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S U M M A R Y
Heat storage systems are usually used to store waste heat and solar energy. In this study, a
mathematical model is developed to predict both the steady-state and transient temperature
distributions of an aquifer thermal energy storage (ATES) system after hot water is injected
through a well into a confined aquifer. The ATES has a confined aquifer bounded by aquicludes
with different thermomechanical properties and geothermal gradients along the depth. Con-
sider that the heat is transferred by conduction and forced convection within the aquifer and by
conduction within the aquicludes. The dimensionless semi-analytical solutions of temperature
distributions of the ATES system are developed using Laplace and Fourier transforms and
their corresponding time-domain results are evaluated numerically by the modified Crump
method. The steady-state solution is obtained from the transient solution through the final-
value theorem. The effect of the heat transfer coefficient on aquiclude temperature distribution
is appreciable only near the outer boundaries of the aquicludes. The present solutions are
useful for estimating the temperature distribution of heat injection and the aquifer thermal
capacity of ATES systems.
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1 I N T RO D U C T I O N

Conventional energy resources such as fossil fuels may produce waste heat. Therefore, waste heat stored in an appropriate aquifer is considered
as a feasible and favourable way to conserve the energy. Aquifer thermal energy storage (ATES) systems provide a convenient way to store
heat energy for future use. Hot water can be injected into the well, stored in geological formations, and later recovered through pumping
wells. The heat recovery and storage efficiency of the ATES systems are affected by thermal losses through surface lines, injection wellbores
and thermal conduction.

Bödvarsson & Tsang (1982) presented a model describing cold water injected into a reservoir with equally spaced horizontal fractures.
Their model neglects the horizontal conduction and geothermal gradient of the fracture. Bödvarsson et al. (1982) developed a 2-D model for
a fault-charged hydrothermal system considering the geothermal gradient. Their model was used to estimate the flow rate of a hydrothermal
system at Susanville, California. They found that heat recovery and storage efficiency are the most important factors influencing the behaviour
of the ATES system. Sauty et al. (1982a) presented a theoretical study on the thermal behaviour of aquifer storage for hot water. The finite
difference model was used to calculate well temperature distribution over production periods. Furthermore, Sauty et al. (1982b) performed
field experiments for hot water storage and compared the experimental data with the theoretical results of Sauty et al. (1982a). Chen &
Reddell (1983) developed transient solutions over short and long time periods. They also proposed a steady-state solution to describe the
aquifer temperature distribution after thermal injection into an aquifer bounded by rocks with the same physical properties and thicknesses.
Nagano et al. (2002) used both observed experimental data and computer simulations to investigate the influence of natural convection on
a forced horizontal flow in a ATES system. They mentioned that the performance of underground ATES is affected by the following four
factors: (1) the thermal properties (e.g. thermal conductivity and thermal capacity); (2) the operating temperature range; (3) the shape and size
of the storage reservoir and (4) the transient mixed convection flow. Bouhdjar & Harhad (2002) presented a numerical analysis of transient
mixed convection flow in a cylindrical storage tank. Yumrutas & Ünsal (2005) developed a computer program based on an analytical model
to simulate a space cooling system with underground storage. They found that higher thermal properties yield a lower storage temperature
and performance value with a higher coefficient. Ghassemi & Kumar (2007) examined the changes in fracture aperture and fluid pressure
resulting from the thermal stress and chemical processes induced by heat extraction from subsurface rocks. Their results show that the fluid
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flow in smaller initial fracture apertures significantly increases the fracture permeability and associated pressure drop at the injection well due
to thermoporoelasticity effects.

The objective of this study is to develop a mathematical model and its corresponding solution for predicting the thermal distribution in
an ATES system after recharged hot water is injected through a well into a confined aquifer. This model assumes that an injection well fully
penetrates the aquifer bounded by the aquicludes with different thermomechanical properties and geothermal gradients along the depth. The
outer boundaries of the aquicludes are represented by the Robin boundary conditions. Heat energy is partially stored within the aquifer and
transferred by means of water flow to adjacent aquicludes. The solution in dimensionless form is developed using Laplace transforms and its
corresponding results in time domain are computed by the modified Crump method (de Hoog et al. 1982). The solution can be applied to
simulate transient temperature distributions under ATES systems and to assess the influences of thermomechanical properties on temperature
distribution.

2 A NA LY T I C A L S T U DY

2.1 Conceptual model

Fig. 1 shows a schematic representation of the ATES system. The system is comprised of the storage aquifer confined by the underlying
and overlying aquicludes with different thermomechanical properties and an injection well with a finite radius fully penetrating the aquifer.
Initially, both the aquifer and aquicludes are considered to have linear geothermal gradients along the vertical depth. Hot water is recharged
into the aquifer and heat energy is partially transferred to the adjacent aquicludes. In the ATES system, the aquicludes are of finite thicknesses
in depth and extend infinitely in the radial direction. We assume that the thermomechanical properties of the aquifer and aquicludes are
temperature invariant. In addition, the thermal capacity of the aquifer, Ca, depends on the density (ρ), specific heat (c) and aquifer porosity
(n), thus, it is denoted as Ca = (ρc)a = n(ρc)water +(1 − n)(ρc)soil. Heat energy is transferred by horizontal conduction and thermal convection
along the water flow direction within the aquifer. Vertical thermal conduction takes place along the whole aquifer thickness and the interface
of the adjacent aquicludes and the aquifer. Water is injected through the well at a constant rate Q into the confined aquifer over the period of
operating time and the outflow from the wellbore is uniformly distributed over the well screen. The temperature of the injected water remains
constant and the initial temperature distributed over the thickness of the aquifer is specified.

Under these circumstances, the heat convection–conduction equation which describes aquifer temperature distribution can be written as

ba

[
Ca

(
∂Ta (r, z, t)

∂t
+ u

∂Ta (r, z, t)

∂r

)
− λa

(
∂2Ta (r, z, t)

∂r 2
+ 1

r

∂Ta (r, z, t)

∂r
+ ∂2Ta (r, z, t)

∂z2

)]

= −λ1
∂T1 (r, z, t)

∂z
|z=0 + λ2

∂T2 (r, z, t)

∂z

∣∣
z=ba , (1)

where the subscripts a, 1 and 2 denote the aquifer, the underlying aquiclude and overlying aquiclude, respectively; T is the temperature; λ is
the thermal conductivity; b is the thickness; C is the thermal capacity; z is the vertical distance from the bottom of the aquifer; r is the radial
distance from the centre of the injection well and t is the operating time. (See Table C1 for a list of all the notations used in this paper.) The
flow velocity within the aquifer (u) is equal to Q/(2πrnba), where n is the aquifer porosity and Q is a constant injection rate.

The initial temperature of the aquifer is

Ta(r, z, 0) = Ta0 − gaz, 0 < z < ba, (2)

Figure 1. Schematic representation of an aquifer thermal energy storage system.
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Aquifer thermal energy storage 239

where ga is the geothermal gradient of the aquifer and T a0 is the constant temperature at the middle part of the aquifer. The boundary
conditions at the injection well and the infinite distance from the injection well are, respectively,

Ta(rw, z, t) = Tin (3)

and

Ta(∞, z, t) = Ta0 − gaz, 0 < z < ba, (4)

where T in is a constant temperature of the injection water and rw is the radius of the injection well.
The boundary conditions at the interface of the underlying and overlying aquicludes are, respectively,

∂Ta(r, 0, t)

∂z
= ∂T1(r, 0, t)

∂z
(5)

and
∂Ta(r, ba, t)

∂z
= ∂T2(r, ba, t)

∂z
. (6)

The heat conduction equation describing the temperature distribution in the underlying aquiclude can be written as

∂2T1 (r, z, t)

∂z2
= C1

λ1

∂T1 (r, z, t)

∂t
(7)

subject to the following initial and boundary conditions

T1(r, z, 0) = Ta0 − g1z, − b1 < z < 0 (8)

T1(r, 0, t) = Ta(r, z, t) for the upper boundary (9)

and

−∂T1 (r, −b1, t)

∂z
= −h1

λ1
[T1 (r,−b1, t) − T10] for the lower boundary (10)

where g1 is the geothermal gradient of the underlying aquiclude; h1 is the heat transfer coefficient of the lower underlying aquiclude and T10

is the surface temperature of the lower underlying aquiclude, T10 = Ta0 + g1b1.
The heat conduction equation describing the temperature distribution in the overlying aquiclude can be written as

∂2T2 (r, z, t)

∂z2
= C2

λ2

∂T2 (r, z, t)

∂t
(11)

subject to the following initial and boundary conditions

T2 (r, z, 0) = Ta0 − g2z, ba < z < ba + b2 (12)

T2 (r, ba, t) = Ta (r, z, t) for the lower boundary (13)

and

−∂T2 (r, ba + b2, t)

∂z
= h2

λ2
[T2 (r, ba + b2, t) − T20] for the upper boundary (14)

where g2 is the geothermal gradient of the overlying aquiclude; h2 is the heat transfer coefficient of the upper overlying aquiclude and T20,
the surface temperature of the upper overlying aquiclude, can be expressed as T20 = Ta0 − g2(ba + b2).

2.2 Laplace-domain solutions

Using the normalized parameters listed in Table 1, eqs (1)–(14) can be expressed in dimensionless forms. The detailed developments of the
Laplace-domain solutions for the dimensionless temperature distributions in the aquifer, underlying- aquiclude and overlying-aquiclude are
given in Appendix A. The final result of dimensionless aquifer temperature distribution in the Laplace domain is

T̄aD (R, Za, p) = 1

2
T̄ ∗

aD (R, 0, p) +
∞∑

n=1

T̄ ∗
aD (R, ζa, p) cos (ζa Za) , ζa = nπ

2
(15)

Table 1. Normalized parameters used in the study.

TaD(R, Za, τ ) = Ta(r,z,t)−Ta0
Tin−Ta0

, T1D(R, Z1, τ ) = T1(r,z,t)−Ta0
Tin−Ta0

, T2D(R, Z2, τ ) = T2(r,z,t)−Ta0
Tin−Ta0

T10D = T10−Ta0
Tin−Ta0

, T20D = T20−Ta0
Tin−Ta0

, Tag = gaba
4(Tin−Ta0) , T1g = g1ba

4(Tin−Ta0) , T2g = g2ba
4(Tin−Ta0)

R = 2r
ba

, Rw = 2rw
ba

, Za = 2z
ba

, Z1 = − 4z
ba

, Z2 = 4(z−ba)
ba

, τ = 4αat
b2

a
, w = QCa

4πnbaλa

B1 = b1
ba

, B2 = b2
ba

, λ1D = λ1
λa

, λ2D = λ2
λa

α1D = 4α1
αa

, α2D = 4α2
αa

, β1 = h1ba
λ1

, β2 = h2ba
λ2
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with

T̄ ∗
aD (R, ζa, p) = 1

p

(
R

Rw

)v

⎡
⎣ Kv

(√
A(ζa, p)R

)
Kv

(√
A(ζa, p)Rw

)
⎤
⎦[

B (ζa, p)

A (ζa, p)
+ sin (2ζa)

ζa

]
− B (ζa, p)

p A (ζa, p)
(16)

A (ζa, p) = p + λ1Dq1x1 + λ2Dq2x2 + ζ 2
a (17)

and

B (ζa, p) = sin (2ζa) α(p)

ζa
− (−1)n

[
β(p) − 2T2g

] + 2pTag

ζ 2
a

[2ζa sin (2ζa) + cos (2ζa) − 1] − 2q1 y1a1 − 2T1g, (18)

where p and ζ are the Laplace and Fourier variables, respectively (Spiegel 1965); Kv(·) is the modified Bessel function of the second
kind with order v, QCa/4πnbaλa; q2

1 = p/.α1D ; q2
2 = p/.α2D ; a1 = β1T10D − 4T1g(1 + β1 B1); a2 = β2T20D + 4T2g(1 + β2 + β2 B2);

α(p) = −q1λ1D y1a1 −q2λ2D y2a2 −λ1D T1g +λ2D T2g +4q2λ2D T2g x2; β(p) = 2q2 y2a2

/
(1 + 4q2x2); yi = 1/[4qi cosh(4qi Bi )+βi sinh(4qi Bi )]

and xi = yi [4qi sinh(4qi Bi ) + βi cosh(4qi Bi )], where i = 1, 2. In addition, the Laplace-domain solutions of dimensionless temperature
distribution in the underlying and overlying aquicludes are, respectively,

T̄1D (R, Z1, p) = T aD (R, Za, p) y1 {4q1 cosh [q1 (4B1 − Z1)] + β1 sinh [q1 (4B1 − Z1)]}

+ sinh (q1 Z1) y1

p

[
β1T10D − 4T1g (1 + β1 B1)

] + T1g

p
Z1 (19)

and

T̄2D(R, Z2, p) =
(

T aD (R, Za, p) + 4T2g

p

)
y2 {4q2 cosh [q2 (4B2 − Z2)] + β2 sinh [q2 (4B2 − Z2)]}

+ sinh (q2 Z2) y2

p

[
β2T20D + 4T2g (1 + β2 + β2 B2)

] − T2g

p
(Z2 + 4) . (20)

For a thin aquifer, the geothermal gradient does not significantly affect the dimensionless aquifer temperature distribution, therefore, eq. (15)
can be simplified as

T̄aD

(
R,

ba

2
, p

)
= 1

p

(
R

Rw

)v

⎡
⎣ Kv

(√
A(0, p)R

)
Kv

(√
A(0, p)Rw

)
⎤
⎦ [

1 + B (0, p)

A (0, p)

]
− B (0, p)

p A (0, p)
, ζa = 0 (21)

with

A (0, p) = p + λ1Dq1x1 + λ2Dq2x2 (22)

and

B(0, p) = −q1 y1a1 (λ1D + 1) − q2 y2a2

[
λ2D + 1

/
(1 + 4q2x2)

] − (λ1D + 1) T1g + (λ2D + 1) T2g + 4q2λ2D T2g x2. (23)

The geothermal gradients in the aquicludes equal zero if the initial temperature distributions in the underlying and overlying aquicludes are
uniform; that is, g1 = g2 = 0. In addition, in the ATES system no heat transfer is assumed at the outer boundaries of the underlying and
overlying aquicludes, and the values of dimensionless parameters T1g, T2g, β1, β2 and B(p) are then all equal to zero. Thus, the Laplace-domain
solutions of eqs (19)–(21) in dimensionless forms are, respectively, reduced to

T̄1D (R, Z1, p) = cosh [q1 (4B1 − Z1)]

cosh (4q1 B1)
T̄aD

(
R,

ba

2
, p

)
(24)

T̄2D (R, Z2, p) = cosh [q2 (4B2 − Z2)]

cosh (4q2 B2)
T̄aD

(
R,

ba

2
, p

)
(25)

and

T̄aD

(
R,

ba

2
, p

)
= 1

p

(
R

Rw

)v

⎡
⎣ Kv

(√
A′(0, p)R

)
Kv

(√
A′(0, p)Rw

)
⎤
⎦ , (26)

where A′(0, p) = p + λ1Dq1 tanh (4q1 B1) + λ2Dq2 tanh (4q2 B2). The above equations are the Laplace-domain solutions for dimensionless
temperature distribution within the aquifer and the underlying and overlying aquicludes. These solutions do not consider the geothermal
gradient and heat transfer coefficient.

2.3 Steady-state solution

For an infinite operating time, thermal energy transfer from the aquifer to the aquicludes in the ATES system is zero at any radial distance
r. The steady-state solution of dimensionless aquifer temperature can then be obtained from eq. (15) by applying the final-value theorem
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(Yeh & Wang 2007). The development of the steady-state solution for dimensionless aquifer temperature distribution in the time domain is
developed in detail in Appendix B and the result is

TaD (R, Za,∞) = 1

2
T ∗

aD (R, 0, ∞) +
∞∑

n=1

T ∗
aD (R, ζa, ∞) cos (ζa Za) , ζa = nπ

2
(27)

with

T ∗
aD (R, ζa,∞) =

(
R

Rw

)v

⎡
⎣ Kv

(√
A(ζa, 0)R

)
Kv

(√
A(ζa, 0)Rw

)
⎤
⎦[

B (ζa, 0)

A (ζa, 0)
+ sin (2ζa)

ζa

]
− B (ζa, 0)

A (ζa, 0)
.

The steady-state solution of eq. (21) in the time domain for the thin aquifer is

TaD

(
R,

ba

2
, ∞

)
=

(
R

Rw

)v

⎡
⎣ Kv

(√
A (0, 0)R

)
Kv

(√
A (0, 0)Rw

)
⎤
⎦ [

1 + B (0, 0)

A (0, 0)

]
− B (0, 0)

A (0, 0)
, (28)

where x = 1/(4 + 4β1 B1), y = 1/(4 + 4β2 B2), A(0, 0) = λ1Dβ1x + λ2Dβ2 y and B(0, 0) = −xa1(λ1D + 1) − ya2

[
λ2D + 1

/
(1 + 4β2 y)

] −
(λ1D + 1) T1g + (λ2D + 1) T2g + 4λ2D T2gβ2 y.

Similarly, the steady-state solutions of dimensionless temperature distribution in the underlying and overlying aquicludes can be obtained
from eqs (19) and (20), respectively. They are

T1D (R, Z1, ∞) = TaD

(
R,

ba

2
, ∞

)
(1 − β1 Z1x) + T10Dβ1 Z1x (29)

and

T2D (R, Z2, ∞) = TaD

(
R,

ba

2
, ∞

)
(1 − β2 Z2 y) + T20Dβ2 Z2 y (30)

3 N U M E R I C A L I N V E R S I O N F O R L A P L A C E - D O M A I N S O LU T I O N S

Eqs (15), (19) and (20) comprise hyperbolic functions [i.e. sinh(·) and cosh(·)] and Bessel function Kw(·); thus their time-domain solutions
may not be tractable. The inversion routine DINLAP of IMSL (2003), developed based on a numerical algorithm originally proposed by
Crump (1976) and later modified by de Hoog et al. (1982), is used to obtain the time-domain solution. This routine has been successfully
applied to solve some groundwater problems (see, e.g. Chen et al. 1996; Yeh & Yang 2006). This algorithm approximates Laplace inversion
in a Fourier series and accelerates the computation using the Shanks method (Shanks 1955). Eqs (15), (19) and (20) are numerically inverted
using this routine with accuracy to the fourth decimal.

The Bessel function of Kv(ε) included in eqs (15), (19) and (20) is non-integral and depends on dimensionless convective parameter v.
Using an ascending series for Iv(ε), the term Kv(ε) given by Abramowitz & Stegun (1964, p. 375) can be written as

Kv (ε) = π

2

I−v (ε) − Iv (ε)

sin (vπ )
(31)

with

Iv (ε) =
( ε

2

)v
∞∑

k=0

(
1
4 ε2

)k

k!� (v + k + 1)
, (32)

where �(·) is the Gamma function. As |ε| is large, Kv(ε) tends to infinity. Using asymptotic expansion for a large argument, Kv(ε) can be
approximated as (1964, p. 378)

Kv(ε) =
√

π

2ε
e−ε

{
1 + δ − 1

8ε
+ (δ − 1) (δ − 9)

2! (8ε)2
+ (δ − 1) (δ − 9) (δ − 25)

3!(8ε)3
+ . . .

}
,

(
|arg ε| <

3

2
π

)
, (33)

where δ = 4v2. The evaluation of eq. (33) is tedious and laborious. The Shanks method is adopted to accelerate the computation of the infinite
sum in this equation. This method had been successfully applied to efficiently compute solutions in groundwater area (e.g. Yang et al. 2006;
Yang & Yeh 2007).

4 R E S U LT S A N D D I S C U S S I O N

The injection well has a finite radius rw of 0.05 m and the injection rate Q of 10−4 m3 s–1 is considered. The aquifer thickness ba is 50 m
and the thicknesses of the underlying and overlying aquicludes, that is, b1 and b2, are 100 and 75 m, respectively. Hot water with a uniformly
constant temperature T in of 70 ◦C is recharged into the aquifer with an initial temperature T a0 of 30.5 ◦C at the middle part of the aquifer
(i.e. at z = 25 m). The field data of Bödvarsson & Tsang (1982) are adopted in the case study and the thermal properties of the aquifer and
aquicludes are listed in Table 2.
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Table 2. Parameter values of the aquifer and adjacent aquicludes.

Parameter name Symbol Value

Thickness of the aquifer ba 50 m
Thickness of the aquicludes b1, b2 100, 75 m
Volumetric thermal capacity of the aquifer Ca 2.695 × 106 J (m3 K)–1

Volumetric thermal capacity of the underlying aquiclude C1 2.7 × 106 J (m3 K)–1

Volumetric thermal capacity of the overlying aquiclude C2 2.65 × 106 J (m3 K)–1

Thermal conductivity of the aquifer λa 2.4 W (m K)–1

Thermal conductivity of the aquicludes λ1, λ2 1.5, 2.0 W (m K)–1

Heat transfer coefficient of the aquicludes h1, h2 1.0, 0.6 W (m2 K)–1

Geothermal gradient of the aquifer ga 0.02oC m–1

Geothermal gradient of the aquicludes g1, g2 0.02, 0.02oC m–1

Porosity of the aquifer n 0.3
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o
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          102
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          104

          105
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symbol            t (day)

7 105

Figure 2. Distribution curves of aquifer temperature at z = 25 m (Tam) versus radial distance (r) predicted by the transient solution at t = 102, 103, 104, 105

and 7 × 105 d, and the steady-state solution for Ca = 2.695 × 106 J (m3 K)–1, λa = 2.4 W (m K)–1, ba = 50 m, Tin = 70 ◦C, Ta0 = 30.5 ◦C at the middle
part of the aquifer and Q = 10−4 m3 s–1 in the ATES system.

The temperature profiles at z = 25 m (denoted as T am) versus the radial distance (r) are shown in Fig. 2 for various operating periods
(namely, t = 102, 103, 104, 105 and 7×105 d). This figure shows that the T am generally increases with t near the injection well. At the same t,
the T am decreases with increasing r and approaches the T a0 at a large r. The relative difference in the T am between the steady-state solution
and the transient solution at t = 105 d is about 1.19 per cent. The T am at 105 d compared with that at 7 × 105 d is about 0.5 ◦C smaller for
r ≤ 20 m and produces a maximum difference of 1.74 ◦C at r = 95 m. This figure also shows that the temperature predicted for the middle
part of the aquifer by the transient solution at t = 7 × 105 d is identical to that of the steady-state solution.

The efficiency of energy storage in the ATES system is affected by aquifer thickness (ba), aquifer thermal conductivity (λa) and injection
flow rate (Q). Fig. 3 demonstrates the spatial temperature distributions at the middle part of the aquifer at t = 100 d predicted by the present
solution, eq. (15), and a simplified solution, eq. (20), for chosen values of ba, λa and Q. The effect of aquifer thickness on aquifer temperature
can be observed from Fig. 3 for the cases with λa = 2.4 W (m K)–1 and Q = 10−4 m3 s–1 when ba = 50 m (case 1) or 20 m (case 2). This figure
shows that a larger ba yields a smaller T am at the same radial distance r. However, both temperature distribution curves approach different
constant values at r = 15 m due to the effects of the geothermal gradient and vertical conduction. The difference in T am between these two
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Figure 3. Distribution curves of aquifer temperature at z = 25 m (Tam) versus radial distance (r) at the time period of 100 d for different values of aquifer
thickness in case 2, aquifer thermal conductivity in case 3, injection flow rate in case 4 and the simplified solution in case 5.

cases increases with r, gives the maximum value at about r = 4 m, and then decreases with r, indicating that heat storage capacity increases
with aquifer thickness. When ba = 50 m and Q = 10−4 m3 s–1, it is shown that T am in the case 1 is smaller at small r, the same at about
r = 5 m and larger after about r = 5 m than that in the case with λa = 1.2 W (m K)–1 (case 3). In addition, both temperature distribution
curves approach almost the same value after r = 10 m. For ba = 50 m and λa = 2.4 W (m K)–1, the effect of the injection flow rate on T am

is further reviewed in Fig. 3 for case 1 (with Q = 10−4 m3 s–1) and the case with 5 × 10−5 m3 s–1 (case 4). The figure shows that a greater
Q produces a higher T am. Both T am curves approach the same value at about r = 10 m, indicating that the heat storage capacity increases
with injection flow rate. Obviously, the aquifer thermal properties and injection flow rate play an important role in affecting the temperature
distribution in ATES systems. In addition, the predicted curve of T am versus r by the simplified solution designated as case 5, neglecting
the vertical geothermal gradient of the aquifer, is displayed in Fig. 3 for ba = 50 m, λa = 2.4 W (m K)–1 and Q = 10−4 m3 s–1. The result
shows that the T am estimated for case 5 is almost identical to that of case 1. The temperatures predicted by these two solutions approach the
initial aquifer temperature T a0 of 30.5 ◦C at about r = 11 m, indicating that the effect of the vertical geothermal gradient in the aquifer on
temperature distribution is almost negligible.

Consider the parameter values Ca = 2.695 × 106 J (m3 K)–1, λa = 2.4 W (m K)–1 and ba = 50 m for the aquifer and C1 = C2= 2.65 ×
106 J (m3 K)–1, λ1 = λ2 = 2.0 W (m K)–1 and b1 = b2 = 100 m for the adjacent aquicludes. The heat recovery ratio, defined as the recovered
heat energy (enthalpy) of the water from the aquifer divided by the recharged heat energy of the water to the aquifer, is calculated herein for
the design of the ATES system. Fig. 4 shows the curves of heat recovery ratio (η) at z = 25 m versus operating time (t) plotted based on the
present solution denoted as a solid line. The Chen & Reddell solution (CRS) (1983) is denoted as a dashed line for r ranging from 1 to 40 m
when t is from 10 to 106 d. This indicates that the η increases with increasing t and decreasing r. In addition, the present solution has a higher
η than the CRS at the same t. The differences between the present solution and the CRS increase with r and approach constant values at large
t. The results show that the CRS underestimates the heat recovery ratio because the aquifer porosity and geothermal gradient are neglected
in the CRS.

Fig. 5 shows the contour of temperature distribution in the ATES system at t = 100 d. Consider that this ATES system has no heat loss
at the interface between the aquifer and aquicludes and heat transfer takes place at both the bottom of the underlying aquiclude and the top
of the overlying aquiclude. In this study, the radius of influence of the temperature is defined as the distance from the injection well to a
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Figure 4. The curves of heat recovery ratio (η) at z = 25 m versus operating time (t) for r ranging from 1 m to 40 m when t is from 10 to 106 d. The dashed
line represents the Chen & Reddell (1983) solution and the solid line represents the present solution.

location where the temperature is 0.5 ◦C higher than the initial temperature at the middle part of the aquifer. Fig. 5 demonstrates that the radii
of influence are located at r = 9.0 m in the aquifer and z = –8.2 and 57.5 m in the underlying and overlying aquicludes, respectively.

The effects of heat transfer coefficient (h) and operating time (t) on temperature distribution are also investigated. Fig. 6 shows the
profiles of temperature versus vertical distance for r = 1 m, h1 = h2 = 0 (no heat transferred) and 1.0 W (m2 K)–1 when t = 360 or 103 d. The
causes of the non-uniformly distributed temperature near the outer boundaries of the underlying and overlying aquicludes are attributed to
the difference of the Biot number, βi = hi ba/.λi , where i = 1, 2. When β < 0.1, the temperature distribution in the aquiclude is uniform and
the heat energy can be transferred rapidly throughout the aquiclude. The temperature distribution in the aquiclude is non-uniform if β > 0.1
(Özisik 1993, p. 29). For the cases of h1 = h2 = 0 and 1.0 W (m2 K)–1, β ′s are then 0 and 33.3, respectively, at the underlying aquiclude
boundary and 0 and 25, respectively, at the overlying aquiclude boundary. Therefore, the effects of h at the outer boundaries of the underlying
and overlying aquicludes must be considered in the case of β > 0.1. Fig. 6 shows that the temperature distributions in the overlying aquiclude
for the cases of h1 = h2 = 0 and 1.0 W (m2 K)–1 are the same and dramatically decrease with increasing vertical distance before z = 58 m
and then slowly between 58 m ≤ z ≤ 65 m at t = 360 d. However, the temperature for the case of h1 = h2 = 1.0 W (m2 K)–1 is slightly
lower than that for the case of h1 = h2 = 0 W/(m2 K)–1 after z > 58 m. In addition, the higher the h the lower the temperature along the
vertical distance, especially near the upper boundary. The temperature distributions in the underlying aquiclude are, to some degree, close
to those within the overlying aquiclude. The temperature distributions for the cases of h1 = h2 = 0 and 1.0 W (m2 K)–1 are the same and
obviously decrease with increasing vertical distance bellow z = 0 m and then slowly decrease between −10 m ≤ z ≤ –20 m. However, the
temperature distributions for the h1 = h2 = 1.0 W (m2 K)–1 case are higher than those for the h1 = h2 = 0 W (m2 K)–1 case after z >

–10 m. These results indicate that the effect of heat transfer coefficient on aquiclude temperature is significant only near the outer boundaries
of the underlying and overlying aquicludes. The temperature distribution at t = 103 d, as shown in Fig. 6, is different from that at t =
360 d. The temperatures of the underlying and overlying aquicludes near the aquifer at t = 103 d are higher than those at t = 360 d. However,
the effect of h on aquiclude temperature increases with t. These results indicate that the effect of the heat transfer coefficient on aquiclude
temperature distribution is appreciable only near the outer boundaries of the underlying and overlying aquicludes and increases with operating
time.
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Figure 5. The contour of temperature distribution in the ATES system for h1 = 1.0 W (m2 K)–1 and h2 = 0.6 W (m2 K)–1 at t = 100 d.
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Figure 6. Isothermal plots of the aquifer and aquicludes versus vertical distance z for r = 1 m and h1 = h2 = 0 and 1.0 W (m2 K)–1 when t = 360 or 103 d.
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The type curves of the dimensionless aquifer temperature of T am at z = 25 m versus dimensionless radial distance are plotted in Fig. 7
when the w ranges from 4.1 to 4.9 and the dimensionless time τ is at 0.012 (103 d), 0.12 (104 d), and infinity. This figure can be considered
to represent different type curves for the estimation of the aquifer parameters such as thermal conductivity and thermal capacity.

5 C O N C LU S I O N S

A mathematical model is developed to simulate thermal distribution when hot water is recharged into the confined aquifer through an injection
well in an ATES system. Semi-analytical solutions for describing the dimensionless temperature distribution in the aquifer and its underlying
and overlying aquicludes have been presented. The time-domain results are computed numerically using the modified Crump method and
presented graphically with the steady-state solution. In addition, the type curves of dimensionless aquifer temperature versus dimensionless
radial distance for various dimensionless convective parameters are also provided. The results obtained from the present solutions have
revealed several important points. A smaller aquifer thickness and/or larger injection hot flow rate yield a larger aquifer temperature. The
temperatures within the aquifer and aquicludes increase with thermal conductivity. On the other hand, they decrease with increasing radial
and vertical distances. The comparison of the present solution with the CRS indicates that the present solution predicts higher heat recovery
ratio than the CRS at the same operating time. This is mainly due to fact that CRS neglects aquifer porosity and geothermal gradient, which
results in the underestimation of aquifer temperature. The steady-state solution matches with the transient solution when the operating period
reaches about 7 × 105 d. The temperature distributions of the aquicludes are affected by the geothermal gradient. In addition, the effect of the
heat transfer coefficient on the aquiclude temperature distribution is appreciable only near the lower and upper boundaries of the aquicludes.

The present solutions can be applied to assess the effects of thermal properties, thickness of the storage aquifer, flow rate and operating
time on spatial and temporal temperature distributions of the aquifer and the adjacent aquicludes in ATES systems. These solutions have
practical use in designing an efficient ATES system for the injection of superfluous hot water into a confined aquifer as disposal storage of
waste heat energy.
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A P P E N D I X A : D E V E L O P M E N T O F S O LU T I O N S ( 1 5 ) , ( 1 9 ) A N D ( 2 0 )

Eqs (1)–(14) can be expressed in dimensionless form using dimensionless parameters given in Table 1. The heat convection–conduction
equation describing aquifer temperature distribution in dimensionless form may be expressed as

∂2TaD (R, Za, τ )

∂ R2
+

(
1 − 2v

R

)
∂TaD (R, Za, τ )

∂ R
+ ∂2TaD (R, Za, τ )

∂ Z 2
a

+ λ1D
∂T1D (R, Z1, τ )

∂ Z1

∣∣∣∣
Z1=0

+ λ2D
∂T2D (R, Z2, τ )

∂ Z2

∣∣∣∣
Z2=0

= ∂TaD (R, Za, τ )

∂τ

(A1)

subject to following dimensionless forms of the initial and boundary conditions

TaD(R, Za, 0) = −2Tag Za (A2)

TaD(Rw, Za, τ ) = 1 (A3)

TaD(∞, Za, τ ) = −2Tag Za (A4)

∂TaD(R, 0, τ )

∂ Za
= −2

∂T1D(R, 0, τ )

∂ Z1
(A5)

and
∂TaD(R, 2, τ )

∂ Za
= 2

∂T2D(R, 0, τ )

∂ Z2
. (A6)

The heat conduction equation describing temperature distribution in the underlying aquiclude can be written in dimensionless form as

∂2T1D (R, Z1, τ )

∂ Z 2
1

= 1

α1D

∂T1D (R, Z1, τ )

∂τ
, 0 < Z1 < 4B1 (A7)

where α1D = 4α1/αa and Z1 = −4z/ba.
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Subject to following dimensionless initial and boundary conditions

T1D (R, Z1, 0) = T1g Z1 (A8)

T1D (R, 0, τ ) = TaD(R, Za, τ ) (A9)

and
∂T1D (R, 4B1, τ )

∂ Z1
= −β1

4
[T1D (R, 4B1, τ ) − T10D] , (A10)

where T10D = (T10 − Ta0)
/

(Tin − Ta0), B1 = b1/.ba and β1 = h1ba/.λ1.
Similarly, the heat conduction equation describing temperature distribution in the overlying aquiclude in dimensionless form is

∂2T2D (R, Z2, τ )

∂ Z 2
2

= 1

α2D

∂T2D (R, Z2, τ )

∂τ
, 0 < Z2 < 4B2 (A11)

subject to following dimensionless initial and boundary conditions

T2D (R, Z2, 0) = −T2g (Z2 + 4) (A12)

T2D (R, 0, τ ) = TaD(R, Za, τ ) (A13)

and
∂T2D (R, 4B2, τ )

∂ Z2
= −β2

4
[T2D (R, 4B2, τ ) − T20D] , (A14)

where α2D = 4α2/αa Z2 = 4(z − ba)/ba,T20D = (T20 − Ta0)
/

(Tin − Ta0), B2 = b2/.ba and β2 = h2ba/.λ2.
Taking Laplace transforms of eqs (A1), (A3), (A4)–(A6) yield

d2T aD (R, Za, p)

dR2
+

(
1 − 2v

R

)
dT aD (R, Za, p)

dR
+ d2T aD (R, Za, p)

d Z 2
a

+ λ1D
dT 1D (R, Z1, p)

dZ1

∣∣∣∣∣
Z1=0

+ λ2D
dT 2D (R, Z2, p)

dZ2

∣∣∣∣∣
Z2=0

= pT aD (R, Za, p) + 2Tag Za (A15)

subject to

T̄aD (Rw, Za, p) = 1
/

p (A16)

T̄aD (∞, Za, p) = −2Tag Za

/
p (A17)

dT̄aD(R, 0, p)

dZa
= −2

dT̄1D(R, 0, p)

dZ1
(A18)

and

dT̄aD(R, 2, p)

dZa
= 2

dT̄2D(R, 0, p)

dZ2
. (A19)

Moreover, the heat conduction equation for the underlying aquiclude after taking Laplace transform of eq. (A7) yields

d2T̄1D (R, Z1, p)

dZ 2
1

= q2
1 T̄1D (R, Z1, p) − γ 2

1 Z1. (A20)

Taking Laplace transforms of eqs (A9) and (A10), respectively, lead to

T̄1D (R, 0, p) = T̄aD (R, Za, p) (A21)

and

dT̄1D (R, 4B1, p)

dZ1
= −β1

4
T̄1D (R, 4B1, p) + β1

4p
T10D, (A22)

where q2
1 = p/α1D and γ 2

1 = T1g/α1D .
Similarly, the heat conduction equation for the overlying aquiclude after taking Laplace transform of eq. (A11) is

d2T̄2D (R, Z2, p)

dZ 2
2

= q2
2 T̄2D (R, Z2, p) + 1

4
γ 2

2 (Z2 + 4) . (A23)

The results of Laplace transforms of eqs (A13) and (A14) are, respectively

T̄2D (R, 0, p) = T̄aD (R, Za, p) (A24)

and

dT̄2D (R, 4B2, p)

dZ2
= −β2

4
T̄2D (R, 4B2, p) + β2

4p
T20D, (A25)

where q2
2 = p/α2D and γ 2

2 = T2g/α2D .
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Eqs (A20) and (A23) are linear differential equations and can be solved by applying the superposition principle. Their solutions in
Laplace domain include the general solution, T

h

1D
and the particular solution, T

p

1D
. That is

T 1D = T
h

1D
+ T

p

1D
. (A26)

The Laplace-domain solution of eq. (A20) for the underlying aquiclude is then obtained as

T 1D = C1 cosh q1 Z1 + C2 sinh q1 Z1 + γ 2
1

q2
1

Z1, (A27)

where C1 and C2 are the undetermined constants. Substituting eq. (A27) into eqs (A21) and (A22) and taking some algebraic manipulations,
the constants can then be determined as

C1 = T̄aD (R, Za, p) (A28)

and

C2 = −T̄aD (R, Za, p) x1 + y1

p

[
β1T10D − 4T1g (1 + β1 B1)

]
, (A29)

where x1 = [4q1 sinh(4q1 B1) + β1 cosh(4q1 B1)]y1 and y1 = 1/[4q1 cosh(4q1 B1) + β1 sinh(4q1 B1)]. Eq. (19) can be obtained by substituting
the constants in eqs (A28) and (A29) into eq. (A27). Similarly, the Laplace-domain solution of the overlying aquiclude can be obtained as
eq. (20) from eqs (A23), (A24) and (A25).

Substituting eqs (19) and (20) into eq. (A15), one obtains

d2T aD (R, Za, p)

dR2
+

(
1 − 2v

R

)
dT aD (R, Za, p)

dR
− A (0, p) T aD (R, Za, p) + d2T aD (R, Za, p)

dZ 2
a

= 1

p
B (0, p) + 2Tag Za, (A30)

where the functions of A(0,p) and B(0,p) in eq. (A30) are, respectively, given as eqs (22) and (23). Furthermore, taking Fourier cosine
transforms of eq. (A30) and substituting eqs (A18) and (A19) into (A30) yield

d2T
∗
aD (R, ζa, p)

dR2
+

(
1 − 2v

R

)
dT

∗
aD (R, ζa, p)

dR
− A (ζa, p) T

∗
aD (R, ζa, p) = 1

p
B (ζa, p) , (A31)

where the functions of A(ζa, p) and B(ζa, p) in eq. (A31) are given as eqs (17) and (18), respectively. Eq. (A31) is a linear differential equation
and can also be solved by applying the superposition principle. The Laplace–Fourier domain solution of eq. (A31) including a general solution
T

∗h

aD and a particular solution T
∗p

aD can be expressed as

T
∗
aD = T

∗h

aD + T
∗p

aD . (A32)

The homogeneous equation in eq. (A31) is a special form of Bessel equation and its general solution can be expressed as

T
∗h

a = Rv
[

D1 Iv

(√
A (ζa, p)R

)
+ D2 Kv

(√
A (ζa, p)R

)]
, (A33)

where D1 and D2 are the undetermined constants. The non-homogeneous equation in eq. (A31) can be easily solved and its particular solution
is

T
∗p

aD = − B (ζa, p)

p A (ζa, p)
. (A34)

Based on the superposition principle, the Laplace–Fourier domain solution can then be obtained after substituting eqs (A33) and (A34) into
eq. (A32) as

T
∗
aD = Rv

[
D1 Iv

(√
A (ζa, p)R

)
+ D2 Kv

(√
A (ζa, p)R

)]
− B (ζa, p)

p A (ζa, p)
. (A35)

Substituting eq. (A35) into eqs (A16) and (A17), the constants can be determined as

D1 = 0 (A36)

and

D2 = 1

p

(
1

Rw

)v

⎡
⎣ 1

Kv

(√
A (ζa, p)Rw

)
⎤
⎦[

B (ζa, p)

A (ζa, p)
+ sin (2ζa)

ζa

]
. (A37)

Eq. (15) can then be obtained after substituting the constants (A36) and (A37) into eq. (A35) and taking Fourier cosine inversion.

A P P E N D I X B : D E V E L O P M E N T O F E Q. ( 2 7 )

The steady-state solution can be obtained from the transient solution by applying the Final-Value Theorem (Yeh & Wang 2007) as

TaD (R, Za,∞) = lim
p→0

pT̄aD (R, Za, p) . (B1)

Accordingly, substituting eq. (15) into eq. (B1) yields

TaD (R, Za,∞) = lim
p→0

{
1

2
T̄ ∗

aD (R, 0, p) +
∞∑

n=1

T̄ ∗
aD (R, ζa, p) cos (ζa Za)

}
(B2)

C© 2010 The Authors, GJI, 183, 237–251

Journal compilation C© 2010 RAS

 at N
ational C

hiao T
ung U

niversity L
ibrary on A

pril 24, 2014
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

http://gji.oxfordjournals.org/


250 S.-Y. Yang, H.-D. Yeh and K.-Y. Li

with

T̄ ∗
aD (R, ζa, p) =

(
R

Rw

)v

⎡
⎣ Kv

(√
A(ζa, p)R

)
Kv

(√
A(ζa, p)Rw

)
⎤
⎦[

B (ζa, p)

A (ζa, p)
+ sin (2ζa)

ζa

]
− B (ζa, p)

A (ζa, p)
.

The hyperbolic functions given by Abramowitz & Stegun (1964, p. 85) are

sinh (ε) = ε + ε3

3!
+ ε5

5!
+ ε7

7!
+ ..., (|ε| < ∞) (B3)

cosh (ε) = 1 + ε2

2!
+ ε4

4!
+ ε6

6!
+ ..., (|ε| < ∞) . (B4)

Set ε1 = (4q1 B1) and ε2 = (4q2 B2) and let p → 0 for eqs (B3) and (B4), eqs (17) and (18) can be respectively rewritten as

A(ζa, 0) = λ1Dβ1x + λ2Dβ2 y + ζ 2
a (B5)

and

B (ζa, 0) = sin (2ζa) α (0)

ζa
− (−1)n

[
β (0) − 2T2g

] − 2a1 y1 − 2T1g (B6)

with

α(0) = −λ1D xa1 − λ2D ya2 − λ1D T1g + λ2D T2g + 4λ2D T2gβ2 y (B7)

and

β(0) = 2ya2

1 + 4β2 y
, (B8)

where x = 1/(4 + 4β1 B1) and y = 1/(4 + 4β2 B2). Substituting eqs (B5) and (B6) into eq. (B2), the steady-state solution of aquifer
temperature in dimensionless form is obtained as eq. (27).
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A P P E N D I X C : N O TAT I O N

Table C1 provides a list of all the notation used in this article.

Table C1. Notation used in this article.

bi thickness (m), i = 1, 2 or a
Bi = bi /ba, i = 1, 2; dimensionless thickness
Ci = (ρc)i , volumetric thermal capacity [J (m3 K)–1], i = 1, 2 or a
gi geothermal gradient (◦C m–1), i = 1, 2 or a
hi heat transfer coefficient [W (m2 K)–1], i = 1, 2
n aquifer porosity, dimensionless
p Laplace transform variable
q2

i = p/αi D , i = 1, 2
Q injection flow rate (m3 s–1)
r radial distance from the centre of injection well (m)
rw injection well radius (m)
R = 2r/ba; dimensionless radial distance from the centre of the injection well
Rw = 2rw/ba; dimensionless injection well radius
t injection time (s)
Ti temperature (◦C), i = 1, 2, a or in
Ti D = (Ti − Ta0)

/
(Tin − Ta0), i = 1, 2, or a; dimensionless temperature

Tig = gi ba/4(Tin − Ta0), i = 1, 2, or a; dimensionless geothermal gradient
T̄i D dimensionless temperature in Laplace domain, i = 1, 2 or a
T̄ ∗

aD dimensionless temperature in Fourier domain
u volumetric flux per unit pore area (m s–1)
v = QCa/4πnbaλa; dimensionless convective parameter
z vertical distance from the bottom of the aquifer (m)
Za = 2z/.ba; dimensionless vertical distance from the bottom of the aquifer in the aquifer
Z1 = −4z/.ba; dimensionless vertical distance from the bottom of the aquifer in the underlying aquiclude
Z2 = 4(z − ba)

/
ba; dimensionless vertical distance from the bottom of the aquifer in the overlying aquiclude

αi = λi /Ci , i = 1, 2 or a; thermal diffusivity (m2 s–1)
αi D = 4αi /αa, i = 1, 2; dimensionless thermal diffusivity
βi = hi ba/λi , i = 1, 2; Biot number
γ 2

i = Tig/αi D , i = 1, 2
λi thermal conductivity [W (m K)–1], i = 1, 2 or a
λiD = λi /λa, i = 1, 2; dimensionless thermal conductivity
ζ Fourier transform variable
τ = 4αat/b2

a ; dimensionless injection time
Subscripts
in injection water
a aquifer
0 reference value
1 underlying aquiclude
2 overlying aquiclude
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