorithm reveal that the
performance of the algorithm in average
situation is close to log, (n) (Fig. 4). Since the
optimal shape is maintained through a series

i} L T T =T

0.6 0.8 1
(Thousands)

<O log (number of

of local rearrangements, in average situations
the tree reorganisation is limited to local
changes.

4. Conclusion

We have presented a strategy to create an
optimal binary search tree. Using swapping as
the basic operation, the algorithm dynamically
keeps the tree optimal during the updates. In
worst case situations, the number of swappings
during a single insertion is at most n, where n
is the number of nodes in the tree. Hence the
algorithm is significant while considering the
static optimal binary search trees.

Acknowledgement

The authors are thankful to the referee for his
valuable suggestions which improved the
earlier version of this paper. One of the
authors(APK) is grateful to the University
Grants Commission(INDIA) for providing a
research fellowship to carry out this research
work.

A.P. KORAH and M. R. KAIMAL
Department of Computer Science,
University of Kerala,

Trivandrum, India 695 034

References

1. G. M. Adel’son-vel’skii and E. M.
Landis, An algorithm for the organization
of information. Dokl. Akad. Naak, USSR
146 (2), 263-266 (1962).

2. J.L. Bently, Multidimensional binary
search tree used for associative searching,
Comnumications of the ACM 18 (9),
509-517 (1975).

3. H.Chang and S.S. lyangar, Efficient
algorithms to globally balance a binary
search tree. Communications of the ACM
27 (7), 695-702 (1984).

4. J. Culberson and J. I. Munro, Explaining
the behaviour of binary search trees under
prolonged updates: A model and
simulations. The Computer Journal 32 (1),
68-75 (1989).

5. A. C. Day, Balancing a binary tree. The
Computer Journal 19 (4), 360-361 (1976).

6. J. L. Eppinger, An empirical study of
insertion and deletion in binary trees.
Communications of the ACM 26 (9) (1983).

7. T. E. Gerasch, An insertion algorithm for
a minimal internal path length binary
search tree. Communications of the ACM
31 (5), 579585 (1988).

8. G. H. Gonnet, Balancing binary tree by
internal path reduction. Communications
of the ACM 26 (12), 1074-1081 (1983).

9. D. E. Knuth, The Art of Computer pro-
gramming, vol. 3 Sorting and Searching,
Addison-Wesley, Reading Massachusetts
(1973).

10. W. A. Martin and D. N. Ness, Optimal
binary trees grown with a sorting al-
gorithm. Communications of the ACM 15
(2), 88-93 (1972).

11. J. Nievergelt and E. N. Reingold, Binary
search trees of bounded balance. SIAM
Journal of Computing 2 (1), 33-43 (1973).

12. Q. F.Stout and B.L.Warren, Tree
rebalancing in optimal time and space.
Communications of the ACM 29 (9),
902-908 (1988).

13. N. Wirth, Algorithms+ Data structures =
Programs. Prentice Hall of India, New
Delhi (1988).

On Equivalent Systolic Designs of LU De-
composition and Its Algebraic Representation

Algorithms which are to be mapped onto
interconnecting processing elements in order to
design a systolic array are conventionally
represented by graphs or networks. This paper
introduces the concept of algebraic represen-
tation and uses a generating function to rep-
resent a systolic array.

Received May 1989, revised September 1989

1. Introduction

Conventional design of systolic arrays is based
on the mapping of an algorithm onto an
interconnection of processing elements. These
algorithms are typically described by graphs
or networks, where nodes represent processing
elements or registers and edges represent
interconnections. Although for many purposes
these conventional representations are ad-
equate for specifying the VLSI algorithm, the

algebraic representation is more suitable for
supporting formal manipulation on designs
than the graphic or network models.

Space-time recursion equations of parallel
algorithm can be naturally represented by an
algebraic representation. In this paper we use
a generating function to represent a systoli
array. It adapts the power series notation to a
more algebraic form to aid the specification
and design of systolic array. It also provides a
global view on the data-interacting activity of
a systolic array. Using a generating function
as an algebraic representation of a systolic
array, properties of linear algebra, such as
velocity addition, can be applied 1o derive
different but equivalent designs of a systolic
array.

2. Generating function and systolic flow

The proposed generating function®*1° as an
algebraic notation for representing a systolic
design consists of a collection of data streams.
A ‘data stream’ represents the moving path
of a data item, including the relation between

662 THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992

the space coordinates of the data item and
time. It can be considered as a moving path
of a particle in kinetics. A data stream B can
be represented by the following generating
function:

B = v bx® Y.'f(t)Zk(!).[t

t=0

where X, Y, Z are the space axes, 7 is the time
axis, and b is the data item name of the data
stream B. Data item b locates at space (i(2),
Ay, k() at time ¢ Let B(f) denote
bXT0 yI® ZkO ! Implicitly, data item b of B(?)
carries a value which depends on ¢, but what
we are concerned with here is just the position
vector (i(1), j(1), k(1)) of the moving data item
at time ¢, not how its value is modified in each
PE, hence we only use the data item name b,
not its value, to represent the data stream in
the following discussion.

If data item b moves with constant velocity
V = Aix + Ajy + Akz from the beginning posi-
tion (i(0), j(0), k(0)), where x,y,z are unit

¥T0z ‘gz |1udy uo Akeliqi] Aisieniun Buny ceyd euoieN e /HIo'seulnolploxo jufwody/:dny woly papeojumoq

http://comjnl.oxfordjournals.org/

vectors in X, Y, Z directions respectively, then
at time ¢

B(l) = bX'i(l) Y7(t)Zk(t).[l
_ bxi(0)+mi Y[(O)HA}zk(O)HAkTOH.

Hence the generating function of data stream
B can be written as:

B= S B()
t20
=3 bX-l(O)HA‘ Yj(O)ﬂAlzk(l))ﬂAktOH. (21)
t=0
If we define
1
1 __aAfﬂAijktl
as
1+ aAiﬂAijle
4 201200, 280k 12
+a3Aiﬁ3AJ?3Ak.[3+

=3 anAiﬂcAj.yzAth
t=z0
and the operators a, f, y are defined as
Yo" = Xm+n’ Ymat = Y"”",
Zrat = 7™,

hence

B = Z bXT(O) Yj(O)ZIc(O)TOalA(”AjytAkrt

tz0

1
v B(0). 2.2)

Here, we use X, Y, Z to represent the space
coordinates and use a, f3, y to represent the
movement of data stream, i.e. they are related
to the moving speed of data stream in X, Y, Z
dimensions respectively. We call

1
1 _aAlﬁA]yAle
a moving operator. When it is applied to a

data item, it will make the data item move
with velocity

V = Aix + Ajy + Akz.
Hence, if a data item moves with velocity
V =ix, the applicable moving operator is

1
1 —a%ﬂoy"r’ ’
It can be abbreviated as

I
_—
I —azt!
A ‘data wave’is a collection of data streams,
say B,, moving in a uniform manner. A data

wave can be represented by the following
generating function.

W=38, (2.3)

r

where p represents different data streams.

A ‘systolic flow’ is a collection of data
waves, say W, which in turn can be
represented by t?w following generating func-
tion.

G=3SW,

q

SHORT NOTES

=XXIB
a0

=¥ = bp:qu) YIO ZEO 1t (2.4)
qptz

[}

pie

where g represents different data waves. In
this representation, although we use the same
notation b, to represent all data items of the
data stream B, all the time, it should be
understood that the X, operator applied on
different data waves may modify its carrying
value. This modification happens whenever all
data waves have equal associative space and
time coordinates.

3. Equivalent transformations for systolic
array

We say that two systolic systems are equivalent
if for a given input they can generate the same
output. It is obvious that if interactions (or
meetings) of input and output data streams
are preserved, from one system to the other
system, then both systems are able to generate
the same output, and hence they are
equivalent. Since interactions of data streams
in a systolic system can be represented al-
gebraically by a generating function (it will be
illustrated by examples in Section 4), equiva-
lent transformations which preserve the inter-
actions can be found from the rules of linear
algebra, such as velocity addition. The trans-
formations can be applied on the generating
function so that various complex designs can
be derived from a simple one.

Li and Wah” have described a systematic
design technique for deriving systolic array
architecture. They have shown that for a given
computation, one can write down a set of
vector constraint equations which must be
satisfied in any functionally corrected design.
These equations relate to the parameters of a
systolic array such as velocities of data flow,
data distribution, periods of computation,
and times of data access etc. These equations
are:

Lo Xg+ X = U2 2y 3.1
Ly Yat Yes = Ly 2g 3.2)
LXg+ X, =LY, 3.3)
LZ, 42, =1y, 3.49)
LY+, = 1%, (3.5)
Lz, +2, = 1;X,. (3.6)

By the rule of vector addition, we can see that
if X,,¥4,2, (velocities of data flow) are in the
solution set of the above six equations, then
the set of velocities x7, y;, z; such that

x; = xd+xc
,

Ya = yd =X,
Z:’l = Zd+xc

where x_ is an additional velocity, also satisfies
the above six equations. Hence, x},y, and z;
are also a valid solution to this computation.
That is to say, velocity addition is an equiv-
alent transformation. This type of transform-
ation can be represented by generating func-
tion as follows.

Given a systolic system, if we let the whole
system move at velocity

V,=i,x+j,y+k,z,

then the velocity of a data stream A which
moves at velocity

V,=l,Xx+j,y+k,z,
originally, is changed to

V=V, +V,
= (i, +i)x+ (0, +j)y+k, +ky)z.

Hence the generating function of data stream
Ais

t

1 —glirta) BUrts) yky+kg) ot

A(0)

— Z A(o)a(ilﬂz)zﬂ(j|+l,)ly(kl+k2)l.[t

t20

= Z A(O)tl“‘ﬁ‘t;’k‘t‘[‘

t20

@ 2 A(O)a‘z‘ﬁ’z’y"f‘r‘

t20

o A(0)

1
® g A0 @37
where ‘@’ is a special addition operator. It
sums up the respective powers of «, f, and y,
of the same data item at time ¢. Hence, ‘@’
can be considered as vector addition of velocity
or displacement vector of the data stream.

Since each data stream of the original system
moves with an added velocity V,, although the
interconnection or the number of PEs should
be adapted to the new moving velocity of the
data stream, it is obvious that the interactions
of data streams are preserved, hence the
velocity addition is an equivalent transform-
ation.

By using the notation of the generating
function, we will see that the velocity addition
can be easily represented algebraically, so that
equivalent systolic arrays can be simply de-
rived. In this paper we choose LU-decom-
position as example to demonstrate these
points.

4. An illustrative example

Consider a matrix 4 which can be decomposed
into a lower and an upper triangular matrices
by Gaussian elimination without pivoting.
VLSI computing structures for LU-decompo-
sition problem have been proposed by Chen,!
Kung,® Kung®¢ Hwang and Cheng?
Moldovan® and others. In this example it is
shown that previously proposed architectures
can be formally derived by using the generating
function and the velocity addition equivalent
transformation.

The algorithm for the LU-decomposition of
amatrix A = [a,;] is expressed by the following
program,®-8

for i=1to ndo
forj=1tondo
ay=a,
for k=1to ndo
for j =k to n do
fori=k to n do
if i = k then uy, = af!
else up, = u'
if j=k then £, = afy ' Juj,
else £, = £.!
ay = dy '~

THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992 663

¥T0z ‘8z |1udy uo ARlqi] AlsieAlun Buny oelyD euoleN e /Blo'seulnolploxo julwooy/:diny woly pepeojumoq

http://comjnl.oxfordjournals.org/

The first design® is presented in Fig. 1. The
data streams A,, stay at processors while the
data streams L, and U, which carry zero
values initially move to the right and down
respectively. Fig. 1 is the initial state of the
systolic array for LU-decomposition. Assum-
ing that data item a,, is located at the
origin of the XY-planes, then the generating
functions of the data waves 4, L, U at time 0
can be described as follows.

A@0) = a,, X°Y°° +a, X' Yt +a,, X Y°7°
+a, X'+ ay, X' V' +a,, X YO
+a,, XYVt +a,, X' Y2 4 a,, X2 YO

=Xa, X! y'-1¢0
.
L(O) = Iy X1 YO+ 4, XY
+ly XY+ 1 X2V
+ly XY+ 1, XP YO

- Z [lk X—l+l—k}ﬂ-110
ik
UQ) = uy, X°Y 1%+ u, X Y20
F Uy X' Y200 X2Y 30
Fuyy XY 40y, X2Y 50

= 8 u, XTI YT
k.1

As times go on, the movement of the data
waves 4, L, U, are synchronized. Since the
data streams A, stay at PEs and data streams
!, and u,, move to right and down respectively,
the generating function for data waves A, L
and U can be represented as follows:

A=

4(0)

1—1!

T A0

tz20

S Za Xty @.n

tz 04}

1

| —ald!

L(0)

S L0)a't

t20

=z3xI, X1 R i1 4.2)
t2 06k

U= U()

1 —-p!

Il

z U g

t20

Z 2 ukl Xj—l Y—;+l-k+1tl (43)

t20k.§

Thus, the systolic flow of LU-decomposition
isG = A+ L+ U. In order to perform the LU-
decomposition correctly, the data streams Ay
L, and Uy, of Fig. 1 must meet in the right
place at the right time. That is, both the space
and time coordinates of these data streams
must be identical. Hence, from the x-co-
ordinate of (4.1} (4.3) we get —i+k+t=j—1
and from the y-coordinate of (4.1)-(4.3) we
have i—1=—j+/—k—1 The result is the
following indicial equation

=—i—j+2+1 4.4)

Here & is a monotonic function of ¢ for given

SHORT NOTES

X uss
| ; uz3
Y U U3
uyy . ll/u
[Z20] . .
—
Iy
Inh .
I3l 03 .

Figure 1. Systolic array for LU-decomposition.

Vi v
Vi . / iy an ap a3
/- by Iy az axyn axp
l33 Iy I3 azy; ax axp

Figure 2. Systolic array for LU-decomposition with added velocity V' = —y.

uszs
LoX) %V
Vv u
Uz U3
upp X

Iz I I3 a3 azyy a3

Figure 3. Systolic array for LU-decomposition with added velocity V = —x—y.

664 THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992

¥T0Z ‘g2 |udy uo Arelq1T AsieAun Buny celyD euoieN e /610'seulnolployxo’ julwody//:dny wo.y papeojumoq

http://comjnl.oxfordjournals.org/

i,j. Hence for all i, js there must exist ts such
that & has values of 1, 2, 3, ... respectively.
Hence the correctness of the first design (Fig
1) can be verified by using (4.4).

In the following, we will describe other
systolic designs for LU-decomposition. We
have found that each of these designs can be
derived from the first design by simply adding
a constant velocity, say V = ux + vy, to all the
data streams Aq(t), L, (1), and U(0). After
the velocity addition, the data streams Au(t),
L, (#) and U, () are transformed into

A=

1
AQ) ® ————— A(0)
1—-a"f’t

B

1—7

i
- l—a"ﬁ"r‘A(O)

=3 A(O)au‘ﬁﬂ‘t‘

tz0

— 2 Za”x’—l«wt)ﬁ—ﬂ»vzrz (4.5)

t20144

L= : LO)® ! L(0)

1—alr! I —a*fc!
1
= ——L(0)
I—a“"ﬂ"r‘

— E L(o)a(lht)tﬂvtrt

tz0

— Z 2 [‘k X—l+l-k+(l+u)th—l+vtrt (46)

t208k
v=—'_v0ye—— v
h 1-p7 I~a*frt
1
=—— U@
1 —a“ﬂ”" .[l

= z U(o)aulﬂ(l+v)trt

t20

- 2 2 u” Xj—l+ut Y—j+l-k+(1+v)trt. (47)

t2 0k

From (4.5)-(4.7) we can derive its cor-
responding indicial equationk = —i—j+2+1.
Since this derived indicial equation is the same
as (4.4), we see that the new design preserves
the execution sequence of the first design in
Fig. 1, hence it preserves the computation.
Therefore, they are equivalent.

Figures 2-5 are some systolic designs for
LU-decomposition which are transformed
from Fig. 1 with an added velocity of

V=—y, V=—-x-y,
V=—ix—1ly

and

V = —1x —}y, respectively.

5. Discussion

Theoretically, the searching space for finding
a feasible added velocity vector is infinite,
hence we can select the velocity with any
direction and with any speed. Since the
computation can only be performed when
data streams are met in each PE, if we let the
interconnection primitives of our array struc-

SHORT NOTES

VirsV
Vi

3

e .
I33 33 I3y

k%

U3

asy asp ass

Figure 4. Systolic array for LU-decomposition with added velocity V' = —3x—3y.

ture to be 8-neighbour bidirectional connected
and the distance of the directly connected PE
is less than or equal to 1 in X-, Y-axis
respectively, the speeds of data streams after
the operation of velocity addition are still less
than 1. Otherwise there must have a longer
link to propagate data, and this is outside the
scope of our discussion.

Hence from (4.5)-(4.7), we can get the
constraint equations for feasible velocity ad-
dition operation. From X-coordinate we get

Jul < 1
N+u <1
and from Y-coordinate we have

o} < 1
b+l <1

7)
1 .//

n

33 I3 I3,

Figure 5. Systolic array for LU-decompesition with added velocity V' = —jx —1ly.

The results are —l K u<0and -1l <v<O.
This means the feasible solution of velocity
addition operation are northwestward. That is
why all feasible designs proposed by various
researchers can be found by adding a velocity
with northwest direction.

For comparison, the performance of various
equivalent systolic designs for LU-decompo-
sition is summarized in Table 1.

The array size of Fig. 1 is n*n. All the PEs
have the same architecture. However, their
function at any given moment may differ. Its
advantages are that the pipelining period (J) is
equal to | and there is no diagonal connection.

Figure 2 is the same as Fig. 1 in terms of PE
function, pipelining period, and connection
number. But it needs only half the PEs of
design 1 and thus saves hardware.

The pipelining period of Fig. 3 is also equal
to 1. But the array size is equal to n*+(n—1)%.

u33
U3
: uy U3
x
~
aps
a;

a3y asz ass
1

THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992 665

¥T0z ‘8z |1udy uo ARlqi] AlsieAlun Buny oelyD euoleN e /Blo'seulnolploxo julwooy/:diny woly pepeojumoq

http://comjnl.oxfordjournals.org/

SHORT NOTES

Table 1. Performance comparison of systolic arrays for LU-decomposition

Diagonal
Fig. # PE I connection Preloading Execution Draining
1 n® 1 No n 3n—2 n—1
2 n(n+1)/2 1 No 0 3n-2 n—1
3 P+ (n—1)* 1 Yes 0 3n-2 1
4 n® 3 Yes n—1 3n—2 1
5 n(n+1)/2 2 No 0 3n-2 1

Hence it needs more hardware cost. But there
is no need for preloading time of 4, hence
this design has the minimum computation
time.

The array size of Fig. 4 is equal to »%, but
there is no need for processor reprogramming.
The function of PEs are fixed all the time, i.e.
the first column PESs perform division, the first
two PEs only pass data, and the inner PEs
perform the multiply-and-add operation. Its
disadvantage is that the pipelining period is
equal to 3.

The function of each PE in Fig. 5 may
change at one given moment and its pipelining
period is equal to 2. But it needs only
n*(n+1)/2 PEs and there is no need for
preloading time; it also has the advantage of
diagonal connection.

6. Conclusion

Conventional design of systolic arrays is based
on the mapping of an algorithm onto an

interconnection of processing elements. This
mapping is done in an ad hoc manner. In this
paper we present a notation of the generating
function which is a mathematical formal
approach to represent systolic arrays. With
the properties of linear algebra, it supports the
transformation between various equivalent
systolic designs.

Y-C. HOU* and J-C. TSAY

Department of Computer Science and In-
formation Engineering, National Chiao Tung
University, Hsinchu, Taiwan, 30050, R.O.C.

* To whom correspondence should be
addressed.

References

1. M. C. Chen, Synthesizing systolic designs,
International Symposium on VLSI Tech-
nology, System and Applications, pp. 209-
215 (1985).

2. Y.C. Hou and J. C. Ysay, An algebraic
model for representing equivalent designs
of systolic arrays. Proc ISMM Inter-
national Symposium, Florida, pp. 163~166
(1988).

3. K. Hwang and Y. H. Cheng, VLSI com-
puting structures for solving large scale
linear system of equations, Proc. Parallel
Processing Conference, pp. 217-227
(1980).

4. H. T. Kung, Highly concurrent systems,
Introduction to VLSI System, edited C. A.
Mead and L. A. Conway, Reading, MA ;
Addison-Wesley (1980).

5. S8.Y. Kung, On supercomputing with sys-
tolic wavefront array processors, Proc.
IEEE, 72 (7), 867-884 (1984).

6. S.Y.Kung, VLSI Array Processors.
Prentice-Hall (1988).

7. G.J. Li and B. W. Wah, The design of
optimal systolic arrays. IEEE Trans. on
Computers, C-34, 66-77 (1985).

8. D. 1 Moldovan, On the design of algo-
rithms for VLSI systems. Proc. IEEE, 71
(1),m 113-120 (1983).

9. J.C.Tsay and Y.C.Hou, Generating
function and equivalent transformation
for systolic arrays, to appear in Parallel
computing, North-Holland.

10. S. Yuan, 4n Aigebraic Notation for the
Design and Verification of Systolic Arrays,
M.S. Thesis, National Chiao Tung Uni-
versity, Hsinchu, R.O.C. (1987).

Reverse Chaining for Answering Temporal
Logical Queries

A possible structure for the past data of a
partitioned temporal database is reverse field
chaining. Under this technique field versions are
chained by descending time. Exact analysis
derives the expected number of block accesses
when logical queries against a partitioned
temporal database with reverse chaining are
satisfied. Numerical results are given.

Received November 1989, revised November
1990

1. Reverse chaining

A very efficient structure for answering queries
based on secondary key values against a
temporal database is reverse chaining, ac-
cording to which field versions are chained by
decreasing time. The motivation of the present
work is a previous effort on the performance
analysis of such systems, where a formula was
given deriving the cost of answering logical
queries by using reverse chaining. However, the
analysis was approximate and resulted in a
pessimistic evaluation. Here, we give an im-
proved mechanism for traversing many reverse
chains by using some sort of parallelism instead
of a one-a-time chain processing.

Suppose that the original layout of a record
from a personel file of a conventional database
is:

EMP(empno,name,position,salary).

This file in database applications with time
support should have a different layout. If field
version chaining is applied and the user queries

concern the fields ‘ position’ and ‘salary’ then
the previous layout should be:

EMP(empno,name,position, p_chain,
salary,s_chain,time)

Figure 1 is a graphical representation of this
layout. .

Suppose that the following logical query is
posed in this file form: ‘Retrieve the salaries
and the positions of empno = x for the past
three years’. This logical query is decomposed
in two simple queries as: ¢ Retrieve the salaries
of empno = x for the past three years’ and
‘Retrieve the positions of empno = x for the
past three years’.

In the absence of any indexes for accessing
history data the relevant records should be
retrieved by following the two chains. In Ref.
I it was assumed that the two chains are
followed independently from each other.
Therefore the total cost was considered to be
the sum of the costs for answering each single
query, where the cost of each single query is
given by the ubiquitous formula by Yao?® for
the expected number of block accesses when a
number of fixed length file records is randomly
selected.

The two chains of records may pass through
the same blocks. If great buffer space is
available then block accesses may be saved by
navigating simultaneously through the chains
instead of searching the chains one after the

other. These savings are possible because the
past data file, in essence, may be considered as
a sequential heap with the attribute ‘time’,
standing for ‘valid time from’ or ‘transaction
time’, as the primary key record.

The term simultaneous navigation needs
some explanation. Every block appended to
the heap file has greater address than the
predecessor blocks ones’. This block, also,
contains records with ‘time’ field values
greater than the corresponding values of the
previous blocks. The search in one chain is
performed by following the pointer to the next
version in the chain (previous in time). The
chain to be processed next will be chosen by
following the rule: pick the chain pointing to
a block with address greater than the address
pointed by the other chain. Evidently, it is not
certain that any two consecutive searches do
correspond to the same chain. If the block to
be fetched resides already in main memory,
because it belongs to the other chain too, then
no I/O cost is paid. Instead, negligible CPU
cost is paid to examine the records of the
specific block, read the two chain pointers and
decide which one to follow. This method is
similar to the traversing of multilist files in
parallel as reported by Claybrook?®. In addition
if the cost has to be computed in advance for
taking decisions on query optimization, then
the cost of independent chain search should be
replaced by the cost of simultaneous chain
search. This is the contribution of our work.

empno [name | position

p_chain { salary

s_chain | time

Figure 1. Temporal database record layout.

666 THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992

¥T0Z ‘g2 |udy uo Arelq1T AsieAun Buny celyD euoieN e /610'seulnolployxo’ julwody//:dny wo.y papeojumoq

http://comjnl.oxfordjournals.org/

